Step |
Hyp |
Ref |
Expression |
1 |
|
canthwe.1 |
⊢ 𝑂 = { 〈 𝑥 , 𝑟 〉 ∣ ( 𝑥 ⊆ 𝐴 ∧ 𝑟 ⊆ ( 𝑥 × 𝑥 ) ∧ 𝑟 We 𝑥 ) } |
2 |
|
canthwe.2 |
⊢ 𝑊 = { 〈 𝑥 , 𝑟 〉 ∣ ( ( 𝑥 ⊆ 𝐴 ∧ 𝑟 ⊆ ( 𝑥 × 𝑥 ) ) ∧ ( 𝑟 We 𝑥 ∧ ∀ 𝑦 ∈ 𝑥 [ ( ◡ 𝑟 “ { 𝑦 } ) / 𝑢 ] ( 𝑢 𝐹 ( 𝑟 ∩ ( 𝑢 × 𝑢 ) ) ) = 𝑦 ) ) } |
3 |
|
canthwe.3 |
⊢ 𝐵 = ∪ dom 𝑊 |
4 |
|
canthwe.4 |
⊢ 𝐶 = ( ◡ ( 𝑊 ‘ 𝐵 ) “ { ( 𝐵 𝐹 ( 𝑊 ‘ 𝐵 ) ) } ) |
5 |
|
eqid |
⊢ 𝐵 = 𝐵 |
6 |
|
eqid |
⊢ ( 𝑊 ‘ 𝐵 ) = ( 𝑊 ‘ 𝐵 ) |
7 |
5 6
|
pm3.2i |
⊢ ( 𝐵 = 𝐵 ∧ ( 𝑊 ‘ 𝐵 ) = ( 𝑊 ‘ 𝐵 ) ) |
8 |
|
simpl |
⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝐹 : 𝑂 –1-1→ 𝐴 ) → 𝐴 ∈ 𝑉 ) |
9 |
|
df-ov |
⊢ ( 𝑥 𝐹 𝑟 ) = ( 𝐹 ‘ 〈 𝑥 , 𝑟 〉 ) |
10 |
|
f1f |
⊢ ( 𝐹 : 𝑂 –1-1→ 𝐴 → 𝐹 : 𝑂 ⟶ 𝐴 ) |
11 |
10
|
ad2antlr |
⊢ ( ( ( 𝐴 ∈ 𝑉 ∧ 𝐹 : 𝑂 –1-1→ 𝐴 ) ∧ ( 𝑥 ⊆ 𝐴 ∧ 𝑟 ⊆ ( 𝑥 × 𝑥 ) ∧ 𝑟 We 𝑥 ) ) → 𝐹 : 𝑂 ⟶ 𝐴 ) |
12 |
|
simpr |
⊢ ( ( ( 𝐴 ∈ 𝑉 ∧ 𝐹 : 𝑂 –1-1→ 𝐴 ) ∧ ( 𝑥 ⊆ 𝐴 ∧ 𝑟 ⊆ ( 𝑥 × 𝑥 ) ∧ 𝑟 We 𝑥 ) ) → ( 𝑥 ⊆ 𝐴 ∧ 𝑟 ⊆ ( 𝑥 × 𝑥 ) ∧ 𝑟 We 𝑥 ) ) |
13 |
|
opabidw |
⊢ ( 〈 𝑥 , 𝑟 〉 ∈ { 〈 𝑥 , 𝑟 〉 ∣ ( 𝑥 ⊆ 𝐴 ∧ 𝑟 ⊆ ( 𝑥 × 𝑥 ) ∧ 𝑟 We 𝑥 ) } ↔ ( 𝑥 ⊆ 𝐴 ∧ 𝑟 ⊆ ( 𝑥 × 𝑥 ) ∧ 𝑟 We 𝑥 ) ) |
14 |
12 13
|
sylibr |
⊢ ( ( ( 𝐴 ∈ 𝑉 ∧ 𝐹 : 𝑂 –1-1→ 𝐴 ) ∧ ( 𝑥 ⊆ 𝐴 ∧ 𝑟 ⊆ ( 𝑥 × 𝑥 ) ∧ 𝑟 We 𝑥 ) ) → 〈 𝑥 , 𝑟 〉 ∈ { 〈 𝑥 , 𝑟 〉 ∣ ( 𝑥 ⊆ 𝐴 ∧ 𝑟 ⊆ ( 𝑥 × 𝑥 ) ∧ 𝑟 We 𝑥 ) } ) |
15 |
14 1
|
eleqtrrdi |
