Metamath Proof Explorer


Theorem canthwelem

Description: Lemma for canthwe . (Contributed by Mario Carneiro, 31-May-2015)

Ref Expression
Hypotheses canthwe.1 𝑂 = { ⟨ 𝑥 , 𝑟 ⟩ ∣ ( 𝑥𝐴𝑟 ⊆ ( 𝑥 × 𝑥 ) ∧ 𝑟 We 𝑥 ) }
canthwe.2 𝑊 = { ⟨ 𝑥 , 𝑟 ⟩ ∣ ( ( 𝑥𝐴𝑟 ⊆ ( 𝑥 × 𝑥 ) ) ∧ ( 𝑟 We 𝑥 ∧ ∀ 𝑦𝑥 [ ( 𝑟 “ { 𝑦 } ) / 𝑢 ] ( 𝑢 𝐹 ( 𝑟 ∩ ( 𝑢 × 𝑢 ) ) ) = 𝑦 ) ) }
canthwe.3 𝐵 = dom 𝑊
canthwe.4 𝐶 = ( ( 𝑊𝐵 ) “ { ( 𝐵 𝐹 ( 𝑊𝐵 ) ) } )
Assertion canthwelem ( 𝐴𝑉 → ¬ 𝐹 : 𝑂1-1𝐴 )

Proof

Step Hyp Ref Expression
1 canthwe.1 𝑂 = { ⟨ 𝑥 , 𝑟 ⟩ ∣ ( 𝑥𝐴𝑟 ⊆ ( 𝑥 × 𝑥 ) ∧ 𝑟 We 𝑥 ) }
2 canthwe.2 𝑊 = { ⟨ 𝑥 , 𝑟 ⟩ ∣ ( ( 𝑥𝐴𝑟 ⊆ ( 𝑥 × 𝑥 ) ) ∧ ( 𝑟 We 𝑥 ∧ ∀ 𝑦𝑥 [ ( 𝑟 “ { 𝑦 } ) / 𝑢 ] ( 𝑢 𝐹 ( 𝑟 ∩ ( 𝑢 × 𝑢 ) ) ) = 𝑦 ) ) }
3 canthwe.3 𝐵 = dom 𝑊
4 canthwe.4 𝐶 = ( ( 𝑊𝐵 ) “ { ( 𝐵 𝐹 ( 𝑊𝐵 ) ) } )
5 eqid 𝐵 = 𝐵
6 eqid ( 𝑊𝐵 ) = ( 𝑊𝐵 )
7 5 6 pm3.2i ( 𝐵 = 𝐵 ∧ ( 𝑊𝐵 ) = ( 𝑊𝐵 ) )
8 simpl ( ( 𝐴𝑉𝐹 : 𝑂1-1𝐴 ) → 𝐴𝑉 )
9 df-ov ( 𝑥 𝐹 𝑟 ) = ( 𝐹 ‘ ⟨ 𝑥 , 𝑟 ⟩ )
10 f1f ( 𝐹 : 𝑂1-1𝐴𝐹 : 𝑂𝐴 )
11 10 ad2antlr ( ( ( 𝐴𝑉𝐹 : 𝑂1-1𝐴 ) ∧ ( 𝑥𝐴𝑟 ⊆ ( 𝑥 × 𝑥 ) ∧ 𝑟 We 𝑥 ) ) → 𝐹 : 𝑂𝐴 )
12 simpr ( ( ( 𝐴𝑉𝐹 : 𝑂1-1𝐴 ) ∧ ( 𝑥𝐴𝑟 ⊆ ( 𝑥 × 𝑥 ) ∧ 𝑟 We 𝑥 ) ) → ( 𝑥𝐴𝑟 ⊆ ( 𝑥 × 𝑥 ) ∧ 𝑟 We 𝑥 ) )
13 opabidw ( ⟨ 𝑥 , 𝑟 ⟩ ∈ { ⟨ 𝑥 , 𝑟 ⟩ ∣ ( 𝑥𝐴𝑟 ⊆ ( 𝑥 × 𝑥 ) ∧ 𝑟 We 𝑥 ) } ↔ ( 𝑥𝐴𝑟 ⊆ ( 𝑥 × 𝑥 ) ∧ 𝑟 We 𝑥 ) )
