Metamath Proof Explorer
		
		
		
		Description:  Cantor's theorem with the sethood requirement expressed as an
       antecedent.  Theorem 23 of Suppes p. 97.  (Contributed by NM, 7-Nov-2003)
		
			
				
					|  |  | Ref | Expression | 
				
					|  | Assertion | canth2g | ⊢  ( 𝐴  ∈  𝑉  →  𝐴  ≺  𝒫  𝐴 ) | 
			
		
		
			
				Proof
				
					
						| Step | Hyp | Ref | Expression | 
						
							| 1 |  | pweq | ⊢ ( 𝑥  =  𝐴  →  𝒫  𝑥  =  𝒫  𝐴 ) | 
						
							| 2 |  | breq12 | ⊢ ( ( 𝑥  =  𝐴  ∧  𝒫  𝑥  =  𝒫  𝐴 )  →  ( 𝑥  ≺  𝒫  𝑥  ↔  𝐴  ≺  𝒫  𝐴 ) ) | 
						
							| 3 | 1 2 | mpdan | ⊢ ( 𝑥  =  𝐴  →  ( 𝑥  ≺  𝒫  𝑥  ↔  𝐴  ≺  𝒫  𝐴 ) ) | 
						
							| 4 |  | vex | ⊢ 𝑥  ∈  V | 
						
							| 5 | 4 | canth2 | ⊢ 𝑥  ≺  𝒫  𝑥 | 
						
							| 6 | 3 5 | vtoclg | ⊢ ( 𝐴  ∈  𝑉  →  𝐴  ≺  𝒫  𝐴 ) |