Step |
Hyp |
Ref |
Expression |
1 |
|
canth4.1 |
⊢ 𝑊 = { 〈 𝑥 , 𝑟 〉 ∣ ( ( 𝑥 ⊆ 𝐴 ∧ 𝑟 ⊆ ( 𝑥 × 𝑥 ) ) ∧ ( 𝑟 We 𝑥 ∧ ∀ 𝑦 ∈ 𝑥 ( 𝐹 ‘ ( ◡ 𝑟 “ { 𝑦 } ) ) = 𝑦 ) ) } |
2 |
|
canth4.2 |
⊢ 𝐵 = ∪ dom 𝑊 |
3 |
|
canth4.3 |
⊢ 𝐶 = ( ◡ ( 𝑊 ‘ 𝐵 ) “ { ( 𝐹 ‘ 𝐵 ) } ) |
4 |
|
f1f |
⊢ ( 𝐹 : ( 𝒫 𝐴 ∩ dom card ) –1-1→ 𝐴 → 𝐹 : ( 𝒫 𝐴 ∩ dom card ) ⟶ 𝐴 ) |
5 |
|
ssid |
⊢ ( 𝒫 𝐴 ∩ dom card ) ⊆ ( 𝒫 𝐴 ∩ dom card ) |
6 |
1 2 3
|
canth4 |
⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝐹 : ( 𝒫 𝐴 ∩ dom card ) ⟶ 𝐴 ∧ ( 𝒫 𝐴 ∩ dom card ) ⊆ ( 𝒫 𝐴 ∩ dom card ) ) → ( 𝐵 ⊆ 𝐴 ∧ 𝐶 ⊊ 𝐵 ∧ ( 𝐹 ‘ 𝐵 ) = ( 𝐹 ‘ 𝐶 ) ) ) |
7 |
5 6
|
mp3an3 |
⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝐹 : ( 𝒫 𝐴 ∩ dom card ) ⟶ 𝐴 ) → ( 𝐵 ⊆ 𝐴 ∧ 𝐶 ⊊ 𝐵 ∧ ( 𝐹 ‘ 𝐵 ) = ( 𝐹 ‘ 𝐶 ) ) ) |
8 |
4 7
|
sylan2 |
⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝐹 : ( 𝒫 𝐴 ∩ dom card ) –1-1→ 𝐴 ) → ( 𝐵 ⊆ 𝐴 ∧ 𝐶 ⊊ 𝐵 ∧ ( 𝐹 ‘ 𝐵 ) = ( 𝐹 ‘ 𝐶 ) ) ) |
9 |
8
|
simp3d |
⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝐹 : ( 𝒫 𝐴 ∩ dom card ) –1-1→ 𝐴 ) → ( 𝐹 ‘ 𝐵 ) = ( 𝐹 ‘ 𝐶 ) ) |
10 |
|
simpr |
⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝐹 : ( 𝒫 𝐴 ∩ dom card ) –1-1→ 𝐴 ) → 𝐹 : ( 𝒫 𝐴 ∩ dom card ) –1-1→ 𝐴 ) |
11 |
8
|
simp1d |
⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝐹 : ( 𝒫 𝐴 ∩ dom card ) –1-1→ 𝐴 ) → 𝐵 ⊆ 𝐴 ) |
12 |
|
elpw2g |
⊢ ( 𝐴 ∈ 𝑉 → ( 𝐵 ∈ 𝒫 𝐴 ↔ 𝐵 ⊆ 𝐴 ) ) |
13 |
12
|
adantr |
⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝐹 : ( 𝒫 𝐴 ∩ dom card ) –1-1→ 𝐴 ) → ( 𝐵 ∈ 𝒫 𝐴 ↔ 𝐵 ⊆ 𝐴 ) ) |
14 |
11 13
|
mpbird |
⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝐹 : ( 𝒫 𝐴 ∩ dom card ) –1-1→ 𝐴 ) → 𝐵 ∈ 𝒫 𝐴 ) |
15 |
|
eqid |
⊢ 𝐵 = 𝐵 |
16 |
|
eqid |
⊢ ( 𝑊 ‘ 𝐵 ) = ( 𝑊 ‘ 𝐵 ) |
17 |
15 16
|
pm3.2i |
⊢ ( 𝐵 = 𝐵 ∧ ( 𝑊 ‘ 𝐵 ) = ( 𝑊 ‘ 𝐵 ) ) |
18 |
|
simpl |
⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝐹 : ( 𝒫 𝐴 ∩ dom card ) –1-1→ 𝐴 ) → 𝐴 ∈ 𝑉 ) |
19 |
10 4
|
syl |
⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝐹 : ( 𝒫 𝐴 ∩ dom card ) –1-1→ 𝐴 ) → 𝐹 : ( 𝒫 𝐴 ∩ dom card ) ⟶ 𝐴 ) |
20 |
19
|
ffvelrnda |
⊢ ( ( ( 𝐴 ∈ 𝑉 ∧ 𝐹 : ( 𝒫 𝐴 ∩ dom card ) –1-1→ 𝐴 ) ∧ 𝑥 ∈ ( 𝒫 𝐴 ∩ dom card ) ) → ( 𝐹 ‘ 𝑥 ) ∈ 𝐴 ) |
21 |
1 18 20 2
|
fpwwe |
⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝐹 : ( 𝒫 𝐴 ∩ dom card ) –1-1→ 𝐴 ) → ( ( 𝐵 𝑊 ( 𝑊 ‘ 𝐵 ) ∧ ( 𝐹 ‘ 𝐵 ) ∈ 𝐵 ) ↔ ( 𝐵 = 𝐵 ∧ ( 𝑊 ‘ 𝐵 ) = ( 𝑊 ‘ 𝐵 ) ) ) ) |
22 |
17 21
|
mpbiri |
⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝐹 : ( 𝒫 𝐴 ∩ dom card ) –1-1→ 𝐴 ) → ( 𝐵 𝑊 ( 𝑊 ‘ 𝐵 ) ∧ ( 𝐹 ‘ 𝐵 ) ∈ 𝐵 ) ) |
23 |
22
|
simpld |
⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝐹 : ( 𝒫 𝐴 ∩ dom card ) –1-1→ 𝐴 ) → 𝐵 𝑊 ( 𝑊 ‘ 𝐵 ) ) |
24 |
1 18
|
fpwwelem |
⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝐹 : ( 𝒫 𝐴 ∩ dom card ) –1-1→ 𝐴 ) → ( 𝐵 𝑊 ( 𝑊 ‘ 𝐵 ) ↔ ( ( 𝐵 ⊆ 𝐴 ∧ ( 𝑊 ‘ 𝐵 ) ⊆ ( 𝐵 × 𝐵 ) ) ∧ ( ( 𝑊 ‘ 𝐵 ) We 𝐵 ∧ ∀ 𝑦 ∈ 𝐵 ( 𝐹 ‘ ( ◡ ( 𝑊 ‘ 𝐵 ) “ { 𝑦 } ) ) = 𝑦 ) ) ) ) |
25 |
23 24
|
mpbid |
⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝐹 : ( 𝒫 𝐴 ∩ dom card ) –1-1→ 𝐴 ) → ( ( 𝐵 ⊆ 𝐴 ∧ ( 𝑊 ‘ 𝐵 ) ⊆ ( 𝐵 × 𝐵 ) ) ∧ ( ( 𝑊 ‘ 𝐵 ) We 𝐵 ∧ ∀ 𝑦 ∈ 𝐵 ( 𝐹 ‘ ( ◡ ( 𝑊 ‘ 𝐵 ) “ { 𝑦 } ) ) = 𝑦 ) ) ) |
26 |
25
|
simprld |
⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝐹 : ( 𝒫 𝐴 ∩ dom card ) –1-1→ 𝐴 ) → ( 𝑊 ‘ 𝐵 ) We 𝐵 ) |
27 |
|
fvex |
⊢ ( 𝑊 ‘ 𝐵 ) ∈ V |
28 |
|
weeq1 |
⊢ ( 𝑟 = ( 𝑊 ‘ 𝐵 ) → ( 𝑟 We 𝐵 ↔ ( 𝑊 ‘ 𝐵 ) We 𝐵 ) ) |
29 |
27 28
|
spcev |
⊢ ( ( 𝑊 ‘ 𝐵 ) We 𝐵 → ∃ 𝑟 𝑟 We 𝐵 ) |
30 |
26 29
|
syl |
⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝐹 : ( 𝒫 𝐴 ∩ dom card ) –1-1→ 𝐴 ) → ∃ 𝑟 𝑟 We 𝐵 ) |
31 |
|
ween |
⊢ ( 𝐵 ∈ dom card ↔ ∃ 𝑟 𝑟 We 𝐵 ) |
32 |
30 31
|
sylibr |
⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝐹 : ( 𝒫 𝐴 ∩ dom card ) –1-1→ 𝐴 ) → 𝐵 ∈ dom card ) |
33 |
14 32
|
elind |
⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝐹 : ( 𝒫 𝐴 ∩ dom card ) –1-1→ 𝐴 ) → 𝐵 ∈ ( 𝒫 𝐴 ∩ dom card ) ) |
