| Step |
Hyp |
Ref |
Expression |
| 1 |
|
canthwe.1 |
⊢ 𝑂 = { 〈 𝑥 , 𝑟 〉 ∣ ( 𝑥 ⊆ 𝐴 ∧ 𝑟 ⊆ ( 𝑥 × 𝑥 ) ∧ 𝑟 We 𝑥 ) } |
| 2 |
|
canthwe.2 |
⊢ 𝑊 = { 〈 𝑥 , 𝑟 〉 ∣ ( ( 𝑥 ⊆ 𝐴 ∧ 𝑟 ⊆ ( 𝑥 × 𝑥 ) ) ∧ ( 𝑟 We 𝑥 ∧ ∀ 𝑦 ∈ 𝑥 [ ( ◡ 𝑟 “ { 𝑦 } ) / 𝑢 ] ( 𝑢 𝐹 ( 𝑟 ∩ ( 𝑢 × 𝑢 ) ) ) = 𝑦 ) ) } |
| 3 |
|
canthwe.3 |
⊢ 𝐵 = ∪ dom 𝑊 |
| 4 |
|
canthwe.4 |
⊢ 𝐶 = ( ◡ ( 𝑊 ‘ 𝐵 ) “ { ( 𝐵 𝐹 ( 𝑊 ‘ 𝐵 ) ) } ) |
| 5 |
|
eqid |
⊢ 𝐵 = 𝐵 |
| 6 |
|
eqid |
⊢ ( 𝑊 ‘ 𝐵 ) = ( 𝑊 ‘ 𝐵 ) |
| 7 |
5 6
|
pm3.2i |
⊢ ( 𝐵 = 𝐵 ∧ ( 𝑊 ‘ 𝐵 ) = ( 𝑊 ‘ 𝐵 ) ) |
| 8 |
|
simpl |
⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝐹 : 𝑂 –1-1→ 𝐴 ) → 𝐴 ∈ 𝑉 ) |
| 9 |
|
df-ov |
⊢ ( 𝑥 𝐹 𝑟 ) = ( 𝐹 ‘ 〈 𝑥 , 𝑟 〉 ) |
| 10 |
|
f1f |
⊢ ( 𝐹 : 𝑂 –1-1→ 𝐴 → 𝐹 : 𝑂 ⟶ 𝐴 ) |
| 11 |
10
|
ad2antlr |
⊢ ( ( ( 𝐴 ∈ 𝑉 ∧ 𝐹 : 𝑂 –1-1→ 𝐴 ) ∧ ( 𝑥 ⊆ 𝐴 ∧ 𝑟 ⊆ ( 𝑥 × 𝑥 ) ∧ 𝑟 We 𝑥 ) ) → 𝐹 : 𝑂 ⟶ 𝐴 ) |
| 12 |
|
simpr |
⊢ ( ( ( 𝐴 ∈ 𝑉 ∧ 𝐹 : 𝑂 –1-1→ 𝐴 ) ∧ ( 𝑥 ⊆ 𝐴 ∧ 𝑟 ⊆ ( 𝑥 × 𝑥 ) ∧ 𝑟 We 𝑥 ) ) → ( 𝑥 ⊆ 𝐴 ∧ 𝑟 ⊆ ( 𝑥 × 𝑥 ) ∧ 𝑟 We 𝑥 ) ) |
| 13 |
|
opabidw |
⊢ ( 〈 𝑥 , 𝑟 〉 ∈ { 〈 𝑥 , 𝑟 〉 ∣ ( 𝑥 ⊆ 𝐴 ∧ 𝑟 ⊆ ( 𝑥 × 𝑥 ) ∧ 𝑟 We 𝑥 ) } ↔ ( 𝑥 ⊆ 𝐴 ∧ 𝑟 ⊆ ( 𝑥 × 𝑥 ) ∧ 𝑟 We 𝑥 ) ) |
| 14 |
12 13
|
sylibr |
⊢ ( ( ( 𝐴 ∈ 𝑉 ∧ 𝐹 : 𝑂 –1-1→ 𝐴 ) ∧ ( 𝑥 ⊆ 𝐴 ∧ 𝑟 ⊆ ( 𝑥 × 𝑥 ) ∧ 𝑟 We 𝑥 ) ) → 〈 𝑥 , 𝑟 〉 ∈ { 〈 𝑥 , 𝑟 〉 ∣ ( 𝑥 ⊆ 𝐴 ∧ 𝑟 ⊆ ( 𝑥 × 𝑥 ) ∧ 𝑟 We 𝑥 ) } ) |
| 15 |
14 1
|
eleqtrrdi |
⊢ ( ( ( 𝐴 ∈ 𝑉 ∧ 𝐹 : 𝑂 –1-1→ 𝐴 ) ∧ ( 𝑥 ⊆ 𝐴 ∧ 𝑟 ⊆ ( 𝑥 × 𝑥 ) ∧ 𝑟 We 𝑥 ) ) → 〈 𝑥 , 𝑟 〉 ∈ 𝑂 ) |
| 16 |
11 15
|
ffvelcdmd |
⊢ ( ( ( 𝐴 ∈ 𝑉 ∧ 𝐹 : 𝑂 –1-1→ 𝐴 ) ∧ ( 𝑥 ⊆ 𝐴 ∧ 𝑟 ⊆ ( 𝑥 × 𝑥 ) ∧ 𝑟 We 𝑥 ) ) → ( 𝐹 ‘ 〈 𝑥 , 𝑟 〉 ) ∈ 𝐴 ) |
