Step |
Hyp |
Ref |
Expression |
1 |
|
canthwe.1 |
⊢ 𝑂 = { 〈 𝑥 , 𝑟 〉 ∣ ( 𝑥 ⊆ 𝐴 ∧ 𝑟 ⊆ ( 𝑥 × 𝑥 ) ∧ 𝑟 We 𝑥 ) } |
2 |
|
simp1 |
⊢ ( ( 𝑥 ⊆ 𝐴 ∧ 𝑟 ⊆ ( 𝑥 × 𝑥 ) ∧ 𝑟 We 𝑥 ) → 𝑥 ⊆ 𝐴 ) |
3 |
|
velpw |
⊢ ( 𝑥 ∈ 𝒫 𝐴 ↔ 𝑥 ⊆ 𝐴 ) |
4 |
2 3
|
sylibr |
⊢ ( ( 𝑥 ⊆ 𝐴 ∧ 𝑟 ⊆ ( 𝑥 × 𝑥 ) ∧ 𝑟 We 𝑥 ) → 𝑥 ∈ 𝒫 𝐴 ) |
5 |
|
simp2 |
⊢ ( ( 𝑥 ⊆ 𝐴 ∧ 𝑟 ⊆ ( 𝑥 × 𝑥 ) ∧ 𝑟 We 𝑥 ) → 𝑟 ⊆ ( 𝑥 × 𝑥 ) ) |
6 |
|
xpss12 |
⊢ ( ( 𝑥 ⊆ 𝐴 ∧ 𝑥 ⊆ 𝐴 ) → ( 𝑥 × 𝑥 ) ⊆ ( 𝐴 × 𝐴 ) ) |
7 |
2 2 6
|
syl2anc |
⊢ ( ( 𝑥 ⊆ 𝐴 ∧ 𝑟 ⊆ ( 𝑥 × 𝑥 ) ∧ 𝑟 We 𝑥 ) → ( 𝑥 × 𝑥 ) ⊆ ( 𝐴 × 𝐴 ) ) |
8 |
5 7
|
sstrd |
⊢ ( ( 𝑥 ⊆ 𝐴 ∧ 𝑟 ⊆ ( 𝑥 × 𝑥 ) ∧ 𝑟 We 𝑥 ) → 𝑟 ⊆ ( 𝐴 × 𝐴 ) ) |
9 |
|
velpw |
⊢ ( 𝑟 ∈ 𝒫 ( 𝐴 × 𝐴 ) ↔ 𝑟 ⊆ ( 𝐴 × 𝐴 ) ) |
10 |
8 9
|
sylibr |
⊢ ( ( 𝑥 ⊆ 𝐴 ∧ 𝑟 ⊆ ( 𝑥 × 𝑥 ) ∧ 𝑟 We 𝑥 ) → 𝑟 ∈ 𝒫 ( 𝐴 × 𝐴 ) ) |
11 |
4 10
|
jca |
⊢ ( ( 𝑥 ⊆ 𝐴 ∧ 𝑟 ⊆ ( 𝑥 × 𝑥 ) ∧ 𝑟 We 𝑥 ) → ( 𝑥 ∈ 𝒫 𝐴 ∧ 𝑟 ∈ 𝒫 ( 𝐴 × 𝐴 ) ) ) |
12 |
11
|
ssopab2i |
⊢ { 〈 𝑥 , 𝑟 〉 ∣ ( 𝑥 ⊆ 𝐴 ∧ 𝑟 ⊆ ( 𝑥 × 𝑥 ) ∧ 𝑟 We 𝑥 ) } ⊆ { 〈 𝑥 , 𝑟 〉 ∣ ( 𝑥 ∈ 𝒫 𝐴 ∧ 𝑟 ∈ 𝒫 ( 𝐴 × 𝐴 ) ) } |
13 |
|
df-xp |
⊢ ( 𝒫 𝐴 × 𝒫 ( 𝐴 × 𝐴 ) ) = { 〈 𝑥 , 𝑟 〉 ∣ ( 𝑥 ∈ 𝒫 𝐴 ∧ 𝑟 ∈ 𝒫 ( 𝐴 × 𝐴 ) ) } |
14 |
12 1 13
|
3sstr4i |
⊢ 𝑂 ⊆ ( 𝒫 𝐴 × 𝒫 ( 𝐴 × 𝐴 ) ) |
15 |
|