14 12 13 sylibr ( ( ( 𝐴𝑉𝐹 : 𝑂1-1𝐴 ) ∧ ( 𝑥𝐴𝑟 ⊆ ( 𝑥 × 𝑥 ) ∧ 𝑟 We 𝑥 ) ) → ⟨ 𝑥 , 𝑟 ⟩ ∈ { ⟨ 𝑥 , 𝑟 ⟩ ∣ ( 𝑥𝐴𝑟 ⊆ ( 𝑥 × 𝑥 ) ∧ 𝑟 We 𝑥 ) } )
15 14 1 eleqtrrdi ( ( ( 𝐴𝑉𝐹 : 𝑂1-1𝐴 ) ∧ ( 𝑥𝐴𝑟 ⊆ ( 𝑥 × 𝑥 ) ∧ 𝑟 We 𝑥 ) ) → ⟨ 𝑥 , 𝑟 ⟩ ∈ 𝑂 )
16 11 15 ffvelcdmd ( ( ( 𝐴𝑉𝐹 : 𝑂1-1𝐴 ) ∧ ( 𝑥𝐴𝑟 ⊆ ( 𝑥 × 𝑥 ) ∧ 𝑟 We 𝑥 ) ) → ( 𝐹 ‘ ⟨ 𝑥 , 𝑟 ⟩ ) ∈ 𝐴 )
17 9 16 eqeltrid ( ( ( 𝐴𝑉𝐹 : 𝑂1-1𝐴 ) ∧ ( 𝑥𝐴𝑟 ⊆ ( 𝑥 × 𝑥 ) ∧ 𝑟 We 𝑥 ) ) → ( 𝑥 𝐹 𝑟 ) ∈ 𝐴 )
18 2 8 17 3 fpwwe2 ( ( 𝐴𝑉𝐹 : 𝑂1-1𝐴 ) → ( ( 𝐵 𝑊 ( 𝑊𝐵 ) ∧ ( 𝐵 𝐹 ( 𝑊𝐵 ) ) ∈ 𝐵 ) ↔ ( 𝐵 = 𝐵 ∧ ( 𝑊𝐵 ) = ( 𝑊𝐵 ) ) ) )
19 7 18 mpbiri ( ( 𝐴𝑉𝐹 : 𝑂1-1𝐴 ) → ( 𝐵 𝑊 ( 𝑊𝐵 ) ∧ ( 𝐵 𝐹 ( 𝑊𝐵 ) ) ∈ 𝐵 ) )
20 19 simprd ( ( 𝐴𝑉𝐹 : 𝑂1-1𝐴 ) → ( 𝐵 𝐹 ( 𝑊𝐵 ) ) ∈ 𝐵 )
21 4 4 xpeq12i ( 𝐶 × 𝐶 ) = ( ( ( 𝑊𝐵 ) “ { ( 𝐵 𝐹 ( 𝑊𝐵 ) ) } ) × ( ( 𝑊𝐵 ) “ { ( 𝐵 𝐹 ( 𝑊𝐵 ) ) } ) )
22 21 ineq2i ( ( 𝑊𝐵 ) ∩ ( 𝐶 × 𝐶 ) ) = ( ( 𝑊𝐵 ) ∩ ( ( ( 𝑊𝐵 ) “ { ( 𝐵 𝐹 ( 𝑊𝐵 ) ) } ) × ( ( 𝑊𝐵 ) “ { ( 𝐵 𝐹 ( 𝑊𝐵 ) ) } ) ) )
23 4 22 oveq12i ( 𝐶 𝐹 ( ( 𝑊𝐵 ) ∩ ( 𝐶 × 𝐶 ) ) ) = ( ( ( 𝑊𝐵 ) “ { ( 𝐵 𝐹 ( 𝑊𝐵 ) ) } ) 𝐹 ( ( 𝑊𝐵 ) ∩ ( ( ( 𝑊𝐵 ) “ { ( 𝐵 𝐹 ( 𝑊𝐵 ) ) } ) × ( ( 𝑊𝐵 ) “ { ( 𝐵 𝐹 ( 𝑊𝐵 ) ) } ) ) ) )
24 19 simpld ( ( 𝐴𝑉𝐹 : 𝑂1-1𝐴 ) → 𝐵 𝑊 ( 𝑊𝐵 ) )
