Metamath Proof Explorer
Description: Cantor's theorem with the sethood requirement expressed as an
antecedent. Theorem 23 of Suppes p. 97. (Contributed by NM, 7-Nov-2003)
|
|
Ref |
Expression |
|
Assertion |
canth2g |
⊢ ( 𝐴 ∈ 𝑉 → 𝐴 ≺ 𝒫 𝐴 ) |
Proof
Step |
Hyp |
Ref |
Expression |
1 |
|
pweq |
⊢ ( 𝑥 = 𝐴 → 𝒫 𝑥 = 𝒫 𝐴 ) |
2 |
|
breq12 |
⊢ ( ( 𝑥 = 𝐴 ∧ 𝒫 𝑥 = 𝒫 𝐴 ) → ( 𝑥 ≺ 𝒫 𝑥 ↔ 𝐴 ≺ 𝒫 𝐴 ) ) |
3 |
1 2
|
mpdan |
⊢ ( 𝑥 = 𝐴 → ( 𝑥 ≺ 𝒫 𝑥 ↔ 𝐴 ≺ 𝒫 𝐴 ) ) |
4 |
|
vex |
⊢ 𝑥 ∈ V |
5 |
4
|
canth2 |
⊢ 𝑥 ≺ 𝒫 𝑥 |
6 |
3 5
|
vtoclg |
⊢ ( 𝐴 ∈ 𝑉 → 𝐴 ≺ 𝒫 𝐴 ) |