pwexg |
⊢ ( 𝐴 ∈ 𝑉 → 𝒫 𝐴 ∈ V ) |
16 |
|
sqxpexg |
⊢ ( 𝐴 ∈ 𝑉 → ( 𝐴 × 𝐴 ) ∈ V ) |
17 |
16
|
pwexd |
⊢ ( 𝐴 ∈ 𝑉 → 𝒫 ( 𝐴 × 𝐴 ) ∈ V ) |
18 |
15 17
|
xpexd |
⊢ ( 𝐴 ∈ 𝑉 → ( 𝒫 𝐴 × 𝒫 ( 𝐴 × 𝐴 ) ) ∈ V ) |
19 |
|
ssexg |
⊢ ( ( 𝑂 ⊆ ( 𝒫 𝐴 × 𝒫 ( 𝐴 × 𝐴 ) ) ∧ ( 𝒫 𝐴 × 𝒫 ( 𝐴 × 𝐴 ) ) ∈ V ) → 𝑂 ∈ V ) |
20 |
14 18 19
|
sylancr |
⊢ ( 𝐴 ∈ 𝑉 → 𝑂 ∈ V ) |
21 |
|
simpr |
⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝑢 ∈ 𝐴 ) → 𝑢 ∈ 𝐴 ) |
22 |
21
|
snssd |
⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝑢 ∈ 𝐴 ) → { 𝑢 } ⊆ 𝐴 ) |
23 |
|
0ss |
⊢ ∅ ⊆ ( { 𝑢 } × { 𝑢 } ) |
24 |
23
|
a1i |
⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝑢 ∈ 𝐴 ) → ∅ ⊆ ( { 𝑢 } × { 𝑢 } ) ) |
25 |
|
rel0 |
⊢ Rel ∅ |
26 |
|
br0 |
⊢ ¬ 𝑢 ∅ 𝑢 |
27 |
|
wesn |
⊢ ( Rel ∅ → ( ∅ We { 𝑢 } ↔ ¬ 𝑢 ∅ 𝑢 ) ) |
28 |
26 27
|
mpbiri |
⊢ ( Rel ∅ → ∅ We { 𝑢 } ) |
29 |
25 28
|
mp1i |
⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝑢 ∈ 𝐴 ) → ∅ We { 𝑢 } ) |
30 |
|
snex |
⊢ { 𝑢 } ∈ V |
31 |
|
0ex |
⊢ ∅ ∈ V |
32 |
|
simpl |
⊢ ( ( 𝑥 = { 𝑢 } ∧ 𝑟 = ∅ ) → 𝑥 = { 𝑢 } ) |
33 |
32
|
sseq1d |
⊢ ( ( 𝑥 = { 𝑢 } ∧ 𝑟 = ∅ ) → ( 𝑥 ⊆ 𝐴 ↔ { 𝑢 } ⊆ 𝐴 ) ) |