25 2 8 24 fpwwe2lem3 ( ( ( 𝐴𝑉𝐹 : 𝑂1-1𝐴 ) ∧ ( 𝐵 𝐹 ( 𝑊𝐵 ) ) ∈ 𝐵 ) → ( ( ( 𝑊𝐵 ) “ { ( 𝐵 𝐹 ( 𝑊𝐵 ) ) } ) 𝐹 ( ( 𝑊𝐵 ) ∩ ( ( ( 𝑊𝐵 ) “ { ( 𝐵 𝐹 ( 𝑊𝐵 ) ) } ) × ( ( 𝑊𝐵 ) “ { ( 𝐵 𝐹 ( 𝑊𝐵 ) ) } ) ) ) ) = ( 𝐵 𝐹 ( 𝑊𝐵 ) ) )
26 20 25 mpdan ( ( 𝐴𝑉𝐹 : 𝑂1-1𝐴 ) → ( ( ( 𝑊𝐵 ) “ { ( 𝐵 𝐹 ( 𝑊𝐵 ) ) } ) 𝐹 ( ( 𝑊𝐵 ) ∩ ( ( ( 𝑊𝐵 ) “ { ( 𝐵 𝐹 ( 𝑊𝐵 ) ) } ) × ( ( 𝑊𝐵 ) “ { ( 𝐵 𝐹 ( 𝑊𝐵 ) ) } ) ) ) ) = ( 𝐵 𝐹 ( 𝑊𝐵 ) ) )
27 23 26 eqtrid ( ( 𝐴𝑉𝐹 : 𝑂1-1𝐴 ) → ( 𝐶 𝐹 ( ( 𝑊𝐵 ) ∩ ( 𝐶 × 𝐶 ) ) ) = ( 𝐵 𝐹 ( 𝑊𝐵 ) ) )
28 df-ov ( 𝐶 𝐹 ( ( 𝑊𝐵 ) ∩ ( 𝐶 × 𝐶 ) ) ) = ( 𝐹 ‘ ⟨ 𝐶 , ( ( 𝑊𝐵 ) ∩ ( 𝐶 × 𝐶 ) ) ⟩ )
29 df-ov ( 𝐵 𝐹 ( 𝑊𝐵 ) ) = ( 𝐹 ‘ ⟨ 𝐵 , ( 𝑊𝐵 ) ⟩ )
30 27 28 29 3eqtr3g ( ( 𝐴𝑉𝐹 : 𝑂1-1𝐴 ) → ( 𝐹 ‘ ⟨ 𝐶 , ( ( 𝑊𝐵 ) ∩ ( 𝐶 × 𝐶 ) ) ⟩ ) = ( 𝐹 ‘ ⟨ 𝐵 , ( 𝑊𝐵 ) ⟩ ) )
31 simpr ( ( 𝐴𝑉𝐹 : 𝑂1-1𝐴 ) → 𝐹 : 𝑂1-1𝐴 )
32 cnvimass ( ( 𝑊𝐵 ) “ { ( 𝐵 𝐹 ( 𝑊𝐵 ) ) } ) ⊆ dom ( 𝑊𝐵 )
33 2 8 fpwwe2lem2 ( ( 𝐴𝑉𝐹 : 𝑂1-1𝐴 ) → ( 𝐵 𝑊 ( 𝑊𝐵 ) ↔ ( ( 𝐵𝐴 ∧ ( 𝑊𝐵 ) ⊆ ( 𝐵 × 𝐵 ) ) ∧ ( ( 𝑊𝐵 ) We 𝐵 ∧ ∀ 𝑦𝐵 [ ( ( 𝑊𝐵 ) “ { 𝑦 } ) / 𝑢 ] ( 𝑢 𝐹 ( ( 𝑊𝐵 ) ∩ ( 𝑢 × 𝑢 ) ) ) = 𝑦 ) ) ) )
34 24 33 mpbid ( ( 𝐴𝑉𝐹 : 𝑂1-1𝐴 ) → ( ( 𝐵𝐴 ∧ ( 𝑊𝐵 ) ⊆ ( 𝐵 × 𝐵 ) ) ∧ ( ( 𝑊𝐵 ) We 𝐵 ∧ ∀ 𝑦𝐵 [ ( ( 𝑊𝐵 ) “ { 𝑦 } ) / 𝑢 ] ( 𝑢 𝐹 ( ( 𝑊𝐵 ) ∩ ( 𝑢 × 𝑢 ) ) ) = 𝑦 ) ) )
35 34 simpld ( ( 𝐴𝑉𝐹 : 𝑂1-1𝐴 ) → ( 𝐵𝐴 ∧ ( 𝑊𝐵 ) ⊆ ( 𝐵 × 𝐵 ) ) )