⊢ ( ( ( 𝐴 ∈ 𝑉 ∧ 𝐹 : 𝑂 –1-1→ 𝐴 ) ∧ ( 𝑥 ⊆ 𝐴 ∧ 𝑟 ⊆ ( 𝑥 × 𝑥 ) ∧ 𝑟 We 𝑥 ) ) → 〈 𝑥 , 𝑟 〉 ∈ 𝑂 ) |
16 |
11 15
|
ffvelrnd |
⊢ ( ( ( 𝐴 ∈ 𝑉 ∧ 𝐹 : 𝑂 –1-1→ 𝐴 ) ∧ ( 𝑥 ⊆ 𝐴 ∧ 𝑟 ⊆ ( 𝑥 × 𝑥 ) ∧ 𝑟 We 𝑥 ) ) → ( 𝐹 ‘ 〈 𝑥 , 𝑟 〉 ) ∈ 𝐴 ) |
17 |
9 16
|
eqeltrid |
⊢ ( ( ( 𝐴 ∈ 𝑉 ∧ 𝐹 : 𝑂 –1-1→ 𝐴 ) ∧ ( 𝑥 ⊆ 𝐴 ∧ 𝑟 ⊆ ( 𝑥 × 𝑥 ) ∧ 𝑟 We 𝑥 ) ) → ( 𝑥 𝐹 𝑟 ) ∈ 𝐴 ) |
18 |
2 8 17 3
|
fpwwe2 |
⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝐹 : 𝑂 –1-1→ 𝐴 ) → ( ( 𝐵 𝑊 ( 𝑊 ‘ 𝐵 ) ∧ ( 𝐵 𝐹 ( 𝑊 ‘ 𝐵 ) ) ∈ 𝐵 ) ↔ ( 𝐵 = 𝐵 ∧ ( 𝑊 ‘ 𝐵 ) = ( 𝑊 ‘ 𝐵 ) ) ) ) |
19 |
7 18
|
mpbiri |
⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝐹 : 𝑂 –1-1→ 𝐴 ) → ( 𝐵 𝑊 ( 𝑊 ‘ 𝐵 ) ∧ ( 𝐵 𝐹 ( 𝑊 ‘ 𝐵 ) ) ∈ 𝐵 ) ) |
20 |
19
|
simprd |
⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝐹 : 𝑂 –1-1→ 𝐴 ) → ( 𝐵 𝐹 ( 𝑊 ‘ 𝐵 ) ) ∈ 𝐵 ) |
21 |
4 4
|
xpeq12i |
⊢ ( 𝐶 × 𝐶 ) = ( ( ◡ ( 𝑊 ‘ 𝐵 ) “ { ( 𝐵 𝐹 ( 𝑊 ‘ 𝐵 ) ) } ) × ( ◡ ( 𝑊 ‘ 𝐵 ) “ { ( 𝐵 𝐹 ( 𝑊 ‘ 𝐵 ) ) } ) ) |
22 |
21
|
ineq2i |
⊢ ( ( 𝑊 ‘ 𝐵 ) ∩ ( 𝐶 × 𝐶 ) ) = ( ( 𝑊 ‘ 𝐵 ) ∩ ( ( ◡ ( 𝑊 ‘ 𝐵 ) “ { ( 𝐵 𝐹 ( 𝑊 ‘ 𝐵 ) ) } ) × ( ◡ ( 𝑊 ‘ 𝐵 ) “ { ( 𝐵 𝐹 ( 𝑊 ‘ 𝐵 ) ) } ) ) ) |
23 |
4 22
|
oveq12i |
⊢ ( 𝐶 𝐹 ( ( 𝑊 ‘ 𝐵 ) ∩ ( 𝐶 × 𝐶 ) ) ) = ( ( ◡ ( 𝑊 ‘ 𝐵 ) “ { ( 𝐵 𝐹 ( 𝑊 ‘ 𝐵 ) ) } ) 𝐹 ( ( 𝑊 ‘ 𝐵 ) ∩ ( ( ◡ ( 𝑊 ‘ 𝐵 ) “ { ( 𝐵 𝐹 ( 𝑊 ‘ 𝐵 ) ) } ) × ( ◡ ( 𝑊 ‘ 𝐵 ) “ { ( 𝐵 𝐹 ( 𝑊 ‘ 𝐵 ) ) } ) ) ) ) |
24 |
19
|
simpld |
⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝐹 : 𝑂 –1-1→ 𝐴 ) → 𝐵 𝑊 ( 𝑊 ‘ 𝐵 ) ) |
25 |
2 8 24
|
fpwwe2lem3 |
⊢ ( ( ( 𝐴 ∈ 𝑉 ∧ 𝐹 : 𝑂 –1-1→ 𝐴 ) ∧ ( 𝐵 𝐹 ( 𝑊 ‘ 𝐵 ) ) ∈ 𝐵 ) → ( ( ◡ ( 𝑊 ‘ 𝐵 ) “ { ( 𝐵 𝐹 ( 𝑊 ‘ 𝐵 ) ) } ) 𝐹 ( ( 𝑊 ‘ 𝐵 ) ∩ ( ( ◡ ( 𝑊 ‘ 𝐵 ) “ { ( 𝐵 𝐹 ( 𝑊 ‘ 𝐵 ) ) } ) × ( ◡ ( 𝑊 ‘ 𝐵 ) “ { ( 𝐵 𝐹 ( 𝑊 ‘ 𝐵 ) ) } ) ) ) ) = ( 𝐵 𝐹 ( 𝑊 ‘ 𝐵 ) ) ) |
26 |
20 25
|
mpdan |
⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝐹 : 𝑂 –1-1→ 𝐴 ) → ( ( ◡ ( 𝑊 ‘ 𝐵 ) “ { ( 𝐵 𝐹 ( 𝑊 ‘ 𝐵 ) ) } ) 𝐹 ( ( 𝑊 ‘ 𝐵 ) ∩ ( ( ◡ ( 𝑊 ‘ 𝐵 ) “ { ( 𝐵 𝐹 ( 𝑊 ‘ 𝐵 ) ) } ) × ( ◡ ( 𝑊 ‘ 𝐵 ) “ { ( 𝐵 𝐹 ( 𝑊 ‘ 𝐵 ) ) } ) ) ) ) = ( 𝐵 𝐹 ( 𝑊 ‘ 𝐵 ) ) ) |
27 |
23 26
|
eqtrid |
⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝐹 : 𝑂 –1-1→ 𝐴 ) → ( 𝐶 𝐹 ( ( 𝑊 ‘ 𝐵 ) ∩ ( 𝐶 × 𝐶 ) ) ) = ( 𝐵 𝐹 ( 𝑊 ‘ 𝐵 ) ) ) |
28 |
|
df-ov |
⊢ ( 𝐶 𝐹 ( ( 𝑊 ‘ 𝐵 ) ∩ ( 𝐶 × 𝐶 ) ) ) = ( 𝐹 ‘ 〈 𝐶 , ( ( 𝑊 ‘ 𝐵 ) ∩ ( 𝐶 × 𝐶 ) ) 〉 ) |
29 |
|
df-ov |
⊢ ( 𝐵 𝐹 ( 𝑊 ‘ 𝐵 ) ) = ( 𝐹 ‘ 〈 𝐵 , ( 𝑊 ‘ 𝐵 ) 〉 ) |
30 |
27 28 29
|
3eqtr3g |
⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝐹 : 𝑂 –1-1→ 𝐴 ) → ( 𝐹 ‘ 〈 𝐶 , ( ( 𝑊 ‘ 𝐵 ) ∩ ( 𝐶 × 𝐶 ) ) 〉 ) = ( 𝐹 ‘ 〈 𝐵 , ( 𝑊 ‘ 𝐵 ) 〉 ) ) |
31 |
|
simpr |
⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝐹 : 𝑂 –1-1→ 𝐴 ) → 𝐹 : 𝑂 –1-1→ 𝐴 ) |
32 |
|
cnvimass |