34 |
|
simpr |
⊢ ( ( 𝑥 = { 𝑢 } ∧ 𝑟 = ∅ ) → 𝑟 = ∅ ) |
35 |
32
|
sqxpeqd |
⊢ ( ( 𝑥 = { 𝑢 } ∧ 𝑟 = ∅ ) → ( 𝑥 × 𝑥 ) = ( { 𝑢 } × { 𝑢 } ) ) |
36 |
34 35
|
sseq12d |
⊢ ( ( 𝑥 = { 𝑢 } ∧ 𝑟 = ∅ ) → ( 𝑟 ⊆ ( 𝑥 × 𝑥 ) ↔ ∅ ⊆ ( { 𝑢 } × { 𝑢 } ) ) ) |
37 |
|
weeq2 |
⊢ ( 𝑥 = { 𝑢 } → ( 𝑟 We 𝑥 ↔ 𝑟 We { 𝑢 } ) ) |
38 |
|
weeq1 |
⊢ ( 𝑟 = ∅ → ( 𝑟 We { 𝑢 } ↔ ∅ We { 𝑢 } ) ) |
39 |
37 38
|
sylan9bb |
⊢ ( ( 𝑥 = { 𝑢 } ∧ 𝑟 = ∅ ) → ( 𝑟 We 𝑥 ↔ ∅ We { 𝑢 } ) ) |
40 |
33 36 39
|
3anbi123d |
⊢ ( ( 𝑥 = { 𝑢 } ∧ 𝑟 = ∅ ) → ( ( 𝑥 ⊆ 𝐴 ∧ 𝑟 ⊆ ( 𝑥 × 𝑥 ) ∧ 𝑟 We 𝑥 ) ↔ ( { 𝑢 } ⊆ 𝐴 ∧ ∅ ⊆ ( { 𝑢 } × { 𝑢 } ) ∧ ∅ We { 𝑢 } ) ) ) |
41 |
30 31 40
|
opelopaba |
⊢ ( 〈 { 𝑢 } , ∅ 〉 ∈ { 〈 𝑥 , 𝑟 〉 ∣ ( 𝑥 ⊆ 𝐴 ∧ 𝑟 ⊆ ( 𝑥 × 𝑥 ) ∧ 𝑟 We 𝑥 ) } ↔ ( { 𝑢 } ⊆ 𝐴 ∧ ∅ ⊆ ( { 𝑢 } × { 𝑢 } ) ∧ ∅ We { 𝑢 } ) ) |
42 |
22 24 29 41
|
syl3anbrc |
⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝑢 ∈ 𝐴 ) → 〈 { 𝑢 } , ∅ 〉 ∈ { 〈 𝑥 , 𝑟 〉 ∣ ( 𝑥 ⊆ 𝐴 ∧ 𝑟 ⊆ ( 𝑥 × 𝑥 ) ∧ 𝑟 We 𝑥 ) } ) |
43 |
42 1
|
eleqtrrdi |
⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝑢 ∈ 𝐴 ) → 〈 { 𝑢 } , ∅ 〉 ∈ 𝑂 ) |
44 |
43
|
ex |
⊢ ( 𝐴 ∈ 𝑉 → ( 𝑢 ∈ 𝐴 → 〈 { 𝑢 } , ∅ 〉 ∈ 𝑂 ) ) |
45 |
