| Step | Hyp | Ref | Expression | 
						
							| 1 |  | 1sdom2 | ⊢ 1o  ≺  2o | 
						
							| 2 |  | sdomdom | ⊢ ( 1o  ≺  2o  →  1o  ≼  2o ) | 
						
							| 3 | 1 2 | ax-mp | ⊢ 1o  ≼  2o | 
						
							| 4 |  | relsdom | ⊢ Rel   ≺ | 
						
							| 5 | 4 | brrelex2i | ⊢ ( 1o  ≺  𝐴  →  𝐴  ∈  V ) | 
						
							| 6 |  | djudom2 | ⊢ ( ( 1o  ≼  2o  ∧  𝐴  ∈  V )  →  ( 𝐴  ⊔  1o )  ≼  ( 𝐴  ⊔  2o ) ) | 
						
							| 7 | 3 5 6 | sylancr | ⊢ ( 1o  ≺  𝐴  →  ( 𝐴  ⊔  1o )  ≼  ( 𝐴  ⊔  2o ) ) | 
						
							| 8 |  | canthp1lem1 | ⊢ ( 1o  ≺  𝐴  →  ( 𝐴  ⊔  2o )  ≼  𝒫  𝐴 ) | 
						
							| 9 |  | domtr | ⊢ ( ( ( 𝐴  ⊔  1o )  ≼  ( 𝐴  ⊔  2o )  ∧  ( 𝐴  ⊔  2o )  ≼  𝒫  𝐴 )  →  ( 𝐴  ⊔  1o )  ≼  𝒫  𝐴 ) | 
						
							| 10 | 7 8 9 | syl2anc | ⊢ ( 1o  ≺  𝐴  →  ( 𝐴  ⊔  1o )  ≼  𝒫  𝐴 ) | 
						
							| 11 |  | fal | ⊢ ¬  ⊥ | 
						
							| 12 |  | ensym | ⊢ ( ( 𝐴  ⊔  1o )  ≈  𝒫  𝐴  →  𝒫  𝐴  ≈  ( 𝐴  ⊔  1o ) ) | 
						
							| 13 |  | bren | ⊢ ( 𝒫  𝐴  ≈  ( 𝐴  ⊔  1o )  ↔  ∃ 𝑓 𝑓 : 𝒫  𝐴 –1-1-onto→ ( 𝐴  ⊔  1o ) ) | 
						
							| 14 | 12 13 | sylib | ⊢ ( ( 𝐴  ⊔  1o )  ≈  𝒫  𝐴  →  ∃ 𝑓 𝑓 : 𝒫  𝐴 –1-1-onto→ ( 𝐴  ⊔  1o ) ) | 
						
							| 15 |  | f1of | ⊢ ( 𝑓 : 𝒫  𝐴 –1-1-onto→ ( 𝐴  ⊔  1o )  →  𝑓 : 𝒫  𝐴 ⟶ ( 𝐴  ⊔  1o ) ) | 
						
							| 16 |  | pwidg | ⊢ ( 𝐴  ∈  V  →  𝐴  ∈  𝒫  𝐴 ) | 
						
							| 17 | 5 16 | syl | ⊢ ( 1o  ≺  𝐴  →  𝐴  ∈  𝒫  𝐴 ) | 
						
							| 18 |  | ffvelcdm | ⊢ ( ( 𝑓 : 𝒫  𝐴 ⟶ ( 𝐴  ⊔  1o )  ∧  𝐴  ∈  𝒫  𝐴 )  →  ( 𝑓 ‘ 𝐴 )  ∈  ( 𝐴  ⊔  1o ) ) | 
						
							| 19 | 15 17 18 | syl2anr | ⊢ ( ( 1o  ≺  𝐴  ∧  𝑓 : 𝒫  𝐴 –1-1-onto→ ( 𝐴  ⊔  1o ) )  →  ( 𝑓 ‘ 𝐴 )  ∈  ( 𝐴  ⊔  1o ) ) | 
						
							| 20 |  | dju1dif | ⊢ ( ( 𝐴  ∈  V  ∧  ( 𝑓 ‘ 𝐴 )  ∈  ( 𝐴  ⊔  1o ) )  →  ( ( 𝐴  ⊔  1o )  ∖  { ( 𝑓 ‘ 𝐴 ) } )  ≈  𝐴 ) | 
						
							| 21 | 5 19 20 | syl2an2r | ⊢ ( ( 1o  ≺  𝐴  ∧  𝑓 : 𝒫  𝐴 –1-1-onto→ ( 𝐴  ⊔  1o ) )  →  ( ( 𝐴  ⊔  1o )  ∖  { ( 𝑓 ‘ 𝐴 ) } )  ≈  𝐴 ) | 
						
							| 22 |  | bren | ⊢ ( ( ( 𝐴  ⊔  1o )  ∖  { ( 𝑓 ‘ 𝐴 ) } )  ≈  𝐴  ↔  ∃ 𝑔 𝑔 : ( ( 𝐴  ⊔  1o )  ∖  { ( 𝑓 ‘ 𝐴 ) } ) –1-1-onto→ 𝐴 ) | 
						