⊢ ( ◡ ( 𝑊 ‘ 𝐵 ) “ { ( 𝐵 𝐹 ( 𝑊 ‘ 𝐵 ) ) } ) ⊆ dom ( 𝑊 ‘ 𝐵 ) |
33 |
2 8
|
fpwwe2lem2 |
⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝐹 : 𝑂 –1-1→ 𝐴 ) → ( 𝐵 𝑊 ( 𝑊 ‘ 𝐵 ) ↔ ( ( 𝐵 ⊆ 𝐴 ∧ ( 𝑊 ‘ 𝐵 ) ⊆ ( 𝐵 × 𝐵 ) ) ∧ ( ( 𝑊 ‘ 𝐵 ) We 𝐵 ∧ ∀ 𝑦 ∈ 𝐵 [ ( ◡ ( 𝑊 ‘ 𝐵 ) “ { 𝑦 } ) / 𝑢 ] ( 𝑢 𝐹 ( ( 𝑊 ‘ 𝐵 ) ∩ ( 𝑢 × 𝑢 ) ) ) = 𝑦 ) ) ) ) |
34 |
24 33
|
mpbid |
⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝐹 : 𝑂 –1-1→ 𝐴 ) → ( ( 𝐵 ⊆ 𝐴 ∧ ( 𝑊 ‘ 𝐵 ) ⊆ ( 𝐵 × 𝐵 ) ) ∧ ( ( 𝑊 ‘ 𝐵 ) We 𝐵 ∧ ∀ 𝑦 ∈ 𝐵 [ ( ◡ ( 𝑊 ‘ 𝐵 ) “ { 𝑦 } ) / 𝑢 ] ( 𝑢 𝐹 ( ( 𝑊 ‘ 𝐵 ) ∩ ( 𝑢 × 𝑢 ) ) ) = 𝑦 ) ) ) |
35 |
34
|
simpld |
⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝐹 : 𝑂 –1-1→ 𝐴 ) → ( 𝐵 ⊆ 𝐴 ∧ ( 𝑊 ‘ 𝐵 ) ⊆ ( 𝐵 × 𝐵 ) ) ) |
36 |
35
|
simprd |
⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝐹 : 𝑂 –1-1→ 𝐴 ) → ( 𝑊 ‘ 𝐵 ) ⊆ ( 𝐵 × 𝐵 ) ) |
37 |
|
dmss |
⊢ ( ( 𝑊 ‘ 𝐵 ) ⊆ ( 𝐵 × 𝐵 ) → dom ( 𝑊 ‘ 𝐵 ) ⊆ dom ( 𝐵 × 𝐵 ) ) |
38 |
36 37
|
syl |
⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝐹 : 𝑂 –1-1→ 𝐴 ) → dom ( 𝑊 ‘ 𝐵 ) ⊆ dom ( 𝐵 × 𝐵 ) ) |
39 |
|
dmxpss |
⊢ dom ( 𝐵 × 𝐵 ) ⊆ 𝐵 |
40 |
38 39
|
sstrdi |
⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝐹 : 𝑂 –1-1→ 𝐴 ) → dom ( 𝑊 ‘ 𝐵 ) ⊆ 𝐵 ) |
41 |
32 40
|
sstrid |
⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝐹 : 𝑂 –1-1→ 𝐴 ) → ( ◡ ( 𝑊 ‘ 𝐵 ) “ { ( 𝐵 𝐹 ( 𝑊 ‘ 𝐵 ) ) } ) ⊆ 𝐵 ) |
