Metamath Proof Explorer


Theorem canthwe

Description: The set of well-orders of a set A strictly dominates A . A stronger form of canth2 . Corollary 1.4(b) of KanamoriPincus p. 417. (Contributed by Mario Carneiro, 31-May-2015)

Ref Expression
Hypothesis canthwe.1 𝑂 = { ⟨ 𝑥 , 𝑟 ⟩ ∣ ( 𝑥𝐴𝑟 ⊆ ( 𝑥 × 𝑥 ) ∧ 𝑟 We 𝑥 ) }
Assertion canthwe ( 𝐴𝑉𝐴𝑂 )

Proof

Step Hyp Ref Expression
1 canthwe.1 𝑂 = { ⟨ 𝑥 , 𝑟 ⟩ ∣ ( 𝑥𝐴𝑟 ⊆ ( 𝑥 × 𝑥 ) ∧ 𝑟 We 𝑥 ) }
2 simp1 ( ( 𝑥𝐴𝑟 ⊆ ( 𝑥 × 𝑥 ) ∧ 𝑟 We 𝑥 ) → 𝑥𝐴 )
3 velpw ( 𝑥 ∈ 𝒫 𝐴𝑥𝐴 )
4 2 3 sylibr ( ( 𝑥𝐴𝑟 ⊆ ( 𝑥 × 𝑥 ) ∧ 𝑟 We 𝑥 ) → 𝑥 ∈ 𝒫 𝐴 )
5 simp2 ( ( 𝑥𝐴𝑟 ⊆ ( 𝑥 × 𝑥 ) ∧ 𝑟 We 𝑥 ) → 𝑟 ⊆ ( 𝑥 × 𝑥 ) )
6 xpss12 ( ( 𝑥𝐴𝑥𝐴 ) → ( 𝑥 × 𝑥 ) ⊆ ( 𝐴 × 𝐴 ) )
7 2 2 6 syl2anc ( ( 𝑥𝐴𝑟 ⊆ ( 𝑥 × 𝑥 ) ∧ 𝑟 We 𝑥 ) → ( 𝑥 × 𝑥 ) ⊆ ( 𝐴 × 𝐴 ) )
8 5 7 sstrd ( ( 𝑥𝐴𝑟 ⊆ ( 𝑥 × 𝑥 ) ∧ 𝑟 We 𝑥 ) → 𝑟 ⊆ ( 𝐴 × 𝐴 ) )
9 velpw ( 𝑟 ∈ 𝒫 ( 𝐴 × 𝐴 ) ↔ 𝑟 ⊆ ( 𝐴 × 𝐴 ) )
10 8 9 sylibr ( ( 𝑥𝐴𝑟 ⊆ ( 𝑥 × 𝑥 ) ∧ 𝑟 We 𝑥 ) → 𝑟 ∈ 𝒫 ( 𝐴 × 𝐴 ) )
11 4 10 jca ( ( 𝑥𝐴𝑟 ⊆ ( 𝑥 × 𝑥 ) ∧ 𝑟 We 𝑥 ) → ( 𝑥 ∈ 𝒫 𝐴𝑟 ∈ 𝒫 ( 𝐴 × 𝐴 ) ) )
12 11 ssopab2i { ⟨ 𝑥 , 𝑟 ⟩ ∣ ( 𝑥𝐴𝑟 ⊆ ( 𝑥 × 𝑥 ) ∧ 𝑟 We 𝑥 ) } ⊆ { ⟨ 𝑥 , 𝑟 ⟩ ∣ ( 𝑥 ∈ 𝒫 𝐴𝑟 ∈ 𝒫 ( 𝐴 × 𝐴 ) ) }