36 35 simprd ( ( 𝐴𝑉𝐹 : 𝑂1-1𝐴 ) → ( 𝑊𝐵 ) ⊆ ( 𝐵 × 𝐵 ) )
37 dmss ( ( 𝑊𝐵 ) ⊆ ( 𝐵 × 𝐵 ) → dom ( 𝑊𝐵 ) ⊆ dom ( 𝐵 × 𝐵 ) )
38 36 37 syl ( ( 𝐴𝑉𝐹 : 𝑂1-1𝐴 ) → dom ( 𝑊𝐵 ) ⊆ dom ( 𝐵 × 𝐵 ) )
39 dmxpss dom ( 𝐵 × 𝐵 ) ⊆ 𝐵
40 38 39 sstrdi ( ( 𝐴𝑉𝐹 : 𝑂1-1𝐴 ) → dom ( 𝑊𝐵 ) ⊆ 𝐵 )
41 32 40 sstrid ( ( 𝐴𝑉𝐹 : 𝑂1-1𝐴 ) → ( ( 𝑊𝐵 ) “ { ( 𝐵 𝐹 ( 𝑊𝐵 ) ) } ) ⊆ 𝐵 )
42 4 41 eqsstrid ( ( 𝐴𝑉𝐹 : 𝑂1-1𝐴 ) → 𝐶𝐵 )
43 35 simpld ( ( 𝐴𝑉𝐹 : 𝑂1-1𝐴 ) → 𝐵𝐴 )
44 42 43 sstrd ( ( 𝐴𝑉𝐹 : 𝑂1-1𝐴 ) → 𝐶𝐴 )
45 inss2 ( ( 𝑊𝐵 ) ∩ ( 𝐶 × 𝐶 ) ) ⊆ ( 𝐶 × 𝐶 )
46 45 a1i ( ( 𝐴𝑉𝐹 : 𝑂1-1𝐴 ) → ( ( 𝑊𝐵 ) ∩ ( 𝐶 × 𝐶 ) ) ⊆ ( 𝐶 × 𝐶 ) )
47 34 simprd ( ( 𝐴𝑉𝐹 : 𝑂1-1𝐴 ) → ( ( 𝑊𝐵 ) We 𝐵 ∧ ∀ 𝑦𝐵 [ ( ( 𝑊𝐵 ) “ { 𝑦 } ) / 𝑢 ] ( 𝑢 𝐹 ( ( 𝑊𝐵 ) ∩ ( 𝑢 × 𝑢 ) ) ) = 𝑦 ) )
48 47 simpld ( ( 𝐴𝑉𝐹 : 𝑂1-1𝐴 ) → ( 𝑊𝐵 ) We 𝐵 )
49 wess ( 𝐶𝐵 → ( ( 𝑊𝐵 ) We 𝐵 → ( 𝑊𝐵 ) We 𝐶 ) )
50 42 48 49 sylc ( ( 𝐴𝑉𝐹 : 𝑂1-1𝐴 ) → ( 𝑊𝐵 ) We 𝐶 )
51 weinxp ( ( 𝑊𝐵 ) We 𝐶 ↔ ( ( 𝑊𝐵 ) ∩ ( 𝐶 × 𝐶 ) ) We 𝐶 )
52 50 51 sylib ( ( 𝐴𝑉𝐹 : 𝑂1-1𝐴 ) → ( ( 𝑊𝐵 ) ∩ ( 𝐶 × 𝐶 ) ) We 𝐶 )
53 fvex ( 𝑊𝐵 ) ∈ V
54 53 cnvex ( 𝑊𝐵 ) ∈ V
55 54 imaex ( ( 𝑊𝐵 ) “ { ( 𝐵 𝐹 ( 𝑊𝐵 ) ) } ) ∈ V
56 4 55 eqeltri 𝐶 ∈ V
57 53 inex1 ( ( 𝑊𝐵 ) ∩ ( 𝐶 × 𝐶 ) ) ∈ V