42 |
4 41
|
eqsstrid |
⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝐹 : 𝑂 –1-1→ 𝐴 ) → 𝐶 ⊆ 𝐵 ) |
43 |
35
|
simpld |
⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝐹 : 𝑂 –1-1→ 𝐴 ) → 𝐵 ⊆ 𝐴 ) |
44 |
42 43
|
sstrd |
⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝐹 : 𝑂 –1-1→ 𝐴 ) → 𝐶 ⊆ 𝐴 ) |
45 |
|
inss2 |
⊢ ( ( 𝑊 ‘ 𝐵 ) ∩ ( 𝐶 × 𝐶 ) ) ⊆ ( 𝐶 × 𝐶 ) |
46 |
45
|
a1i |
⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝐹 : 𝑂 –1-1→ 𝐴 ) → ( ( 𝑊 ‘ 𝐵 ) ∩ ( 𝐶 × 𝐶 ) ) ⊆ ( 𝐶 × 𝐶 ) ) |
47 |
34
|
simprd |
⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝐹 : 𝑂 –1-1→ 𝐴 ) → ( ( 𝑊 ‘ 𝐵 ) We 𝐵 ∧ ∀ 𝑦 ∈ 𝐵 [ ( ◡ ( 𝑊 ‘ 𝐵 ) “ { 𝑦 } ) / 𝑢 ] ( 𝑢 𝐹 ( ( 𝑊 ‘ 𝐵 ) ∩ ( 𝑢 × 𝑢 ) ) ) = 𝑦 ) ) |
48 |
47
|
simpld |
⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝐹 : 𝑂 –1-1→ 𝐴 ) → ( 𝑊 ‘ 𝐵 ) We 𝐵 ) |
49 |
|
wess |
⊢ ( 𝐶 ⊆ 𝐵 → ( ( 𝑊 ‘ 𝐵 ) We 𝐵 → ( 𝑊 ‘ 𝐵 ) We 𝐶 ) ) |
50 |
42 48 49
|
sylc |
⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝐹 : 𝑂 –1-1→ 𝐴 ) → ( 𝑊 ‘ 𝐵 ) We 𝐶 ) |
51 |
|
weinxp |
⊢ ( ( 𝑊 ‘ 𝐵 ) We 𝐶 ↔ ( ( 𝑊 ‘ 𝐵 ) ∩ ( 𝐶 × 𝐶 ) ) We 𝐶 ) |
52 |
50 51
|
sylib |
⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝐹 : 𝑂 –1-1→ 𝐴 ) → ( ( 𝑊 ‘ 𝐵 ) ∩ ( 𝐶 × 𝐶 ) ) We 𝐶 ) |
53 |