13 df-xp ( 𝒫 𝐴 × 𝒫 ( 𝐴 × 𝐴 ) ) = { ⟨ 𝑥 , 𝑟 ⟩ ∣ ( 𝑥 ∈ 𝒫 𝐴𝑟 ∈ 𝒫 ( 𝐴 × 𝐴 ) ) }
14 12 1 13 3sstr4i 𝑂 ⊆ ( 𝒫 𝐴 × 𝒫 ( 𝐴 × 𝐴 ) )
15 pwexg ( 𝐴𝑉 → 𝒫 𝐴 ∈ V )
16 sqxpexg ( 𝐴𝑉 → ( 𝐴 × 𝐴 ) ∈ V )
17 16 pwexd ( 𝐴𝑉 → 𝒫 ( 𝐴 × 𝐴 ) ∈ V )
18 15 17 xpexd ( 𝐴𝑉 → ( 𝒫 𝐴 × 𝒫 ( 𝐴 × 𝐴 ) ) ∈ V )
19 ssexg ( ( 𝑂 ⊆ ( 𝒫 𝐴 × 𝒫 ( 𝐴 × 𝐴 ) ) ∧ ( 𝒫 𝐴 × 𝒫 ( 𝐴 × 𝐴 ) ) ∈ V ) → 𝑂 ∈ V )
20 14 18 19 sylancr ( 𝐴𝑉𝑂 ∈ V )
21 simpr ( ( 𝐴𝑉𝑢𝐴 ) → 𝑢𝐴 )
22 21 snssd ( ( 𝐴𝑉𝑢𝐴 ) → { 𝑢 } ⊆ 𝐴 )
23 0ss ∅ ⊆ ( { 𝑢 } × { 𝑢 } )
24 23 a1i ( ( 𝐴𝑉𝑢𝐴 ) → ∅ ⊆ ( { 𝑢 } × { 𝑢 } ) )
25 rel0 Rel ∅
26 br0 ¬ 𝑢𝑢
27 wesn ( Rel ∅ → ( ∅ We { 𝑢 } ↔ ¬ 𝑢𝑢 ) )
28 26 27 mpbiri ( Rel ∅ → ∅ We { 𝑢 } )
29 25 28 mp1i ( ( 𝐴𝑉𝑢𝐴 ) → ∅ We { 𝑢 } )
30 snex { 𝑢 } ∈ V
31 0ex ∅ ∈ V
32 simpl ( ( 𝑥 = { 𝑢 } ∧ 𝑟 = ∅ ) → 𝑥 = { 𝑢 } )
33 32 sseq1d ( ( 𝑥 = { 𝑢 } ∧ 𝑟 = ∅ ) → ( 𝑥𝐴 ↔ { 𝑢 } ⊆ 𝐴 ) )
34 simpr ( ( 𝑥 = { 𝑢 } ∧ 𝑟 = ∅ ) → 𝑟 = ∅ )
35 32 sqxpeqd ( ( 𝑥 = { 𝑢 } ∧ 𝑟 = ∅ ) → ( 𝑥 × 𝑥 ) = ( { 𝑢 } × { 𝑢 } ) )
36 34 35 sseq12d ( ( 𝑥 = { 𝑢 } ∧ 𝑟 = ∅ ) → ( 𝑟 ⊆ ( 𝑥 × 𝑥 ) ↔ ∅ ⊆ ( { 𝑢 } × { 𝑢 } ) ) )
37 weeq2 ( 𝑥 = { 𝑢 } → ( 𝑟 We 𝑥𝑟 We { 𝑢 } ) )
38 weeq1 ( 𝑟 = ∅ → ( 𝑟 We { 𝑢 } ↔ ∅ We { 𝑢 } ) )