58 simpl ( ( 𝑥 = 𝐶𝑟 = ( ( 𝑊𝐵 ) ∩ ( 𝐶 × 𝐶 ) ) ) → 𝑥 = 𝐶 )
59 58 sseq1d ( ( 𝑥 = 𝐶𝑟 = ( ( 𝑊𝐵 ) ∩ ( 𝐶 × 𝐶 ) ) ) → ( 𝑥𝐴𝐶𝐴 ) )
60 simpr ( ( 𝑥 = 𝐶𝑟 = ( ( 𝑊𝐵 ) ∩ ( 𝐶 × 𝐶 ) ) ) → 𝑟 = ( ( 𝑊𝐵 ) ∩ ( 𝐶 × 𝐶 ) ) )
61 58 sqxpeqd ( ( 𝑥 = 𝐶𝑟 = ( ( 𝑊𝐵 ) ∩ ( 𝐶 × 𝐶 ) ) ) → ( 𝑥 × 𝑥 ) = ( 𝐶 × 𝐶 ) )
62 60 61 sseq12d ( ( 𝑥 = 𝐶𝑟 = ( ( 𝑊𝐵 ) ∩ ( 𝐶 × 𝐶 ) ) ) → ( 𝑟 ⊆ ( 𝑥 × 𝑥 ) ↔ ( ( 𝑊𝐵 ) ∩ ( 𝐶 × 𝐶 ) ) ⊆ ( 𝐶 × 𝐶 ) ) )
63 60 58 weeq12d ( ( 𝑥 = 𝐶𝑟 = ( ( 𝑊𝐵 ) ∩ ( 𝐶 × 𝐶 ) ) ) → ( 𝑟 We 𝑥 ↔ ( ( 𝑊𝐵 ) ∩ ( 𝐶 × 𝐶 ) ) We 𝐶 ) )
64 59 62 63 3anbi123d ( ( 𝑥 = 𝐶𝑟 = ( ( 𝑊𝐵 ) ∩ ( 𝐶 × 𝐶 ) ) ) → ( ( 𝑥𝐴𝑟 ⊆ ( 𝑥 × 𝑥 ) ∧ 𝑟 We 𝑥 ) ↔ ( 𝐶𝐴 ∧ ( ( 𝑊𝐵 ) ∩ ( 𝐶 × 𝐶 ) ) ⊆ ( 𝐶 × 𝐶 ) ∧ ( ( 𝑊𝐵 ) ∩ ( 𝐶 × 𝐶 ) ) We 𝐶 ) ) )
65 56 57 64 opelopaba ( ⟨ 𝐶 , ( ( 𝑊𝐵 ) ∩ ( 𝐶 × 𝐶 ) ) ⟩ ∈ { ⟨ 𝑥 , 𝑟 ⟩ ∣ ( 𝑥𝐴𝑟 ⊆ ( 𝑥 × 𝑥 ) ∧ 𝑟 We 𝑥 ) } ↔ ( 𝐶𝐴 ∧ ( ( 𝑊𝐵 ) ∩ ( 𝐶 × 𝐶 ) ) ⊆ ( 𝐶 × 𝐶 ) ∧ ( ( 𝑊𝐵 ) ∩ ( 𝐶 × 𝐶 ) ) We 𝐶 ) )
66 44 46 52 65 syl3anbrc ( ( 𝐴𝑉𝐹 : 𝑂1-1𝐴 ) → ⟨ 𝐶 , ( ( 𝑊𝐵 ) ∩ ( 𝐶 × 𝐶 ) ) ⟩ ∈ { ⟨ 𝑥 , 𝑟 ⟩ ∣ ( 𝑥𝐴𝑟 ⊆ ( 𝑥 × 𝑥 ) ∧ 𝑟 We 𝑥 ) } )
67 66 1 eleqtrrdi ( ( 𝐴𝑉𝐹 : 𝑂1-1𝐴 ) → ⟨ 𝐶 , ( ( 𝑊𝐵 ) ∩ ( 𝐶 × 𝐶 ) ) ⟩ ∈ 𝑂 )
68 8 43 ssexd ( ( 𝐴𝑉𝐹 : 𝑂1-1𝐴 ) → 𝐵 ∈ V )
69 53 a1i ( ( 𝐴𝑉𝐹 : 𝑂1-1𝐴 ) → ( 𝑊𝐵 ) ∈ V )
70 simpl ( ( 𝑥 = 𝐵𝑟 = ( 𝑊𝐵 ) ) → 𝑥 = 𝐵 )