|
fvex |
⊢ ( 𝑊 ‘ 𝐵 ) ∈ V |
54 |
53
|
cnvex |
⊢ ◡ ( 𝑊 ‘ 𝐵 ) ∈ V |
55 |
54
|
imaex |
⊢ ( ◡ ( 𝑊 ‘ 𝐵 ) “ { ( 𝐵 𝐹 ( 𝑊 ‘ 𝐵 ) ) } ) ∈ V |
56 |
4 55
|
eqeltri |
⊢ 𝐶 ∈ V |
57 |
53
|
inex1 |
⊢ ( ( 𝑊 ‘ 𝐵 ) ∩ ( 𝐶 × 𝐶 ) ) ∈ V |
58 |
|
simpl |
⊢ ( ( 𝑥 = 𝐶 ∧ 𝑟 = ( ( 𝑊 ‘ 𝐵 ) ∩ ( 𝐶 × 𝐶 ) ) ) → 𝑥 = 𝐶 ) |
59 |
58
|
sseq1d |
⊢ ( ( 𝑥 = 𝐶 ∧ 𝑟 = ( ( 𝑊 ‘ 𝐵 ) ∩ ( 𝐶 × 𝐶 ) ) ) → ( 𝑥 ⊆ 𝐴 ↔ 𝐶 ⊆ 𝐴 ) ) |
60 |
|
simpr |
⊢ ( ( 𝑥 = 𝐶 ∧ 𝑟 = ( ( 𝑊 ‘ 𝐵 ) ∩ ( 𝐶 × 𝐶 ) ) ) → 𝑟 = ( ( 𝑊 ‘ 𝐵 ) ∩ ( 𝐶 × 𝐶 ) ) ) |
61 |
58
|
sqxpeqd |
⊢ ( ( 𝑥 = 𝐶 ∧ 𝑟 = ( ( 𝑊 ‘ 𝐵 ) ∩ ( 𝐶 × 𝐶 ) ) ) → ( 𝑥 × 𝑥 ) = ( 𝐶 × 𝐶 ) ) |
62 |
60 61
|
sseq12d |
⊢ ( ( 𝑥 = 𝐶 ∧ 𝑟 = ( ( 𝑊 ‘ 𝐵 ) ∩ ( 𝐶 × 𝐶 ) ) ) → ( 𝑟 ⊆ ( 𝑥 × 𝑥 ) ↔ ( ( 𝑊 ‘ 𝐵 ) ∩ ( 𝐶 × 𝐶 ) ) ⊆ ( 𝐶 × 𝐶 ) ) ) |
63 |
|
weeq2 |
⊢ ( 𝑥 = 𝐶 → ( 𝑟 We 𝑥 ↔ 𝑟 We 𝐶 ) ) |
64 |
|
weeq1 |
⊢ ( 𝑟 = ( ( 𝑊 ‘ 𝐵 ) ∩ ( 𝐶 × 𝐶 ) ) → ( 𝑟 We 𝐶 ↔ ( ( 𝑊 ‘ 𝐵 ) ∩ ( 𝐶 × 𝐶 ) ) We 𝐶 ) ) |
65 |
63 64
|
sylan9bb |
⊢ ( ( 𝑥 = 𝐶 ∧ 𝑟 = ( ( 𝑊 ‘ 𝐵 ) ∩ ( 𝐶 × 𝐶 ) ) ) → ( 𝑟 We 𝑥 ↔ ( ( 𝑊 ‘ 𝐵 ) ∩ ( 𝐶 × 𝐶 ) ) We 𝐶 ) ) |
66 |
59 62 65
|
3anbi123d |
⊢ ( ( 𝑥 = 𝐶 ∧ 𝑟 = ( ( 𝑊 ‘ 𝐵 ) ∩ ( 𝐶 × 𝐶 ) ) ) → ( ( 𝑥 ⊆ 𝐴 ∧ 𝑟 ⊆ ( 𝑥 × 𝑥 ) ∧ 𝑟 We 𝑥 ) ↔ ( 𝐶 ⊆ 𝐴 ∧ ( ( 𝑊 ‘ 𝐵 ) ∩ ( 𝐶 × 𝐶 ) ) ⊆ ( 𝐶 × 𝐶 ) ∧ ( ( 𝑊 ‘ 𝐵 ) ∩ ( 𝐶 × 𝐶 ) ) We 𝐶 ) ) ) |
67 |
56 57 66
|
opelopaba |