39 37 38 sylan9bb ( ( 𝑥 = { 𝑢 } ∧ 𝑟 = ∅ ) → ( 𝑟 We 𝑥 ↔ ∅ We { 𝑢 } ) )
40 33 36 39 3anbi123d ( ( 𝑥 = { 𝑢 } ∧ 𝑟 = ∅ ) → ( ( 𝑥𝐴𝑟 ⊆ ( 𝑥 × 𝑥 ) ∧ 𝑟 We 𝑥 ) ↔ ( { 𝑢 } ⊆ 𝐴 ∧ ∅ ⊆ ( { 𝑢 } × { 𝑢 } ) ∧ ∅ We { 𝑢 } ) ) )
41 30 31 40 opelopaba ( ⟨ { 𝑢 } , ∅ ⟩ ∈ { ⟨ 𝑥 , 𝑟 ⟩ ∣ ( 𝑥𝐴𝑟 ⊆ ( 𝑥 × 𝑥 ) ∧ 𝑟 We 𝑥 ) } ↔ ( { 𝑢 } ⊆ 𝐴 ∧ ∅ ⊆ ( { 𝑢 } × { 𝑢 } ) ∧ ∅ We { 𝑢 } ) )
42 22 24 29 41 syl3anbrc ( ( 𝐴𝑉𝑢𝐴 ) → ⟨ { 𝑢 } , ∅ ⟩ ∈ { ⟨ 𝑥 , 𝑟 ⟩ ∣ ( 𝑥𝐴𝑟 ⊆ ( 𝑥 × 𝑥 ) ∧ 𝑟 We 𝑥 ) } )
43 42 1 eleqtrrdi ( ( 𝐴𝑉𝑢𝐴 ) → ⟨ { 𝑢 } , ∅ ⟩ ∈ 𝑂 )
44 43 ex ( 𝐴𝑉 → ( 𝑢𝐴 → ⟨ { 𝑢 } , ∅ ⟩ ∈ 𝑂 ) )
45 eqid ∅ = ∅
46 snex { 𝑣 } ∈ V
47 46 31 opth2 ( ⟨ { 𝑢 } , ∅ ⟩ = ⟨ { 𝑣 } , ∅ ⟩ ↔ ( { 𝑢 } = { 𝑣 } ∧ ∅ = ∅ ) )
48 45 47 mpbiran2 ( ⟨ { 𝑢 } , ∅ ⟩ = ⟨ { 𝑣 } , ∅ ⟩ ↔ { 𝑢 } = { 𝑣 } )
49 sneqbg ( 𝑢 ∈ V → ( { 𝑢 } = { 𝑣 } ↔ 𝑢 = 𝑣 ) )
50 49 elv ( { 𝑢 } = { 𝑣 } ↔ 𝑢 = 𝑣 )
51 48 50 bitri ( ⟨ { 𝑢 } , ∅ ⟩ = ⟨ { 𝑣 } , ∅ ⟩ ↔ 𝑢 = 𝑣 )
52 51 2a1i ( 𝐴𝑉 → ( ( 𝑢𝐴𝑣𝐴 ) → ( ⟨ { 𝑢 } , ∅ ⟩ = ⟨ { 𝑣 } , ∅ ⟩ ↔ 𝑢 = 𝑣 ) ) )
53 44 52 dom2d ( 𝐴𝑉 → ( 𝑂 ∈ V → 𝐴𝑂 ) )
54 20 53 mpd ( 𝐴𝑉𝐴𝑂 )
