Step |
Hyp |
Ref |
Expression |
1 |
|
canth2.1 |
⊢ 𝐴 ∈ V |
2 |
1
|
pwex |
⊢ 𝒫 𝐴 ∈ V |
3 |
|
snelpwi |
⊢ ( 𝑥 ∈ 𝐴 → { 𝑥 } ∈ 𝒫 𝐴 ) |
4 |
|
vex |
⊢ 𝑥 ∈ V |
5 |
4
|
sneqr |
⊢ ( { 𝑥 } = { 𝑦 } → 𝑥 = 𝑦 ) |
6 |
|
sneq |
⊢ ( 𝑥 = 𝑦 → { 𝑥 } = { 𝑦 } ) |
7 |
5 6
|
impbii |
⊢ ( { 𝑥 } = { 𝑦 } ↔ 𝑥 = 𝑦 ) |
8 |
7
|
a1i |
⊢ ( ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴 ) → ( { 𝑥 } = { 𝑦 } ↔ 𝑥 = 𝑦 ) ) |
9 |
3 8
|
dom3 |
⊢ ( ( 𝐴 ∈ V ∧ 𝒫 𝐴 ∈ V ) → 𝐴 ≼ 𝒫 𝐴 ) |
10 |
1 2 9
|
mp2an |
⊢ 𝐴 ≼ 𝒫 𝐴 |
11 |
1
|
canth |
⊢ ¬ 𝑓 : 𝐴 –onto→ 𝒫 𝐴 |
12 |
|
f1ofo |
⊢ ( 𝑓 : 𝐴 –1-1-onto→ 𝒫 𝐴 → 𝑓 : 𝐴 –onto→ 𝒫 𝐴 ) |
13 |
11 12
|
mto |
⊢ ¬ 𝑓 : 𝐴 –1-1-onto→ 𝒫 𝐴 |
14 |
13
|
nex |
⊢ ¬ ∃ 𝑓 𝑓 : 𝐴 –1-1-onto→ 𝒫 𝐴 |
15 |
|
bren |
⊢ ( 𝐴 ≈ 𝒫 𝐴 ↔ ∃ 𝑓 𝑓 : 𝐴 –1-1-onto→ 𝒫 𝐴 ) |
16 |
14 15
|
mtbir |
⊢ ¬ 𝐴 ≈ 𝒫 𝐴 |
17 |
|
brsdom |
⊢ ( 𝐴 ≺ 𝒫 𝐴 ↔ ( 𝐴 ≼ 𝒫 𝐴 ∧ ¬ 𝐴 ≈ 𝒫 𝐴 ) ) |
18 |
10 16 17
|
mpbir2an |
⊢ 𝐴 ≺ 𝒫 𝐴 |