Metamath Proof Explorer


Theorem canth2g

Description: Cantor's theorem with the sethood requirement expressed as an antecedent. Theorem 23 of Suppes p. 97. (Contributed by NM, 7-Nov-2003)

Ref Expression
Assertion canth2g ( 𝐴𝑉𝐴 ≺ 𝒫 𝐴 )

Proof

Step Hyp Ref Expression
1 pweq ( 𝑥 = 𝐴 → 𝒫 𝑥 = 𝒫 𝐴 )
2 breq12 ( ( 𝑥 = 𝐴 ∧ 𝒫 𝑥 = 𝒫 𝐴 ) → ( 𝑥 ≺ 𝒫 𝑥𝐴 ≺ 𝒫 𝐴 ) )
3 1 2 mpdan ( 𝑥 = 𝐴 → ( 𝑥 ≺ 𝒫 𝑥𝐴 ≺ 𝒫 𝐴 ) )
4 vex 𝑥 ∈ V
5 4 canth2 𝑥 ≺ 𝒫 𝑥
6 3 5 vtoclg ( 𝐴𝑉𝐴 ≺ 𝒫 𝐴 )