71 70 sseq1d ( ( 𝑥 = 𝐵𝑟 = ( 𝑊𝐵 ) ) → ( 𝑥𝐴𝐵𝐴 ) )
72 simpr ( ( 𝑥 = 𝐵𝑟 = ( 𝑊𝐵 ) ) → 𝑟 = ( 𝑊𝐵 ) )
73 70 sqxpeqd ( ( 𝑥 = 𝐵𝑟 = ( 𝑊𝐵 ) ) → ( 𝑥 × 𝑥 ) = ( 𝐵 × 𝐵 ) )
74 72 73 sseq12d ( ( 𝑥 = 𝐵𝑟 = ( 𝑊𝐵 ) ) → ( 𝑟 ⊆ ( 𝑥 × 𝑥 ) ↔ ( 𝑊𝐵 ) ⊆ ( 𝐵 × 𝐵 ) ) )
75 72 70 weeq12d ( ( 𝑥 = 𝐵𝑟 = ( 𝑊𝐵 ) ) → ( 𝑟 We 𝑥 ↔ ( 𝑊𝐵 ) We 𝐵 ) )
76 71 74 75 3anbi123d ( ( 𝑥 = 𝐵𝑟 = ( 𝑊𝐵 ) ) → ( ( 𝑥𝐴𝑟 ⊆ ( 𝑥 × 𝑥 ) ∧ 𝑟 We 𝑥 ) ↔ ( 𝐵𝐴 ∧ ( 𝑊𝐵 ) ⊆ ( 𝐵 × 𝐵 ) ∧ ( 𝑊𝐵 ) We 𝐵 ) ) )
77 76 opelopabga ( ( 𝐵 ∈ V ∧ ( 𝑊𝐵 ) ∈ V ) → ( ⟨ 𝐵 , ( 𝑊𝐵 ) ⟩ ∈ { ⟨ 𝑥 , 𝑟 ⟩ ∣ ( 𝑥𝐴𝑟 ⊆ ( 𝑥 × 𝑥 ) ∧ 𝑟 We 𝑥 ) } ↔ ( 𝐵𝐴 ∧ ( 𝑊𝐵 ) ⊆ ( 𝐵 × 𝐵 ) ∧ ( 𝑊𝐵 ) We 𝐵 ) ) )
78 68 69 77 syl2anc ( ( 𝐴𝑉𝐹 : 𝑂1-1𝐴 ) → ( ⟨ 𝐵 , ( 𝑊𝐵 ) ⟩ ∈ { ⟨ 𝑥 , 𝑟 ⟩ ∣ ( 𝑥𝐴𝑟 ⊆ ( 𝑥 × 𝑥 ) ∧ 𝑟 We 𝑥 ) } ↔ ( 𝐵𝐴 ∧ ( 𝑊𝐵 ) ⊆ ( 𝐵 × 𝐵 ) ∧ ( 𝑊𝐵 ) We 𝐵 ) ) )
79 43 36 48 78 mpbir3and ( ( 𝐴𝑉𝐹 : 𝑂1-1𝐴 ) → ⟨ 𝐵 , ( 𝑊𝐵 ) ⟩ ∈ { ⟨ 𝑥 , 𝑟 ⟩ ∣ ( 𝑥𝐴𝑟 ⊆ ( 𝑥 × 𝑥 ) ∧ 𝑟 We 𝑥 ) } )
80 79 1 eleqtrrdi ( ( 𝐴𝑉𝐹 : 𝑂1-1𝐴 ) → ⟨ 𝐵 , ( 𝑊𝐵 ) ⟩ ∈ 𝑂 )
81 f1fveq ( ( 𝐹 : 𝑂1-1𝐴 ∧ ( ⟨ 𝐶 , ( ( 𝑊𝐵 ) ∩ ( 𝐶 × 𝐶 ) ) ⟩ ∈ 𝑂 ∧ ⟨ 𝐵 , ( 𝑊𝐵 ) ⟩ ∈ 𝑂 ) ) → ( ( 𝐹 ‘ ⟨ 𝐶 , ( ( 𝑊𝐵 ) ∩ ( 𝐶 × 𝐶 ) ) ⟩ ) = ( 𝐹 ‘ ⟨ 𝐵 , ( 𝑊𝐵 ) ⟩ ) ↔ ⟨ 𝐶 , ( ( 𝑊𝐵 ) ∩ ( 𝐶 × 𝐶 ) ) ⟩ = ⟨ 𝐵 , ( 𝑊𝐵 ) ⟩ ) )