|
eqid |
⊢ ∅ = ∅ |
46 |
|
snex |
⊢ { 𝑣 } ∈ V |
47 |
46 31
|
opth2 |
⊢ ( 〈 { 𝑢 } , ∅ 〉 = 〈 { 𝑣 } , ∅ 〉 ↔ ( { 𝑢 } = { 𝑣 } ∧ ∅ = ∅ ) ) |
48 |
45 47
|
mpbiran2 |
⊢ ( 〈 { 𝑢 } , ∅ 〉 = 〈 { 𝑣 } , ∅ 〉 ↔ { 𝑢 } = { 𝑣 } ) |
49 |
|
sneqbg |
⊢ ( 𝑢 ∈ V → ( { 𝑢 } = { 𝑣 } ↔ 𝑢 = 𝑣 ) ) |
50 |
49
|
elv |
⊢ ( { 𝑢 } = { 𝑣 } ↔ 𝑢 = 𝑣 ) |
51 |
48 50
|
bitri |
⊢ ( 〈 { 𝑢 } , ∅ 〉 = 〈 { 𝑣 } , ∅ 〉 ↔ 𝑢 = 𝑣 ) |
52 |
51
|
2a1i |
⊢ ( 𝐴 ∈ 𝑉 → ( ( 𝑢 ∈ 𝐴 ∧ 𝑣 ∈ 𝐴 ) → ( 〈 { 𝑢 } , ∅ 〉 = 〈 { 𝑣 } , ∅ 〉 ↔ 𝑢 = 𝑣 ) ) ) |
53 |
44 52
|
dom2d |
⊢ ( 𝐴 ∈ 𝑉 → ( 𝑂 ∈ V → 𝐴 ≼ 𝑂 ) ) |
54 |
20 53
|
mpd |
⊢ ( 𝐴 ∈ 𝑉 → 𝐴 ≼ 𝑂 ) |
55 |
|
eqid |
⊢ { 〈 𝑎 , 𝑠 〉 ∣ ( ( 𝑎 ⊆ 𝐴 ∧ 𝑠 ⊆ ( 𝑎 × 𝑎 ) ) ∧ ( 𝑠 We 𝑎 ∧ ∀ 𝑧 ∈ 𝑎 [ ( ◡ 𝑠 “ { 𝑧 } ) / 𝑣 ] ( 𝑣 𝑓 ( 𝑠 ∩ ( 𝑣 × 𝑣 ) ) ) = 𝑧 ) ) } = { 〈 𝑎 , 𝑠 〉 ∣ ( ( 𝑎 ⊆ 𝐴 ∧ 𝑠 ⊆ ( 𝑎 × 𝑎 ) ) ∧ ( 𝑠 We 𝑎 ∧ ∀ 𝑧 ∈ 𝑎 [ ( ◡ 𝑠 “ { 𝑧 } ) / 𝑣 ] ( 𝑣 𝑓 ( 𝑠 ∩ ( 𝑣 × 𝑣 ) ) ) = 𝑧 ) ) } |
56 |
55
|
fpwwe2cbv |
⊢ { 〈 𝑎 , 𝑠 〉 ∣ ( ( 𝑎 ⊆ 𝐴 ∧ 𝑠 ⊆ ( 𝑎 × 𝑎 ) ) ∧ ( 𝑠 We 𝑎 ∧ ∀ 𝑧 ∈ 𝑎 [ ( ◡ 𝑠 “ { 𝑧 } ) / 𝑣 ] ( 𝑣 𝑓 ( 𝑠 ∩ ( 𝑣 × 𝑣 ) ) ) = 𝑧 ) ) } = { 〈 𝑥 , 𝑟 〉 ∣ ( ( 𝑥 ⊆ 𝐴 ∧ 𝑟 ⊆ ( 𝑥 × 𝑥 ) ) ∧ ( 𝑟 We 𝑥 ∧ ∀ 𝑦 ∈ 𝑥 [ ( ◡ 𝑟 “ { 𝑦 } ) / 𝑤 ] ( 𝑤 𝑓 ( 𝑟 ∩ ( 𝑤 × 𝑤 ) ) ) = 𝑦 ) ) } |