55 eqid { ⟨ 𝑎 , 𝑠 ⟩ ∣ ( ( 𝑎𝐴𝑠 ⊆ ( 𝑎 × 𝑎 ) ) ∧ ( 𝑠 We 𝑎 ∧ ∀ 𝑧𝑎 [ ( 𝑠 “ { 𝑧 } ) / 𝑣 ] ( 𝑣 𝑓 ( 𝑠 ∩ ( 𝑣 × 𝑣 ) ) ) = 𝑧 ) ) } = { ⟨ 𝑎 , 𝑠 ⟩ ∣ ( ( 𝑎𝐴𝑠 ⊆ ( 𝑎 × 𝑎 ) ) ∧ ( 𝑠 We 𝑎 ∧ ∀ 𝑧𝑎 [ ( 𝑠 “ { 𝑧 } ) / 𝑣 ] ( 𝑣 𝑓 ( 𝑠 ∩ ( 𝑣 × 𝑣 ) ) ) = 𝑧 ) ) }
56 55 fpwwe2cbv { ⟨ 𝑎 , 𝑠 ⟩ ∣ ( ( 𝑎𝐴𝑠 ⊆ ( 𝑎 × 𝑎 ) ) ∧ ( 𝑠 We 𝑎 ∧ ∀ 𝑧𝑎 [ ( 𝑠 “ { 𝑧 } ) / 𝑣 ] ( 𝑣 𝑓 ( 𝑠 ∩ ( 𝑣 × 𝑣 ) ) ) = 𝑧 ) ) } = { ⟨ 𝑥 , 𝑟 ⟩ ∣ ( ( 𝑥𝐴𝑟 ⊆ ( 𝑥 × 𝑥 ) ) ∧ ( 𝑟 We 𝑥 ∧ ∀ 𝑦𝑥 [ ( 𝑟 “ { 𝑦 } ) / 𝑤 ] ( 𝑤 𝑓 ( 𝑟 ∩ ( 𝑤 × 𝑤 ) ) ) = 𝑦 ) ) }
57 eqid dom { ⟨ 𝑎 , 𝑠 ⟩ ∣ ( ( 𝑎𝐴𝑠 ⊆ ( 𝑎 × 𝑎 ) ) ∧ ( 𝑠 We 𝑎 ∧ ∀ 𝑧𝑎 [ ( 𝑠 “ { 𝑧 } ) / 𝑣 ] ( 𝑣 𝑓 ( 𝑠 ∩ ( 𝑣 × 𝑣 ) ) ) = 𝑧 ) ) } = dom { ⟨ 𝑎 , 𝑠 ⟩ ∣ ( ( 𝑎𝐴𝑠 ⊆ ( 𝑎 × 𝑎 ) ) ∧ ( 𝑠 We 𝑎 ∧ ∀ 𝑧𝑎 [ ( 𝑠 “ { 𝑧 } ) / 𝑣 ] ( 𝑣 𝑓 ( 𝑠 ∩ ( 𝑣 × 𝑣 ) ) ) = 𝑧 ) ) }
58 eqid ( ( { ⟨ 𝑎 , 𝑠 ⟩ ∣ ( ( 𝑎𝐴𝑠 ⊆ ( 𝑎 × 𝑎 ) ) ∧ ( 𝑠 We 𝑎 ∧ ∀ 𝑧𝑎 [ ( 𝑠 “ { 𝑧 } ) / 𝑣 ] ( 𝑣 𝑓 ( 𝑠 ∩ ( 𝑣 × 𝑣 ) ) ) = 𝑧 ) ) } ‘ dom { ⟨ 𝑎 , 𝑠 ⟩ ∣ ( ( 𝑎𝐴𝑠 ⊆ ( 𝑎 × 𝑎 ) ) ∧ ( 𝑠 We 𝑎 ∧ ∀ 𝑧𝑎 [ ( 𝑠 “ { 𝑧 } ) / 𝑣 ] ( 𝑣 𝑓 ( 𝑠 ∩ ( 𝑣 × 𝑣 ) ) ) = 𝑧 ) ) } ) “ { ( dom { ⟨ 𝑎 , 𝑠 ⟩ ∣ ( ( 𝑎𝐴𝑠 ⊆ ( 𝑎 × 𝑎 ) ) ∧ ( 𝑠 We 𝑎 ∧ ∀ 𝑧𝑎 [ ( 𝑠 “ { 𝑧 } ) / 𝑣 ] ( 𝑣 𝑓 ( 𝑠 ∩ ( 𝑣 × 𝑣 ) ) ) = 𝑧 ) ) } 𝑓 ( { ⟨ 𝑎 , 𝑠 ⟩ ∣ ( ( 𝑎𝐴𝑠 ⊆ ( 𝑎 × 𝑎 ) ) ∧ ( 𝑠 We 𝑎 ∧ ∀ 𝑧𝑎 [ ( 𝑠 “ { 𝑧 } ) / 𝑣 ] ( 𝑣 𝑓 ( 𝑠 ∩ ( 𝑣 × 𝑣 ) ) ) = 𝑧 ) ) } ‘ dom { ⟨ 𝑎 , 𝑠 ⟩ ∣ ( ( 𝑎𝐴𝑠 ⊆ ( 𝑎 × 𝑎 ) ) ∧ ( 𝑠 We 𝑎 ∧ ∀ 𝑧𝑎 [ ( 𝑠 “ { 𝑧 } ) / 𝑣 ] ( 𝑣 𝑓 ( 𝑠 ∩ ( 𝑣 × 𝑣 ) ) ) = 𝑧 ) ) } ) ) } ) = ( ( { ⟨ 𝑎 , 𝑠 ⟩ ∣ ( ( 𝑎𝐴𝑠 ⊆ ( 𝑎 × 𝑎 ) ) ∧ ( 𝑠 We 𝑎 ∧ ∀ 𝑧𝑎 [ ( 𝑠 “ { 𝑧 } ) / 𝑣 ] ( 𝑣 𝑓 ( 𝑠 ∩ ( 𝑣 × 𝑣 ) ) ) = 𝑧 ) ) } ‘ dom { ⟨ 𝑎 , 𝑠 ⟩ ∣ ( ( 𝑎𝐴𝑠 ⊆ ( 𝑎 × 𝑎 ) ) ∧ ( 𝑠 We 𝑎 ∧ ∀ 𝑧𝑎 [ ( 𝑠 “ { 𝑧 } ) / 𝑣 ] ( 𝑣 𝑓 ( 𝑠 ∩ ( 𝑣 × 𝑣 ) ) ) = 𝑧 ) ) } ) “ { ( dom { ⟨ 𝑎 , 𝑠 ⟩ ∣ ( ( 𝑎𝐴𝑠 ⊆ ( 𝑎 × 𝑎 ) ) ∧ ( 𝑠 We 𝑎 ∧ ∀ 𝑧𝑎 [ ( 𝑠 “ { 𝑧 } ) / 𝑣 ] ( 𝑣 𝑓 ( 𝑠 ∩ ( 𝑣 × 𝑣 ) ) ) = 𝑧 ) ) } 𝑓 ( { ⟨ 𝑎 , 𝑠 ⟩ ∣ ( ( 𝑎𝐴𝑠 ⊆ ( 𝑎 × 𝑎 ) ) ∧ ( 𝑠 We 𝑎 ∧ ∀ 𝑧𝑎 [ ( 𝑠 “ { 𝑧 } ) / 𝑣 ] ( 𝑣 𝑓 ( 𝑠 ∩ ( 𝑣 × 𝑣 ) ) ) = 𝑧 ) ) } ‘ dom { ⟨ 𝑎 , 𝑠 ⟩ ∣ ( ( 𝑎𝐴𝑠 ⊆ ( 𝑎 × 𝑎 ) ) ∧ ( 𝑠 We 𝑎 ∧ ∀ 𝑧𝑎 [ ( 𝑠 “ { 𝑧 } ) / 𝑣 ] ( 𝑣 𝑓 ( 𝑠 ∩ ( 𝑣 × 𝑣 ) ) ) = 𝑧 ) ) } ) ) } )
59 1 56 57 58 canthwelem ( 𝐴𝑉 → ¬ 𝑓 : 𝑂1-1𝐴 )
60 f1of1 ( 𝑓 : 𝑂1-1-onto𝐴𝑓 : 𝑂1-1𝐴 )
61 59 60 nsyl ( 𝐴𝑉 → ¬ 𝑓 : 𝑂1-1-onto𝐴 )
62 61 nexdv ( 𝐴𝑉 → ¬ ∃ 𝑓 𝑓 : 𝑂1-1-onto𝐴 )
63 ensym ( 𝐴𝑂𝑂𝐴 )
64 bren ( 𝑂𝐴 ↔ ∃ 𝑓 𝑓 : 𝑂1-1-onto𝐴 )
65 63 64 sylib ( 𝐴𝑂 → ∃ 𝑓 𝑓 : 𝑂1-1-onto𝐴 )
66 62 65 nsyl ( 𝐴𝑉 → ¬ 𝐴𝑂 )
67 brsdom ( 𝐴𝑂 ↔ ( 𝐴𝑂 ∧ ¬ 𝐴𝑂 ) )
68 54 66 67 sylanbrc ( 𝐴𝑉𝐴𝑂 )