82 31 67 80 81 syl12anc ( ( 𝐴𝑉𝐹 : 𝑂1-1𝐴 ) → ( ( 𝐹 ‘ ⟨ 𝐶 , ( ( 𝑊𝐵 ) ∩ ( 𝐶 × 𝐶 ) ) ⟩ ) = ( 𝐹 ‘ ⟨ 𝐵 , ( 𝑊𝐵 ) ⟩ ) ↔ ⟨ 𝐶 , ( ( 𝑊𝐵 ) ∩ ( 𝐶 × 𝐶 ) ) ⟩ = ⟨ 𝐵 , ( 𝑊𝐵 ) ⟩ ) )
83 30 82 mpbid ( ( 𝐴𝑉𝐹 : 𝑂1-1𝐴 ) → ⟨ 𝐶 , ( ( 𝑊𝐵 ) ∩ ( 𝐶 × 𝐶 ) ) ⟩ = ⟨ 𝐵 , ( 𝑊𝐵 ) ⟩ )
84 56 57 opth1 ( ⟨ 𝐶 , ( ( 𝑊𝐵 ) ∩ ( 𝐶 × 𝐶 ) ) ⟩ = ⟨ 𝐵 , ( 𝑊𝐵 ) ⟩ → 𝐶 = 𝐵 )
85 83 84 syl ( ( 𝐴𝑉𝐹 : 𝑂1-1𝐴 ) → 𝐶 = 𝐵 )
86 20 85 eleqtrrd ( ( 𝐴𝑉𝐹 : 𝑂1-1𝐴 ) → ( 𝐵 𝐹 ( 𝑊𝐵 ) ) ∈ 𝐶 )
87 86 4 eleqtrdi ( ( 𝐴𝑉𝐹 : 𝑂1-1𝐴 ) → ( 𝐵 𝐹 ( 𝑊𝐵 ) ) ∈ ( ( 𝑊𝐵 ) “ { ( 𝐵 𝐹 ( 𝑊𝐵 ) ) } ) )
88 ovex ( 𝐵 𝐹 ( 𝑊𝐵 ) ) ∈ V
89 88 eliniseg ( ( 𝐵 𝐹 ( 𝑊𝐵 ) ) ∈ 𝐵 → ( ( 𝐵 𝐹 ( 𝑊𝐵 ) ) ∈ ( ( 𝑊𝐵 ) “ { ( 𝐵 𝐹 ( 𝑊𝐵 ) ) } ) ↔ ( 𝐵 𝐹 ( 𝑊𝐵 ) ) ( 𝑊𝐵 ) ( 𝐵 𝐹 ( 𝑊𝐵 ) ) ) )
90 20 89 syl ( ( 𝐴𝑉𝐹 : 𝑂1-1𝐴 ) → ( ( 𝐵 𝐹 ( 𝑊𝐵 ) ) ∈ ( ( 𝑊𝐵 ) “ { ( 𝐵 𝐹 ( 𝑊𝐵 ) ) } ) ↔ ( 𝐵 𝐹 ( 𝑊𝐵 ) ) ( 𝑊𝐵 ) ( 𝐵 𝐹 ( 𝑊𝐵 ) ) ) )
91 87 90 mpbid ( ( 𝐴𝑉𝐹 : 𝑂1-1𝐴 ) → ( 𝐵 𝐹 ( 𝑊𝐵 ) ) ( 𝑊𝐵 ) ( 𝐵 𝐹 ( 𝑊𝐵 ) ) )
92 weso ( ( 𝑊𝐵 ) We 𝐵 → ( 𝑊𝐵 ) Or 𝐵 )
93 48 92 syl ( ( 𝐴𝑉𝐹 : 𝑂1-1𝐴 ) → ( 𝑊𝐵 ) Or 𝐵 )
94 sonr ( ( ( 𝑊𝐵 ) Or 𝐵 ∧ ( 𝐵 𝐹 ( 𝑊𝐵 ) ) ∈ 𝐵 ) → ¬ ( 𝐵 𝐹 ( 𝑊𝐵 ) ) ( 𝑊𝐵 ) ( 𝐵 𝐹 ( 𝑊𝐵 ) ) )
95 93 20 94 syl2anc ( ( 𝐴𝑉𝐹 : 𝑂1-1𝐴 ) → ¬ ( 𝐵 𝐹 ( 𝑊𝐵 ) ) ( 𝑊𝐵 ) ( 𝐵 𝐹 ( 𝑊𝐵 ) ) )
96 91 95 pm2.65da ( 𝐴𝑉 → ¬ 𝐹 : 𝑂1-1𝐴 )