⊢ ( 〈 𝐶 , ( ( 𝑊 ‘ 𝐵 ) ∩ ( 𝐶 × 𝐶 ) ) 〉 ∈ { 〈 𝑥 , 𝑟 〉 ∣ ( 𝑥 ⊆ 𝐴 ∧ 𝑟 ⊆ ( 𝑥 × 𝑥 ) ∧ 𝑟 We 𝑥 ) } ↔ ( 𝐶 ⊆ 𝐴 ∧ ( ( 𝑊 ‘ 𝐵 ) ∩ ( 𝐶 × 𝐶 ) ) ⊆ ( 𝐶 × 𝐶 ) ∧ ( ( 𝑊 ‘ 𝐵 ) ∩ ( 𝐶 × 𝐶 ) ) We 𝐶 ) ) |
68 |
44 46 52 67
|
syl3anbrc |
⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝐹 : 𝑂 –1-1→ 𝐴 ) → 〈 𝐶 , ( ( 𝑊 ‘ 𝐵 ) ∩ ( 𝐶 × 𝐶 ) ) 〉 ∈ { 〈 𝑥 , 𝑟 〉 ∣ ( 𝑥 ⊆ 𝐴 ∧ 𝑟 ⊆ ( 𝑥 × 𝑥 ) ∧ 𝑟 We 𝑥 ) } ) |
69 |
68 1
|
eleqtrrdi |
⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝐹 : 𝑂 –1-1→ 𝐴 ) → 〈 𝐶 , ( ( 𝑊 ‘ 𝐵 ) ∩ ( 𝐶 × 𝐶 ) ) 〉 ∈ 𝑂 ) |
70 |
8 43
|
ssexd |
⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝐹 : 𝑂 –1-1→ 𝐴 ) → 𝐵 ∈ V ) |
71 |
53
|
a1i |
⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝐹 : 𝑂 –1-1→ 𝐴 ) → ( 𝑊 ‘ 𝐵 ) ∈ V ) |
72 |
|
simpl |
⊢ ( ( 𝑥 = 𝐵 ∧ 𝑟 = ( 𝑊 ‘ 𝐵 ) ) → 𝑥 = 𝐵 ) |
73 |
72
|
sseq1d |
⊢ ( ( 𝑥 = 𝐵 ∧ 𝑟 = ( 𝑊 ‘ 𝐵 ) ) → ( 𝑥 ⊆ 𝐴 ↔ 𝐵 ⊆ 𝐴 ) ) |
74 |
|
simpr |
⊢ ( ( 𝑥 = 𝐵 ∧ 𝑟 = ( 𝑊 ‘ 𝐵 ) ) → 𝑟 = ( 𝑊 ‘ 𝐵 ) ) |
75 |
72
|
sqxpeqd |
⊢ ( ( 𝑥 = 𝐵 ∧ 𝑟 = ( 𝑊 ‘ 𝐵 ) ) → ( 𝑥 × 𝑥 ) = ( 𝐵 × 𝐵 ) ) |
76 |
74 75
|
sseq12d |
⊢ ( ( 𝑥 = 𝐵 ∧ 𝑟 = ( 𝑊 ‘ 𝐵 ) ) → ( 𝑟 ⊆ ( 𝑥 × 𝑥 ) ↔ ( 𝑊 ‘ 𝐵 ) ⊆ ( 𝐵 × 𝐵 ) ) ) |
77 |
|
weeq2 |
⊢ ( 𝑥 = 𝐵 → ( 𝑟 We 𝑥 ↔ 𝑟 We 𝐵 ) ) |
78 |
|
weeq1 |
⊢ ( 𝑟 = ( 𝑊 ‘ 𝐵 ) → ( 𝑟 We 𝐵 ↔ ( 𝑊 ‘ 𝐵 ) We 𝐵 ) ) |
79 |
77 78
|
sylan9bb |
⊢ ( ( 𝑥 = 𝐵 ∧ 𝑟 = ( 𝑊 ‘ 𝐵 ) ) → ( 𝑟 We 𝑥 ↔ ( 𝑊 ‘ 𝐵 ) We 𝐵 ) ) |
