Step |
Hyp |
Ref |
Expression |
1 |
|
canth.1 |
⊢ 𝐴 ∈ V |
2 |
|
ssrab2 |
⊢ { 𝑥 ∈ 𝐴 ∣ ¬ 𝑥 ∈ ( 𝐹 ‘ 𝑥 ) } ⊆ 𝐴 |
3 |
1 2
|
elpwi2 |
⊢ { 𝑥 ∈ 𝐴 ∣ ¬ 𝑥 ∈ ( 𝐹 ‘ 𝑥 ) } ∈ 𝒫 𝐴 |
4 |
|
forn |
⊢ ( 𝐹 : 𝐴 –onto→ 𝒫 𝐴 → ran 𝐹 = 𝒫 𝐴 ) |
5 |
3 4
|
eleqtrrid |
⊢ ( 𝐹 : 𝐴 –onto→ 𝒫 𝐴 → { 𝑥 ∈ 𝐴 ∣ ¬ 𝑥 ∈ ( 𝐹 ‘ 𝑥 ) } ∈ ran 𝐹 ) |
6 |
|
id |
⊢ ( 𝑥 = 𝑦 → 𝑥 = 𝑦 ) |
7 |
|
fveq2 |
⊢ ( 𝑥 = 𝑦 → ( 𝐹 ‘ 𝑥 ) = ( 𝐹 ‘ 𝑦 ) ) |
8 |
6 7
|
eleq12d |
⊢ ( 𝑥 = 𝑦 → ( 𝑥 ∈ ( 𝐹 ‘ 𝑥 ) ↔ 𝑦 ∈ ( 𝐹 ‘ 𝑦 ) ) ) |
9 |
8
|
notbid |
⊢ ( 𝑥 = 𝑦 → ( ¬ 𝑥 ∈ ( 𝐹 ‘ 𝑥 ) ↔ ¬ 𝑦 ∈ ( 𝐹 ‘ 𝑦 ) ) ) |
10 |
9
|
elrab |
⊢ ( 𝑦 ∈ { 𝑥 ∈ 𝐴 ∣ ¬ 𝑥 ∈ ( 𝐹 ‘ 𝑥 ) } ↔ ( 𝑦 ∈ 𝐴 ∧ ¬ 𝑦 ∈ ( 𝐹 ‘ 𝑦 ) ) ) |
11 |
10
|
baibr |
⊢ ( 𝑦 ∈ 𝐴 → ( ¬ 𝑦 ∈ ( 𝐹 ‘ 𝑦 ) ↔ 𝑦 ∈ { 𝑥 ∈ 𝐴 ∣ ¬ 𝑥 ∈ ( 𝐹 ‘ 𝑥 ) } ) ) |
12 |
|
nbbn |
⊢ ( ( ¬ 𝑦 ∈ ( 𝐹 ‘ 𝑦 ) ↔ 𝑦 ∈ { 𝑥 ∈ 𝐴 ∣ ¬ 𝑥 ∈ ( 𝐹 ‘ 𝑥 ) } ) ↔ ¬ ( 𝑦 ∈ ( 𝐹 ‘ 𝑦 ) ↔ 𝑦 ∈ { 𝑥 ∈ 𝐴 ∣ ¬ 𝑥 ∈ ( 𝐹 ‘ 𝑥 ) } ) ) |
13 |
11 12
|
sylib |
⊢ ( 𝑦 ∈ 𝐴 → ¬ ( 𝑦 ∈ ( 𝐹 ‘ 𝑦 ) ↔ 𝑦 ∈ { 𝑥 ∈ 𝐴 ∣ ¬ 𝑥 ∈ ( 𝐹 ‘ 𝑥 ) } ) ) |
14 |
|
eleq2 |
⊢ ( ( 𝐹 ‘ 𝑦 ) = { 𝑥 ∈ 𝐴 ∣ ¬ 𝑥 ∈ ( 𝐹 ‘ 𝑥 ) } → ( 𝑦 ∈ ( 𝐹 ‘ 𝑦 ) ↔ 𝑦 ∈ { 𝑥 ∈ 𝐴 ∣ ¬ 𝑥 ∈ ( 𝐹 ‘ 𝑥 ) } ) ) |
15 |
13 14
|
nsyl |
⊢ ( 𝑦 ∈ 𝐴 → ¬ ( 𝐹 ‘ 𝑦 ) = { 𝑥 ∈ 𝐴 ∣ ¬ 𝑥 ∈ ( 𝐹 ‘ 𝑥 ) } ) |
16 |
15
|
nrex |
⊢ ¬ ∃ 𝑦 ∈ 𝐴 ( 𝐹 ‘ 𝑦 ) = { 𝑥 ∈ 𝐴 ∣ ¬ 𝑥 ∈ ( 𝐹 ‘ 𝑥 ) } |
17 |
|
fofn |
⊢ ( 𝐹 : 𝐴 –onto→ 𝒫 𝐴 → 𝐹 Fn 𝐴 ) |
18 |
|
fvelrnb |
⊢ ( 𝐹 Fn 𝐴 → ( { 𝑥 ∈ 𝐴 ∣ ¬ 𝑥 ∈ ( 𝐹 ‘ 𝑥 ) } ∈ ran 𝐹 ↔ ∃ 𝑦 ∈ 𝐴 ( 𝐹 ‘ 𝑦 ) = { 𝑥 ∈ 𝐴 ∣ ¬ 𝑥 ∈ ( 𝐹 ‘ 𝑥 ) } ) ) |
19 |
17 18
|
syl |
⊢ ( 𝐹 : 𝐴 –onto→ 𝒫 𝐴 → ( { 𝑥 ∈ 𝐴 ∣ ¬ 𝑥 ∈ ( 𝐹 ‘ 𝑥 ) } ∈ ran 𝐹 ↔ ∃ 𝑦 ∈ 𝐴 ( 𝐹 ‘ 𝑦 ) = { 𝑥 ∈ 𝐴 ∣ ¬ 𝑥 ∈ ( 𝐹 ‘ 𝑥 ) } ) ) |
20 |
16 19
|
mtbiri |
⊢ ( 𝐹 : 𝐴 –onto→ 𝒫 𝐴 → ¬ { 𝑥 ∈ 𝐴 ∣ ¬ 𝑥 ∈ ( 𝐹 ‘ 𝑥 ) } ∈ ran 𝐹 ) |
21 |
5 20
|
pm2.65i |
⊢ ¬ 𝐹 : 𝐴 –onto→ 𝒫 𝐴 |