| 17 |
9 16
|
eqeltrid |
⊢ ( ( ( 𝐴 ∈ 𝑉 ∧ 𝐹 : 𝑂 –1-1→ 𝐴 ) ∧ ( 𝑥 ⊆ 𝐴 ∧ 𝑟 ⊆ ( 𝑥 × 𝑥 ) ∧ 𝑟 We 𝑥 ) ) → ( 𝑥 𝐹 𝑟 ) ∈ 𝐴 ) |
| 18 |
2 8 17 3
|
fpwwe2 |
⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝐹 : 𝑂 –1-1→ 𝐴 ) → ( ( 𝐵 𝑊 ( 𝑊 ‘ 𝐵 ) ∧ ( 𝐵 𝐹 ( 𝑊 ‘ 𝐵 ) ) ∈ 𝐵 ) ↔ ( 𝐵 = 𝐵 ∧ ( 𝑊 ‘ 𝐵 ) = ( 𝑊 ‘ 𝐵 ) ) ) ) |
| 19 |
7 18
|
mpbiri |
⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝐹 : 𝑂 –1-1→ 𝐴 ) → ( 𝐵 𝑊 ( 𝑊 ‘ 𝐵 ) ∧ ( 𝐵 𝐹 ( 𝑊 ‘ 𝐵 ) ) ∈ 𝐵 ) ) |
| 20 |
19
|
simprd |
⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝐹 : 𝑂 –1-1→ 𝐴 ) → ( 𝐵 𝐹 ( 𝑊 ‘ 𝐵 ) ) ∈ 𝐵 ) |
| 21 |
4 4
|
xpeq12i |
⊢ ( 𝐶 × 𝐶 ) = ( ( ◡ ( 𝑊 ‘ 𝐵 ) “ { ( 𝐵 𝐹 ( 𝑊 ‘ 𝐵 ) ) } ) × ( ◡ ( 𝑊 ‘ 𝐵 ) “ { ( 𝐵 𝐹 ( 𝑊 ‘ 𝐵 ) ) } ) ) |
| 22 |
21
|
ineq2i |
⊢ ( ( 𝑊 ‘ 𝐵 ) ∩ ( 𝐶 × 𝐶 ) ) = ( ( 𝑊 ‘ 𝐵 ) ∩ ( ( ◡ ( 𝑊 ‘ 𝐵 ) “ { ( 𝐵 𝐹 ( 𝑊 ‘ 𝐵 ) ) } ) × ( ◡ ( 𝑊 ‘ 𝐵 ) “ { ( 𝐵 𝐹 ( 𝑊 ‘ 𝐵 ) ) } ) ) ) |
| 23 |
4 22
|
oveq12i |
⊢ ( 𝐶 𝐹 ( ( 𝑊 ‘ 𝐵 ) ∩ ( 𝐶 × 𝐶 ) ) ) = ( ( ◡ ( 𝑊 ‘ 𝐵 ) “ { ( 𝐵 𝐹 ( 𝑊 ‘ 𝐵 ) ) } ) 𝐹 ( ( 𝑊 ‘ 𝐵 ) ∩ ( ( ◡ ( 𝑊 ‘ 𝐵 ) “ { ( 𝐵 𝐹 ( 𝑊 ‘ 𝐵 ) ) } ) × ( ◡ ( 𝑊 ‘ 𝐵 ) “ { ( 𝐵 𝐹 ( 𝑊 ‘ 𝐵 ) ) } ) ) ) ) |
| 24 |
19
|
simpld |
⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝐹 : 𝑂 –1-1→ 𝐴 ) → 𝐵 𝑊 ( 𝑊 ‘ 𝐵 ) ) |
| 25 |
2 8 24
|
fpwwe2lem3 |
⊢ ( ( ( 𝐴 ∈ 𝑉 ∧ 𝐹 : 𝑂 –1-1→ 𝐴 ) ∧ ( 𝐵 𝐹 ( 𝑊 ‘ 𝐵 ) ) ∈ 𝐵 ) → ( ( ◡ ( 𝑊 ‘ 𝐵 ) “ { ( 𝐵 𝐹 ( 𝑊 ‘ 𝐵 ) ) } ) 𝐹 ( ( 𝑊 ‘ 𝐵 ) ∩ ( ( ◡ ( 𝑊 ‘ 𝐵 ) “ { ( 𝐵 𝐹 ( 𝑊 ‘ 𝐵 ) ) } ) × ( ◡ ( 𝑊 ‘ 𝐵 ) “ { ( 𝐵 𝐹 ( 𝑊 ‘ 𝐵 ) ) } ) ) ) ) = ( 𝐵 𝐹 ( 𝑊 ‘ 𝐵 ) ) ) |
| 26 |
20 25
|
mpdan |
⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝐹 : 𝑂 –1-1→ 𝐴 ) → ( ( ◡ ( 𝑊 ‘ 𝐵 ) “ { ( 𝐵 𝐹 ( 𝑊 ‘ 𝐵 ) ) } ) 𝐹 ( ( 𝑊 ‘ 𝐵 ) ∩ ( ( ◡ ( 𝑊 ‘ 𝐵 ) “ { ( 𝐵 𝐹 ( 𝑊 ‘ 𝐵 ) ) } ) × ( ◡ ( 𝑊 ‘ 𝐵 ) “ { ( 𝐵 𝐹 ( 𝑊 ‘ 𝐵 ) ) } ) ) ) ) = ( 𝐵 𝐹 ( 𝑊 ‘ 𝐵 ) ) ) |
| 27 |
23 26
|
eqtrid |
⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝐹 : 𝑂 –1-1→ 𝐴 ) → ( 𝐶 𝐹 ( ( 𝑊 ‘ 𝐵 ) ∩ ( 𝐶 × 𝐶 ) ) ) = ( 𝐵 𝐹 ( 𝑊 ‘ 𝐵 ) ) ) |
| 28 |
|
df-ov |
⊢ ( 𝐶 𝐹 ( ( 𝑊 ‘ 𝐵 ) ∩ ( 𝐶 × 𝐶 ) ) ) = ( 𝐹 ‘ 〈 𝐶 , ( ( 𝑊 ‘ 𝐵 ) ∩ ( 𝐶 × 𝐶 ) ) 〉 ) |
| 29 |
|
df-ov |
⊢ ( 𝐵 𝐹 ( 𝑊 ‘ 𝐵 ) ) = ( 𝐹 ‘ 〈 𝐵 , ( 𝑊 ‘ 𝐵 ) 〉 ) |
| 30 |
27 28 29
|
3eqtr3g |
⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝐹 : 𝑂 –1-1→ 𝐴 ) → ( 𝐹 ‘ 〈 𝐶 , ( ( 𝑊 ‘ 𝐵 ) ∩ ( 𝐶 × 𝐶 ) ) 〉 ) = ( 𝐹 ‘ 〈 𝐵 , ( 𝑊 ‘ 𝐵 ) 〉 ) ) |
| 31 |
|
simpr |
⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝐹 : 𝑂 –1-1→ 𝐴 ) → 𝐹 : 𝑂 –1-1→ 𝐴 ) |
| 32 |
|
cnvimass |
⊢ ( ◡ ( 𝑊 ‘ 𝐵 ) “ { ( 𝐵 𝐹 ( 𝑊 ‘ 𝐵 ) ) } ) ⊆ dom ( 𝑊 ‘ 𝐵 ) |
| 33 |
2 8
|
fpwwe2lem2 |
⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝐹 : 𝑂 –1-1→ 𝐴 ) → ( 𝐵 𝑊 ( 𝑊 ‘ 𝐵 ) ↔ ( ( 𝐵 ⊆ 𝐴 ∧ ( 𝑊 ‘ 𝐵 ) ⊆ ( 𝐵 × 𝐵 ) ) ∧ ( ( 𝑊 ‘ 𝐵 ) We 𝐵 ∧ ∀ 𝑦 ∈ 𝐵 [ ( ◡ ( 𝑊 ‘ 𝐵 ) “ { 𝑦 } ) / 𝑢 ] ( 𝑢 𝐹 ( ( 𝑊 ‘ 𝐵 ) ∩ ( 𝑢 × 𝑢 ) ) ) = 𝑦 ) ) ) ) |
| 34 |
24 33
|
mpbid |
⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝐹 : 𝑂 –1-1→ 𝐴 ) → ( ( 𝐵 ⊆ 𝐴 ∧ ( 𝑊 ‘ 𝐵 ) ⊆ ( 𝐵 × 𝐵 ) ) ∧ ( ( 𝑊 ‘ 𝐵 ) We 𝐵 ∧ ∀ 𝑦 ∈ 𝐵 [ ( ◡ ( 𝑊 ‘ 𝐵 ) “ { 𝑦 } ) / 𝑢 ] ( 𝑢 𝐹 ( ( 𝑊 ‘ 𝐵 ) ∩ ( 𝑢 × 𝑢 ) ) ) = 𝑦 ) ) ) |
| 35 |
34
|
simpld |
⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝐹 : 𝑂 –1-1→ 𝐴 ) → ( 𝐵 ⊆ 𝐴 ∧ ( 𝑊 ‘ 𝐵 ) ⊆ ( 𝐵 × 𝐵 ) ) ) |
| 36 |
35
|
simprd |
⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝐹 : 𝑂 –1-1→ 𝐴 ) → ( 𝑊 ‘ 𝐵 ) ⊆ ( 𝐵 × 𝐵 ) ) |
| 37 |
|
dmss |
⊢ ( ( 𝑊 ‘ 𝐵 ) ⊆ ( 𝐵 × 𝐵 ) → dom ( 𝑊 ‘ 𝐵 ) ⊆ dom ( 𝐵 × 𝐵 ) ) |
| 38 |
36 37
|
syl |
⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝐹 : 𝑂 –1-1→ 𝐴 ) → dom ( 𝑊 ‘ 𝐵 ) ⊆ dom ( 𝐵 × 𝐵 ) ) |
| 39 |
|
dmxpss |
⊢ dom ( 𝐵 × 𝐵 ) ⊆ 𝐵 |
| 40 |
38 39
|
sstrdi |
⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝐹 : 𝑂 –1-1→ 𝐴 ) → dom ( 𝑊 ‘ 𝐵 ) ⊆ 𝐵 ) |
| 41 |
32 40
|
sstrid |
⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝐹 : 𝑂 –1-1→ 𝐴 ) → ( ◡ ( 𝑊 ‘ 𝐵 ) “ { ( 𝐵 𝐹 ( 𝑊 ‘ 𝐵 ) ) } ) ⊆ 𝐵 ) |
| 42 |
4 41
|
eqsstrid |
⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝐹 : 𝑂 –1-1→ 𝐴 ) → 𝐶 ⊆ 𝐵 ) |
| 43 |
35
|
simpld |
⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝐹 : 𝑂 –1-1→ 𝐴 ) → 𝐵 ⊆ 𝐴 ) |
| 44 |
42 43
|
sstrd |
⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝐹 : 𝑂 –1-1→ 𝐴 ) → 𝐶 ⊆ 𝐴 ) |
| 45 |
|
inss2 |
⊢ ( ( 𝑊 ‘ 𝐵 ) ∩ ( 𝐶 × 𝐶 ) ) ⊆ ( 𝐶 × 𝐶 ) |
| 46 |
45
|
a1i |
⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝐹 : 𝑂 –1-1→ 𝐴 ) → ( ( 𝑊 ‘ 𝐵 ) ∩ ( 𝐶 × 𝐶 ) ) ⊆ ( 𝐶 × 𝐶 ) ) |
| 47 |
34
|
simprd |
⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝐹 : 𝑂 –1-1→ 𝐴 ) → ( ( 𝑊 ‘ 𝐵 ) We 𝐵 ∧ ∀ 𝑦 ∈ 𝐵 [ ( ◡ ( 𝑊 ‘ 𝐵 ) “ { 𝑦 } ) / 𝑢 ] ( 𝑢 𝐹 ( ( 𝑊 ‘ 𝐵 ) ∩ ( 𝑢 × 𝑢 ) ) ) = 𝑦 ) ) |
| 48 |
47
|
simpld |
⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝐹 : 𝑂 –1-1→ 𝐴 ) → ( 𝑊 ‘ 𝐵 ) We 𝐵 ) |
| 49 |
|
wess |
⊢ ( 𝐶 ⊆ 𝐵 → ( ( 𝑊 ‘ 𝐵 ) We 𝐵 → ( 𝑊 ‘ 𝐵 ) We 𝐶 ) ) |
| 50 |
42 48 49
|
sylc |
⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝐹 : 𝑂 –1-1→ 𝐴 ) → ( 𝑊 ‘ 𝐵 ) We 𝐶 ) |
| 51 |
|
weinxp |
⊢ ( ( 𝑊 ‘ 𝐵 ) We 𝐶 ↔ ( ( 𝑊 ‘ 𝐵 ) ∩ ( 𝐶 × 𝐶 ) ) We 𝐶 ) |
| 52 |
50 51
|
sylib |
⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝐹 : 𝑂 –1-1→ 𝐴 ) → ( ( 𝑊 ‘ 𝐵 ) ∩ ( 𝐶 × 𝐶 ) ) We 𝐶 ) |
| 53 |
|
fvex |
⊢ ( 𝑊 ‘ 𝐵 ) ∈ V |
| 54 |
53
|
cnvex |
⊢ ◡ ( 𝑊 ‘ 𝐵 ) ∈ V |
| 55 |
54
|
imaex |
⊢ ( ◡ ( 𝑊 ‘ 𝐵 ) “ { ( 𝐵 𝐹 ( 𝑊 ‘ 𝐵 ) ) } ) ∈ V |
| 56 |
4 55
|
eqeltri |
⊢ 𝐶 ∈ V |
| 57 |
53
|
inex1 |
⊢ ( ( 𝑊 ‘ 𝐵 ) ∩ ( 𝐶 × 𝐶 ) ) ∈ V |
| 58 |
|
simpl |
⊢ ( ( 𝑥 = 𝐶 ∧ 𝑟 = ( ( 𝑊 ‘ 𝐵 ) ∩ ( 𝐶 × 𝐶 ) ) ) → 𝑥 = 𝐶 ) |
| 59 |
58
|
sseq1d |
⊢ ( ( 𝑥 = 𝐶 ∧ 𝑟 = ( ( 𝑊 ‘ 𝐵 ) ∩ ( 𝐶 × 𝐶 ) ) ) → ( 𝑥 ⊆ 𝐴 ↔ 𝐶 ⊆ 𝐴 ) ) |
| 60 |
|
simpr |
⊢ ( ( 𝑥 = 𝐶 ∧ 𝑟 = ( ( 𝑊 ‘ 𝐵 ) ∩ ( 𝐶 × 𝐶 ) ) ) → 𝑟 = ( ( 𝑊 ‘ 𝐵 ) ∩ ( 𝐶 × 𝐶 ) ) ) |
| 61 |
58
|
sqxpeqd |
⊢ ( ( 𝑥 = 𝐶 ∧ 𝑟 = ( ( 𝑊 ‘ 𝐵 ) ∩ ( 𝐶 × 𝐶 ) ) ) → ( 𝑥 × 𝑥 ) = ( 𝐶 × 𝐶 ) ) |
| 62 |
60 61
|
sseq12d |
⊢ ( ( 𝑥 = 𝐶 ∧ 𝑟 = ( ( 𝑊 ‘ 𝐵 ) ∩ ( 𝐶 × 𝐶 ) ) ) → ( 𝑟 ⊆ ( 𝑥 × 𝑥 ) ↔ ( ( 𝑊 ‘ 𝐵 ) ∩ ( 𝐶 × 𝐶 ) ) ⊆ ( 𝐶 × 𝐶 ) ) ) |
| 63 |
60 58
|
weeq12d |
⊢ ( ( 𝑥 = 𝐶 ∧ 𝑟 = ( ( 𝑊 ‘ 𝐵 ) ∩ ( 𝐶 × 𝐶 ) ) ) → ( 𝑟 We 𝑥 ↔ ( ( 𝑊 ‘ 𝐵 ) ∩ ( 𝐶 × 𝐶 ) ) We 𝐶 ) ) |
| 64 |
59 62 63
|
3anbi123d |
⊢ ( ( 𝑥 = 𝐶 ∧ 𝑟 = ( ( 𝑊 ‘ 𝐵 ) ∩ ( 𝐶 × 𝐶 ) ) ) → ( ( 𝑥 ⊆ 𝐴 ∧ 𝑟 ⊆ ( 𝑥 × 𝑥 ) ∧ 𝑟 We 𝑥 ) ↔ ( 𝐶 ⊆ 𝐴 ∧ ( ( 𝑊 ‘ 𝐵 ) ∩ ( 𝐶 × 𝐶 ) ) ⊆ ( 𝐶 × 𝐶 ) ∧ ( ( 𝑊 ‘ 𝐵 ) ∩ ( 𝐶 × 𝐶 ) ) We 𝐶 ) ) ) |
