| Step | Hyp | Ref | Expression | 
						
							| 1 |  | 0elpw | ⊢ ∅  ∈  𝒫  𝐴 | 
						
							| 2 |  | ne0i | ⊢ ( ∅  ∈  𝒫  𝐴  →  𝒫  𝐴  ≠  ∅ ) | 
						
							| 3 | 1 2 | mp1i | ⊢ ( 𝒫  𝐴  ≼*  𝐴  →  𝒫  𝐴  ≠  ∅ ) | 
						
							| 4 |  | brwdomn0 | ⊢ ( 𝒫  𝐴  ≠  ∅  →  ( 𝒫  𝐴  ≼*  𝐴  ↔  ∃ 𝑓 𝑓 : 𝐴 –onto→ 𝒫  𝐴 ) ) | 
						
							| 5 | 3 4 | syl | ⊢ ( 𝒫  𝐴  ≼*  𝐴  →  ( 𝒫  𝐴  ≼*  𝐴  ↔  ∃ 𝑓 𝑓 : 𝐴 –onto→ 𝒫  𝐴 ) ) | 
						
							| 6 | 5 | ibi | ⊢ ( 𝒫  𝐴  ≼*  𝐴  →  ∃ 𝑓 𝑓 : 𝐴 –onto→ 𝒫  𝐴 ) | 
						
							| 7 |  | relwdom | ⊢ Rel   ≼* | 
						
							| 8 | 7 | brrelex2i | ⊢ ( 𝒫  𝐴  ≼*  𝐴  →  𝐴  ∈  V ) | 
						
							| 9 |  | foeq2 | ⊢ ( 𝑥  =  𝐴  →  ( 𝑓 : 𝑥 –onto→ 𝒫  𝑥  ↔  𝑓 : 𝐴 –onto→ 𝒫  𝑥 ) ) | 
						
							| 10 |  | pweq | ⊢ ( 𝑥  =  𝐴  →  𝒫  𝑥  =  𝒫  𝐴 ) | 
						
							| 11 |  | foeq3 | ⊢ ( 𝒫  𝑥  =  𝒫  𝐴  →  ( 𝑓 : 𝐴 –onto→ 𝒫  𝑥  ↔  𝑓 : 𝐴 –onto→ 𝒫  𝐴 ) ) | 
						
							| 12 | 10 11 | syl | ⊢ ( 𝑥  =  𝐴  →  ( 𝑓 : 𝐴 –onto→ 𝒫  𝑥  ↔  𝑓 : 𝐴 –onto→ 𝒫  𝐴 ) ) | 
						
							| 13 | 9 12 | bitrd | ⊢ ( 𝑥  =  𝐴  →  ( 𝑓 : 𝑥 –onto→ 𝒫  𝑥  ↔  𝑓 : 𝐴 –onto→ 𝒫  𝐴 ) ) | 
						
							| 14 | 13 | notbid | ⊢ ( 𝑥  =  𝐴  →  ( ¬  𝑓 : 𝑥 –onto→ 𝒫  𝑥  ↔  ¬  𝑓 : 𝐴 –onto→ 𝒫  𝐴 ) ) | 
						
							| 15 |  | vex | ⊢ 𝑥  ∈  V | 
						
							| 16 | 15 | canth | ⊢ ¬  𝑓 : 𝑥 –onto→ 𝒫  𝑥 | 
						
							| 17 | 14 16 | vtoclg | ⊢ ( 𝐴  ∈  V  →  ¬  𝑓 : 𝐴 –onto→ 𝒫  𝐴 ) | 
						
							| 18 | 8 17 | syl | ⊢ ( 𝒫  𝐴  ≼*  𝐴  →  ¬  𝑓 : 𝐴 –onto→ 𝒫  𝐴 ) | 
						
							| 19 | 18 | nexdv | ⊢ ( 𝒫  𝐴  ≼*  𝐴  →  ¬  ∃ 𝑓 𝑓 : 𝐴 –onto→ 𝒫  𝐴 ) | 
						
							| 20 | 6 19 | pm2.65i | ⊢ ¬  𝒫  𝐴  ≼*  𝐴 |