34 |
8
|
simp2d |
⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝐹 : ( 𝒫 𝐴 ∩ dom card ) –1-1→ 𝐴 ) → 𝐶 ⊊ 𝐵 ) |
35 |
34
|
pssssd |
⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝐹 : ( 𝒫 𝐴 ∩ dom card ) –1-1→ 𝐴 ) → 𝐶 ⊆ 𝐵 ) |
36 |
35 11
|
sstrd |
⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝐹 : ( 𝒫 𝐴 ∩ dom card ) –1-1→ 𝐴 ) → 𝐶 ⊆ 𝐴 ) |
37 |
|
elpw2g |
⊢ ( 𝐴 ∈ 𝑉 → ( 𝐶 ∈ 𝒫 𝐴 ↔ 𝐶 ⊆ 𝐴 ) ) |
38 |
37
|
adantr |
⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝐹 : ( 𝒫 𝐴 ∩ dom card ) –1-1→ 𝐴 ) → ( 𝐶 ∈ 𝒫 𝐴 ↔ 𝐶 ⊆ 𝐴 ) ) |
39 |
36 38
|
mpbird |
⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝐹 : ( 𝒫 𝐴 ∩ dom card ) –1-1→ 𝐴 ) → 𝐶 ∈ 𝒫 𝐴 ) |
40 |
|
ssnum |
⊢ ( ( 𝐵 ∈ dom card ∧ 𝐶 ⊆ 𝐵 ) → 𝐶 ∈ dom card ) |
41 |
32 35 40
|
syl2anc |
⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝐹 : ( 𝒫 𝐴 ∩ dom card ) –1-1→ 𝐴 ) → 𝐶 ∈ dom card ) |
42 |
39 41
|
elind |
⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝐹 : ( 𝒫 𝐴 ∩ dom card ) –1-1→ 𝐴 ) → 𝐶 ∈ ( 𝒫 𝐴 ∩ dom card ) ) |
43 |
|
f1fveq |
⊢ ( ( 𝐹 : ( 𝒫 𝐴 ∩ dom card ) –1-1→ 𝐴 ∧ ( 𝐵 ∈ ( 𝒫 𝐴 ∩ dom card ) ∧ 𝐶 ∈ ( 𝒫 𝐴 ∩ dom card ) ) ) → ( ( 𝐹 ‘ 𝐵 ) = ( 𝐹 ‘ 𝐶 ) ↔ 𝐵 = 𝐶 ) ) |
44 |
10 33 42 43
|
syl12anc |
⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝐹 : ( 𝒫 𝐴 ∩ dom card ) –1-1→ 𝐴 ) → ( ( 𝐹 ‘ 𝐵 ) = ( 𝐹 ‘ 𝐶 ) ↔ 𝐵 = 𝐶 ) ) |
45 |
9 44
|
mpbid |
⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝐹 : ( 𝒫 𝐴 ∩ dom card ) –1-1→ 𝐴 ) → 𝐵 = 𝐶 ) |
46 |
34
|
pssned |
⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝐹 : ( 𝒫 𝐴 ∩ dom card ) –1-1→ 𝐴 ) → 𝐶 ≠ 𝐵 ) |
47 |
46
|
necomd |
⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝐹 : ( 𝒫 𝐴 ∩ dom card ) –1-1→ 𝐴 ) → 𝐵 ≠ 𝐶 ) |
48 |
47
|
neneqd |
⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝐹 : ( 𝒫 𝐴 ∩ dom card ) –1-1→ 𝐴 ) → ¬ 𝐵 = 𝐶 ) |
49 |
45 48
|
pm2.65da |
⊢ ( 𝐴 ∈ 𝑉 → ¬ 𝐹 : ( 𝒫 𝐴 ∩ dom card ) –1-1→ 𝐴 ) |