							| 23 | 21 22 | sylib | ⊢ ( ( 1o  ≺  𝐴  ∧  𝑓 : 𝒫  𝐴 –1-1-onto→ ( 𝐴  ⊔  1o ) )  →  ∃ 𝑔 𝑔 : ( ( 𝐴  ⊔  1o )  ∖  { ( 𝑓 ‘ 𝐴 ) } ) –1-1-onto→ 𝐴 ) | 
						
							| 24 |  | simpll | ⊢ ( ( ( 1o  ≺  𝐴  ∧  𝑓 : 𝒫  𝐴 –1-1-onto→ ( 𝐴  ⊔  1o ) )  ∧  𝑔 : ( ( 𝐴  ⊔  1o )  ∖  { ( 𝑓 ‘ 𝐴 ) } ) –1-1-onto→ 𝐴 )  →  1o  ≺  𝐴 ) | 
						
							| 25 |  | simplr | ⊢ ( ( ( 1o  ≺  𝐴  ∧  𝑓 : 𝒫  𝐴 –1-1-onto→ ( 𝐴  ⊔  1o ) )  ∧  𝑔 : ( ( 𝐴  ⊔  1o )  ∖  { ( 𝑓 ‘ 𝐴 ) } ) –1-1-onto→ 𝐴 )  →  𝑓 : 𝒫  𝐴 –1-1-onto→ ( 𝐴  ⊔  1o ) ) | 
						
							| 26 |  | simpr | ⊢ ( ( ( 1o  ≺  𝐴  ∧  𝑓 : 𝒫  𝐴 –1-1-onto→ ( 𝐴  ⊔  1o ) )  ∧  𝑔 : ( ( 𝐴  ⊔  1o )  ∖  { ( 𝑓 ‘ 𝐴 ) } ) –1-1-onto→ 𝐴 )  →  𝑔 : ( ( 𝐴  ⊔  1o )  ∖  { ( 𝑓 ‘ 𝐴 ) } ) –1-1-onto→ 𝐴 ) | 
						
							| 27 |  | eqeq1 | ⊢ ( 𝑤  =  𝑥  →  ( 𝑤  =  𝐴  ↔  𝑥  =  𝐴 ) ) | 
						
							| 28 |  | id | ⊢ ( 𝑤  =  𝑥  →  𝑤  =  𝑥 ) | 
						
							| 29 | 27 28 | ifbieq2d | ⊢ ( 𝑤  =  𝑥  →  if ( 𝑤  =  𝐴 ,  ∅ ,  𝑤 )  =  if ( 𝑥  =  𝐴 ,  ∅ ,  𝑥 ) ) | 
						
							| 30 | 29 | cbvmptv | ⊢ ( 𝑤  ∈  𝒫  𝐴  ↦  if ( 𝑤  =  𝐴 ,  ∅ ,  𝑤 ) )  =  ( 𝑥  ∈  𝒫  𝐴  ↦  if ( 𝑥  =  𝐴 ,  ∅ ,  𝑥 ) ) | 
						
							| 31 | 30 | coeq2i | ⊢ ( ( 𝑔  ∘  𝑓 )  ∘  ( 𝑤  ∈  𝒫  𝐴  ↦  if ( 𝑤  =  𝐴 ,  ∅ ,  𝑤 ) ) )  =  ( ( 𝑔  ∘  𝑓 )  ∘  ( 𝑥  ∈  𝒫  𝐴  ↦  if ( 𝑥  =  𝐴 ,  ∅ ,  𝑥 ) ) ) | 
						
							| 32 |  | eqid | ⊢ { 〈 𝑎 ,  𝑠 〉  ∣  ( ( 𝑎  ⊆  𝐴  ∧  𝑠  ⊆  ( 𝑎  ×  𝑎 ) )  ∧  ( 𝑠  We  𝑎  ∧  ∀ 𝑧  ∈  𝑎 ( ( ( 𝑔  ∘  𝑓 )  ∘  ( 𝑤  ∈  𝒫  𝐴  ↦  if ( 𝑤  =  𝐴 ,  ∅ ,  𝑤 ) ) ) ‘ ( ◡ 𝑠  “  { 𝑧 } ) )  =  𝑧 ) ) }  =  { 〈 𝑎 ,  𝑠 〉  ∣  ( ( 𝑎  ⊆  𝐴  ∧  𝑠  ⊆  ( 𝑎  ×  𝑎 ) )  ∧  ( 𝑠  We  𝑎  ∧  ∀ 𝑧  ∈  𝑎 ( ( ( 𝑔  ∘  𝑓 )  ∘  ( 𝑤  ∈  𝒫  𝐴  ↦  if ( 𝑤  =  𝐴 ,  ∅ ,  𝑤 ) ) ) ‘ ( ◡ 𝑠  “  { 𝑧 } ) )  =  𝑧 ) ) } | 
						