| 65 |
56 57 64
|
opelopaba |
⊢ ( 〈 𝐶 , ( ( 𝑊 ‘ 𝐵 ) ∩ ( 𝐶 × 𝐶 ) ) 〉 ∈ { 〈 𝑥 , 𝑟 〉 ∣ ( 𝑥 ⊆ 𝐴 ∧ 𝑟 ⊆ ( 𝑥 × 𝑥 ) ∧ 𝑟 We 𝑥 ) } ↔ ( 𝐶 ⊆ 𝐴 ∧ ( ( 𝑊 ‘ 𝐵 ) ∩ ( 𝐶 × 𝐶 ) ) ⊆ ( 𝐶 × 𝐶 ) ∧ ( ( 𝑊 ‘ 𝐵 ) ∩ ( 𝐶 × 𝐶 ) ) We 𝐶 ) ) |
| 66 |
44 46 52 65
|
syl3anbrc |
⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝐹 : 𝑂 –1-1→ 𝐴 ) → 〈 𝐶 , ( ( 𝑊 ‘ 𝐵 ) ∩ ( 𝐶 × 𝐶 ) ) 〉 ∈ { 〈 𝑥 , 𝑟 〉 ∣ ( 𝑥 ⊆ 𝐴 ∧ 𝑟 ⊆ ( 𝑥 × 𝑥 ) ∧ 𝑟 We 𝑥 ) } ) |
| 67 |
66 1
|
eleqtrrdi |
⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝐹 : 𝑂 –1-1→ 𝐴 ) → 〈 𝐶 , ( ( 𝑊 ‘ 𝐵 ) ∩ ( 𝐶 × 𝐶 ) ) 〉 ∈ 𝑂 ) |
| 68 |
8 43
|
ssexd |
⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝐹 : 𝑂 –1-1→ 𝐴 ) → 𝐵 ∈ V ) |
| 69 |
53
|
a1i |
⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝐹 : 𝑂 –1-1→ 𝐴 ) → ( 𝑊 ‘ 𝐵 ) ∈ V ) |
| 70 |
|
simpl |
⊢ ( ( 𝑥 = 𝐵 ∧ 𝑟 = ( 𝑊 ‘ 𝐵 ) ) → 𝑥 = 𝐵 ) |
| 71 |
70
|
sseq1d |
⊢ ( ( 𝑥 = 𝐵 ∧ 𝑟 = ( 𝑊 ‘ 𝐵 ) ) → ( 𝑥 ⊆ 𝐴 ↔ 𝐵 ⊆ 𝐴 ) ) |
| 72 |
|
simpr |
⊢ ( ( 𝑥 = 𝐵 ∧ 𝑟 = ( 𝑊 ‘ 𝐵 ) ) → 𝑟 = ( 𝑊 ‘ 𝐵 ) ) |
| 73 |
70
|
sqxpeqd |
⊢ ( ( 𝑥 = 𝐵 ∧ 𝑟 = ( 𝑊 ‘ 𝐵 ) ) → ( 𝑥 × 𝑥 ) = ( 𝐵 × 𝐵 ) ) |
| 74 |
72 73
|
sseq12d |
⊢ ( ( 𝑥 = 𝐵 ∧ 𝑟 = ( 𝑊 ‘ 𝐵 ) ) → ( 𝑟 ⊆ ( 𝑥 × 𝑥 ) ↔ ( 𝑊 ‘ 𝐵 ) ⊆ ( 𝐵 × 𝐵 ) ) ) |
| 75 |
72 70
|
weeq12d |
⊢ ( ( 𝑥 = 𝐵 ∧ 𝑟 = ( 𝑊 ‘ 𝐵 ) ) → ( 𝑟 We 𝑥 ↔ ( 𝑊 ‘ 𝐵 ) We 𝐵 ) ) |
| 76 |
71 74 75
|
3anbi123d |
⊢ ( ( 𝑥 = 𝐵 ∧ 𝑟 = ( 𝑊 ‘ 𝐵 ) ) → ( ( 𝑥 ⊆ 𝐴 ∧ 𝑟 ⊆ ( 𝑥 × 𝑥 ) ∧ 𝑟 We 𝑥 ) ↔ ( 𝐵 ⊆ 𝐴 ∧ ( 𝑊 ‘ 𝐵 ) ⊆ ( 𝐵 × 𝐵 ) ∧ ( 𝑊 ‘ 𝐵 ) We 𝐵 ) ) ) |