57 |
|
eqid |
⊢ ∪ dom { 〈 𝑎 , 𝑠 〉 ∣ ( ( 𝑎 ⊆ 𝐴 ∧ 𝑠 ⊆ ( 𝑎 × 𝑎 ) ) ∧ ( 𝑠 We 𝑎 ∧ ∀ 𝑧 ∈ 𝑎 [ ( ◡ 𝑠 “ { 𝑧 } ) / 𝑣 ] ( 𝑣 𝑓 ( 𝑠 ∩ ( 𝑣 × 𝑣 ) ) ) = 𝑧 ) ) } = ∪ dom { 〈 𝑎 , 𝑠 〉 ∣ ( ( 𝑎 ⊆ 𝐴 ∧ 𝑠 ⊆ ( 𝑎 × 𝑎 ) ) ∧ ( 𝑠 We 𝑎 ∧ ∀ 𝑧 ∈ 𝑎 [ ( ◡ 𝑠 “ { 𝑧 } ) / 𝑣 ] ( 𝑣 𝑓 ( 𝑠 ∩ ( 𝑣 × 𝑣 ) ) ) = 𝑧 ) ) } |
58 |
|
eqid |
⊢ ( ◡ ( { 〈 𝑎 , 𝑠 〉 ∣ ( ( 𝑎 ⊆ 𝐴 ∧ 𝑠 ⊆ ( 𝑎 × 𝑎 ) ) ∧ ( 𝑠 We 𝑎 ∧ ∀ 𝑧 ∈ 𝑎 [ ( ◡ 𝑠 “ { 𝑧 } ) / 𝑣 ] ( 𝑣 𝑓 ( 𝑠 ∩ ( 𝑣 × 𝑣 ) ) ) = 𝑧 ) ) } ‘ ∪ dom { 〈 𝑎 , 𝑠 〉 ∣ ( ( 𝑎 ⊆ 𝐴 ∧ 𝑠 ⊆ ( 𝑎 × 𝑎 ) ) ∧ ( 𝑠 We 𝑎 ∧ ∀ 𝑧 ∈ 𝑎 [ ( ◡ 𝑠 “ { 𝑧 } ) / 𝑣 ] ( 𝑣 𝑓 ( 𝑠 ∩ ( 𝑣 × 𝑣 ) ) ) = 𝑧 ) ) } ) “ { ( ∪ dom { 〈 𝑎 , 𝑠 〉 ∣ ( ( 𝑎 ⊆ 𝐴 ∧ 𝑠 ⊆ ( 𝑎 × 𝑎 ) ) ∧ ( 𝑠 We 𝑎 ∧ ∀ 𝑧 ∈ 𝑎 [ ( ◡ 𝑠 “ { 𝑧 } ) / 𝑣 ] ( 𝑣 𝑓 ( 𝑠 ∩ ( 𝑣 × 𝑣 ) ) ) = 𝑧 ) ) } 𝑓 ( { 〈 𝑎 , 𝑠 〉 ∣ ( ( 𝑎 ⊆ 𝐴 ∧ 𝑠 ⊆ ( 𝑎 × 𝑎 ) ) ∧ ( 𝑠 We 𝑎 ∧ ∀ 𝑧 ∈ 𝑎 [ ( ◡ 𝑠 “ { 𝑧 } ) / 𝑣 ] ( 𝑣 𝑓 ( 𝑠 ∩ ( 𝑣 × 𝑣 ) ) ) = 𝑧 ) ) } ‘ ∪ dom { 〈 𝑎 , 𝑠 〉 ∣ ( ( 𝑎 ⊆ 𝐴 ∧ 𝑠 ⊆ ( 𝑎 × 𝑎 ) ) ∧ ( 𝑠 We 𝑎 ∧ ∀ 𝑧 ∈ 𝑎 [ ( ◡ 𝑠 “ { 𝑧 } ) / 𝑣 ] ( 𝑣 𝑓 ( 𝑠 ∩ ( 𝑣 × 𝑣 ) ) ) = 𝑧 ) ) } ) ) } ) = ( ◡ ( { 〈 𝑎 , 𝑠 〉 ∣ ( ( 𝑎 ⊆ 𝐴 ∧ 𝑠 ⊆ ( 𝑎 × 𝑎 ) ) ∧ ( 𝑠 We 𝑎 ∧ ∀ 𝑧 ∈ 𝑎 [ ( ◡ 𝑠 “ { 𝑧 } ) / 𝑣 ] ( 𝑣 𝑓 ( 𝑠 ∩ ( 𝑣 × 𝑣 ) ) ) = 𝑧 ) ) } ‘ ∪ dom { 〈 𝑎 , 𝑠 〉 ∣ ( ( 𝑎 ⊆ 𝐴 ∧ 𝑠 ⊆ ( 𝑎 × 𝑎 ) ) ∧ ( 𝑠 We 𝑎 ∧ ∀ 𝑧 ∈ 𝑎 [ ( ◡ 𝑠 “ { 𝑧 } ) / 𝑣 ] ( 𝑣 𝑓 ( 𝑠 ∩ ( 𝑣 × 𝑣 ) ) ) = 𝑧 ) ) } ) “ { ( ∪ dom { 〈 𝑎 , 𝑠 〉 ∣ ( ( 𝑎 ⊆ 𝐴 ∧ 𝑠 ⊆ ( 𝑎 × 𝑎 ) ) ∧ ( 𝑠 We 𝑎 ∧ ∀ 𝑧 ∈ 𝑎 [ ( ◡ 𝑠 “ { 𝑧 } ) / 𝑣 ] ( 𝑣 𝑓 ( 𝑠 ∩ ( 𝑣 × 𝑣 ) ) ) = 𝑧 ) ) } 𝑓 ( { 〈 𝑎 , 𝑠 〉 ∣ ( ( 𝑎 ⊆ 𝐴 ∧ 𝑠 ⊆ ( 𝑎 × 𝑎 ) ) ∧ ( 𝑠 We 𝑎 ∧ ∀ 𝑧 ∈ 𝑎 [ ( ◡ 𝑠 “ { 𝑧 } ) / 𝑣 ] ( 𝑣 𝑓 ( 𝑠 ∩ ( 𝑣 × 𝑣 ) ) ) = 𝑧 ) ) } ‘ ∪ dom { 〈 𝑎 , 𝑠 〉 ∣ ( ( 𝑎 ⊆ 𝐴 ∧ 𝑠 ⊆ ( 𝑎 × 𝑎 ) ) ∧ ( 𝑠 We 𝑎 ∧ ∀ 𝑧 ∈ 𝑎 [ ( ◡ 𝑠 “ { 𝑧 } ) / 𝑣 ] ( 𝑣 𝑓 ( 𝑠 ∩ ( 𝑣 × 𝑣 ) ) ) = 𝑧 ) ) } ) ) } ) |
59 |
1 56 57 58
|
canthwelem |
⊢ ( 𝐴 ∈ 𝑉 → ¬ 𝑓 : 𝑂 –1-1→ 𝐴 ) |
60 |
|
f1of1 |
⊢ ( 𝑓 : 𝑂 –1-1-onto→ 𝐴 → 𝑓 : 𝑂 –1-1→ 𝐴 ) |
61 |
59 60
|
nsyl |
⊢ ( 𝐴 ∈ 𝑉 → ¬ 𝑓 : 𝑂 –1-1-onto→ 𝐴 ) |
62 |
61
|
nexdv |
⊢ ( 𝐴 ∈ 𝑉 → ¬ ∃ 𝑓 𝑓 : 𝑂 –1-1-onto→ 𝐴 ) |
63 |
|
ensym |
⊢ ( 𝐴 ≈ 𝑂 → 𝑂 ≈ 𝐴 ) |
64 |
|
bren |
⊢ ( 𝑂 ≈ 𝐴 ↔ ∃ 𝑓 𝑓 : 𝑂 –1-1-onto→ 𝐴 ) |
65 |
63 64
|
sylib |
⊢ ( 𝐴 ≈ 𝑂 → ∃ 𝑓 𝑓 : 𝑂 –1-1-onto→ 𝐴 ) |
66 |
62 65
|
nsyl |
⊢ ( 𝐴 ∈ 𝑉 → ¬ 𝐴 ≈ 𝑂 ) |
67 |
|
brsdom |
⊢ ( 𝐴 ≺ 𝑂 ↔ ( 𝐴 ≼ 𝑂 ∧ ¬ 𝐴 ≈ 𝑂 ) ) |
68 |
54 66 67
|
sylanbrc |
⊢ ( 𝐴 ∈ 𝑉 → 𝐴 ≺ 𝑂 ) |