							| 33 | 32 | fpwwecbv | ⊢ { 〈 𝑎 ,  𝑠 〉  ∣  ( ( 𝑎  ⊆  𝐴  ∧  𝑠  ⊆  ( 𝑎  ×  𝑎 ) )  ∧  ( 𝑠  We  𝑎  ∧  ∀ 𝑧  ∈  𝑎 ( ( ( 𝑔  ∘  𝑓 )  ∘  ( 𝑤  ∈  𝒫  𝐴  ↦  if ( 𝑤  =  𝐴 ,  ∅ ,  𝑤 ) ) ) ‘ ( ◡ 𝑠  “  { 𝑧 } ) )  =  𝑧 ) ) }  =  { 〈 𝑥 ,  𝑟 〉  ∣  ( ( 𝑥  ⊆  𝐴  ∧  𝑟  ⊆  ( 𝑥  ×  𝑥 ) )  ∧  ( 𝑟  We  𝑥  ∧  ∀ 𝑦  ∈  𝑥 ( ( ( 𝑔  ∘  𝑓 )  ∘  ( 𝑤  ∈  𝒫  𝐴  ↦  if ( 𝑤  =  𝐴 ,  ∅ ,  𝑤 ) ) ) ‘ ( ◡ 𝑟  “  { 𝑦 } ) )  =  𝑦 ) ) } | 
						
							| 34 |  | eqid | ⊢ ∪  dom  { 〈 𝑎 ,  𝑠 〉  ∣  ( ( 𝑎  ⊆  𝐴  ∧  𝑠  ⊆  ( 𝑎  ×  𝑎 ) )  ∧  ( 𝑠  We  𝑎  ∧  ∀ 𝑧  ∈  𝑎 ( ( ( 𝑔  ∘  𝑓 )  ∘  ( 𝑤  ∈  𝒫  𝐴  ↦  if ( 𝑤  =  𝐴 ,  ∅ ,  𝑤 ) ) ) ‘ ( ◡ 𝑠  “  { 𝑧 } ) )  =  𝑧 ) ) }  =  ∪  dom  { 〈 𝑎 ,  𝑠 〉  ∣  ( ( 𝑎  ⊆  𝐴  ∧  𝑠  ⊆  ( 𝑎  ×  𝑎 ) )  ∧  ( 𝑠  We  𝑎  ∧  ∀ 𝑧  ∈  𝑎 ( ( ( 𝑔  ∘  𝑓 )  ∘  ( 𝑤  ∈  𝒫  𝐴  ↦  if ( 𝑤  =  𝐴 ,  ∅ ,  𝑤 ) ) ) ‘ ( ◡ 𝑠  “  { 𝑧 } ) )  =  𝑧 ) ) } | 
						
							| 35 | 24 25 26 31 33 34 | canthp1lem2 | ⊢ ¬  ( ( 1o  ≺  𝐴  ∧  𝑓 : 𝒫  𝐴 –1-1-onto→ ( 𝐴  ⊔  1o ) )  ∧  𝑔 : ( ( 𝐴  ⊔  1o )  ∖  { ( 𝑓 ‘ 𝐴 ) } ) –1-1-onto→ 𝐴 ) | 
						
							| 36 | 35 | pm2.21i | ⊢ ( ( ( 1o  ≺  𝐴  ∧  𝑓 : 𝒫  𝐴 –1-1-onto→ ( 𝐴  ⊔  1o ) )  ∧  𝑔 : ( ( 𝐴  ⊔  1o )  ∖  { ( 𝑓 ‘ 𝐴 ) } ) –1-1-onto→ 𝐴 )  →  ⊥ ) | 
						
							| 37 | 23 36 | exlimddv | ⊢ ( ( 1o  ≺  𝐴  ∧  𝑓 : 𝒫  𝐴 –1-1-onto→ ( 𝐴  ⊔  1o ) )  →  ⊥ ) | 
						
							| 38 | 37 | ex | ⊢ ( 1o  ≺  𝐴  →  ( 𝑓 : 𝒫  𝐴 –1-1-onto→ ( 𝐴  ⊔  1o )  →  ⊥ ) ) | 
						
							| 39 | 38 | exlimdv | ⊢ ( 1o  ≺  𝐴  →  ( ∃ 𝑓 𝑓 : 𝒫  𝐴 –1-1-onto→ ( 𝐴  ⊔  1o )  →  ⊥ ) ) | 
						
							| 40 | 14 39 | syl5 | ⊢ ( 1o  ≺  𝐴  →  ( ( 𝐴  ⊔  1o )  ≈  𝒫  𝐴  →  ⊥ ) ) | 
						
							| 41 | 11 40 | mtoi | ⊢ ( 1o  ≺  𝐴  →  ¬  ( 𝐴  ⊔  1o )  ≈  𝒫  𝐴 ) | 
						
							| 42 |  | brsdom | ⊢ ( ( 𝐴  ⊔  1o )  ≺  𝒫  𝐴  ↔  ( ( 𝐴  ⊔  1o )  ≼  𝒫  𝐴  ∧  ¬  ( 𝐴  ⊔  1o )  ≈  𝒫  𝐴 ) ) | 
						
							| 43 | 10 41 42 | sylanbrc | ⊢ ( 1o  ≺  𝐴  →  ( 𝐴  ⊔  1o )  ≺  𝒫  𝐴 ) |