| 77 |
76
|
opelopabga |
⊢ ( ( 𝐵 ∈ V ∧ ( 𝑊 ‘ 𝐵 ) ∈ V ) → ( 〈 𝐵 , ( 𝑊 ‘ 𝐵 ) 〉 ∈ { 〈 𝑥 , 𝑟 〉 ∣ ( 𝑥 ⊆ 𝐴 ∧ 𝑟 ⊆ ( 𝑥 × 𝑥 ) ∧ 𝑟 We 𝑥 ) } ↔ ( 𝐵 ⊆ 𝐴 ∧ ( 𝑊 ‘ 𝐵 ) ⊆ ( 𝐵 × 𝐵 ) ∧ ( 𝑊 ‘ 𝐵 ) We 𝐵 ) ) ) |
| 78 |
68 69 77
|
syl2anc |
⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝐹 : 𝑂 –1-1→ 𝐴 ) → ( 〈 𝐵 , ( 𝑊 ‘ 𝐵 ) 〉 ∈ { 〈 𝑥 , 𝑟 〉 ∣ ( 𝑥 ⊆ 𝐴 ∧ 𝑟 ⊆ ( 𝑥 × 𝑥 ) ∧ 𝑟 We 𝑥 ) } ↔ ( 𝐵 ⊆ 𝐴 ∧ ( 𝑊 ‘ 𝐵 ) ⊆ ( 𝐵 × 𝐵 ) ∧ ( 𝑊 ‘ 𝐵 ) We 𝐵 ) ) ) |
| 79 |
43 36 48 78
|
mpbir3and |
⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝐹 : 𝑂 –1-1→ 𝐴 ) → 〈 𝐵 , ( 𝑊 ‘ 𝐵 ) 〉 ∈ { 〈 𝑥 , 𝑟 〉 ∣ ( 𝑥 ⊆ 𝐴 ∧ 𝑟 ⊆ ( 𝑥 × 𝑥 ) ∧ 𝑟 We 𝑥 ) } ) |
| 80 |
79 1
|
eleqtrrdi |
⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝐹 : 𝑂 –1-1→ 𝐴 ) → 〈 𝐵 , ( 𝑊 ‘ 𝐵 ) 〉 ∈ 𝑂 ) |
| 81 |
|
f1fveq |
⊢ ( ( 𝐹 : 𝑂 –1-1→ 𝐴 ∧ ( 〈 𝐶 , ( ( 𝑊 ‘ 𝐵 ) ∩ ( 𝐶 × 𝐶 ) ) 〉 ∈ 𝑂 ∧ 〈 𝐵 , ( 𝑊 ‘ 𝐵 ) 〉 ∈ 𝑂 ) ) → ( ( 𝐹 ‘ 〈 𝐶 , ( ( 𝑊 ‘ 𝐵 ) ∩ ( 𝐶 × 𝐶 ) ) 〉 ) = ( 𝐹 ‘ 〈 𝐵 , ( 𝑊 ‘ 𝐵 ) 〉 ) ↔ 〈 𝐶 , ( ( 𝑊 ‘ 𝐵 ) ∩ ( 𝐶 × 𝐶 ) ) 〉 = 〈 𝐵 , ( 𝑊 ‘ 𝐵 ) 〉 ) ) |
| 82 |
31 67 80 81
|
syl12anc |
⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝐹 : 𝑂 –1-1→ 𝐴 ) → ( ( 𝐹 ‘ 〈 𝐶 , ( ( 𝑊 ‘ 𝐵 ) ∩ ( 𝐶 × 𝐶 ) ) 〉 ) = ( 𝐹 ‘ 〈 𝐵 , ( 𝑊 ‘ 𝐵 ) 〉 ) ↔ 〈 𝐶 , ( ( 𝑊 ‘ 𝐵 ) ∩ ( 𝐶 × 𝐶 ) ) 〉 = 〈 𝐵 , ( 𝑊 ‘ 𝐵 ) 〉 ) ) |
| 83 |
30 82
|
mpbid |
⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝐹 : 𝑂 –1-1→ 𝐴 ) → 〈 𝐶 , ( ( 𝑊 ‘ 𝐵 ) ∩ ( 𝐶 × 𝐶 ) ) 〉 = 〈 𝐵 , ( 𝑊 ‘ 𝐵 ) 〉 ) |
| 84 |
56 57
|
opth1 |
⊢ ( 〈 𝐶 , ( ( 𝑊 ‘ 𝐵 ) ∩ ( 𝐶 × 𝐶 ) ) 〉 = 〈 𝐵 , ( 𝑊 ‘ 𝐵 ) 〉 → 𝐶 = 𝐵 ) |
| 85 |
83 84
|
syl |
⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝐹 : 𝑂 –1-1→ 𝐴 ) → 𝐶 = 𝐵 ) |
| 86 |
20 85
|
eleqtrrd |
⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝐹 : 𝑂 –1-1→ 𝐴 ) → ( 𝐵 𝐹 ( 𝑊 ‘ 𝐵 ) ) ∈ 𝐶 ) |
| 87 |
86 4
|
eleqtrdi |
⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝐹 : 𝑂 –1-1→ 𝐴 ) → ( 𝐵 𝐹 ( 𝑊 ‘ 𝐵 ) ) ∈ ( ◡ ( 𝑊 ‘ 𝐵 ) “ { ( 𝐵 𝐹 ( 𝑊 ‘ 𝐵 ) ) } ) ) |
| 88 |
|
ovex |
⊢ ( 𝐵 𝐹 ( 𝑊 ‘ 𝐵 ) ) ∈ V |
| 89 |
88
|
eliniseg |
⊢ ( ( 𝐵 𝐹 ( 𝑊 ‘ 𝐵 ) ) ∈ 𝐵 → ( ( 𝐵 𝐹 ( 𝑊 ‘ 𝐵 ) ) ∈ ( ◡ ( 𝑊 ‘ 𝐵 ) “ { ( 𝐵 𝐹 ( 𝑊 ‘ 𝐵 ) ) } ) ↔ ( 𝐵 𝐹 ( 𝑊 ‘ 𝐵 ) ) ( 𝑊 ‘ 𝐵 ) ( 𝐵 𝐹 ( 𝑊 ‘ 𝐵 ) ) ) ) |
| 90 |
20 89
|
syl |
⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝐹 : 𝑂 –1-1→ 𝐴 ) → ( ( 𝐵 𝐹 ( 𝑊 ‘ 𝐵 ) ) ∈ ( ◡ ( 𝑊 ‘ 𝐵 ) “ { ( 𝐵 𝐹 ( 𝑊 ‘ 𝐵 ) ) } ) ↔ ( 𝐵 𝐹 ( 𝑊 ‘ 𝐵 ) ) ( 𝑊 ‘ 𝐵 ) ( 𝐵 𝐹 ( 𝑊 ‘ 𝐵 ) ) ) ) |
| 91 |
87 90
|
mpbid |
⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝐹 : 𝑂 –1-1→ 𝐴 ) → ( 𝐵 𝐹 ( 𝑊 ‘ 𝐵 ) ) ( 𝑊 ‘ 𝐵 ) ( 𝐵 𝐹 ( 𝑊 ‘ 𝐵 ) ) ) |
| 92 |
|
weso |
⊢ ( ( 𝑊 ‘ 𝐵 ) We 𝐵 → ( 𝑊 ‘ 𝐵 ) Or 𝐵 ) |
| 93 |
48 92
|
syl |
⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝐹 : 𝑂 –1-1→ 𝐴 ) → ( 𝑊 ‘ 𝐵 ) Or 𝐵 ) |
| 94 |
|
sonr |
⊢ ( ( ( 𝑊 ‘ 𝐵 ) Or 𝐵 ∧ ( 𝐵 𝐹 ( 𝑊 ‘ 𝐵 ) ) ∈ 𝐵 ) → ¬ ( 𝐵 𝐹 ( 𝑊 ‘ 𝐵 ) ) ( 𝑊 ‘ 𝐵 ) ( 𝐵 𝐹 ( 𝑊 ‘ 𝐵 ) ) ) |
| 95 |
93 20 94
|
syl2anc |
⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝐹 : 𝑂 –1-1→ 𝐴 ) → ¬ ( 𝐵 𝐹 ( 𝑊 ‘ 𝐵 ) ) ( 𝑊 ‘ 𝐵 ) ( 𝐵 𝐹 ( 𝑊 ‘ 𝐵 ) ) ) |
| 96 |
91 95
|
pm2.65da |
⊢ ( 𝐴 ∈ 𝑉 → ¬ 𝐹 : 𝑂 –1-1→ 𝐴 ) |