80 |
73 76 79
|
3anbi123d |
⊢ ( ( 𝑥 = 𝐵 ∧ 𝑟 = ( 𝑊 ‘ 𝐵 ) ) → ( ( 𝑥 ⊆ 𝐴 ∧ 𝑟 ⊆ ( 𝑥 × 𝑥 ) ∧ 𝑟 We 𝑥 ) ↔ ( 𝐵 ⊆ 𝐴 ∧ ( 𝑊 ‘ 𝐵 ) ⊆ ( 𝐵 × 𝐵 ) ∧ ( 𝑊 ‘ 𝐵 ) We 𝐵 ) ) ) |
81 |
80
|
opelopabga |
⊢ ( ( 𝐵 ∈ V ∧ ( 𝑊 ‘ 𝐵 ) ∈ V ) → ( 〈 𝐵 , ( 𝑊 ‘ 𝐵 ) 〉 ∈ { 〈 𝑥 , 𝑟 〉 ∣ ( 𝑥 ⊆ 𝐴 ∧ 𝑟 ⊆ ( 𝑥 × 𝑥 ) ∧ 𝑟 We 𝑥 ) } ↔ ( 𝐵 ⊆ 𝐴 ∧ ( 𝑊 ‘ 𝐵 ) ⊆ ( 𝐵 × 𝐵 ) ∧ ( 𝑊 ‘ 𝐵 ) We 𝐵 ) ) ) |
82 |
70 71 81
|
syl2anc |
⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝐹 : 𝑂 –1-1→ 𝐴 ) → ( 〈 𝐵 , ( 𝑊 ‘ 𝐵 ) 〉 ∈ { 〈 𝑥 , 𝑟 〉 ∣ ( 𝑥 ⊆ 𝐴 ∧ 𝑟 ⊆ ( 𝑥 × 𝑥 ) ∧ 𝑟 We 𝑥 ) } ↔ ( 𝐵 ⊆ 𝐴 ∧ ( 𝑊 ‘ 𝐵 ) ⊆ ( 𝐵 × 𝐵 ) ∧ ( 𝑊 ‘ 𝐵 ) We 𝐵 ) ) ) |
83 |
43 36 48 82
|
mpbir3and |
⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝐹 : 𝑂 –1-1→ 𝐴 ) → 〈 𝐵 , ( 𝑊 ‘ 𝐵 ) 〉 ∈ { 〈 𝑥 , 𝑟 〉 ∣ ( 𝑥 ⊆ 𝐴 ∧ 𝑟 ⊆ ( 𝑥 × 𝑥 ) ∧ 𝑟 We 𝑥 ) } ) |
84 |
83 1
|
eleqtrrdi |
⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝐹 : 𝑂 –1-1→ 𝐴 ) → 〈 𝐵 , ( 𝑊 ‘ 𝐵 ) 〉 ∈ 𝑂 ) |
85 |
|
f1fveq |
⊢ ( ( 𝐹 : 𝑂 –1-1→ 𝐴 ∧ ( 〈 𝐶 , ( ( 𝑊 ‘ 𝐵 ) ∩ ( 𝐶 × 𝐶 ) ) 〉 ∈ 𝑂 ∧ 〈 𝐵 , ( 𝑊 ‘ 𝐵 ) 〉 ∈ 𝑂 ) ) → ( ( 𝐹 ‘ 〈 𝐶 , ( ( 𝑊 ‘ 𝐵 ) ∩ ( 𝐶 × 𝐶 ) ) 〉 ) = ( 𝐹 ‘ 〈 𝐵 , ( 𝑊 ‘ 𝐵 ) 〉 ) ↔ 〈 𝐶 , ( ( 𝑊 ‘ 𝐵 ) ∩ ( 𝐶 × 𝐶 ) ) 〉 = 〈 𝐵 , ( 𝑊 ‘ 𝐵 ) 〉 ) ) |
86 |
31 69 84 85
|
syl12anc |
⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝐹 : 𝑂 –1-1→ 𝐴 ) → ( ( 𝐹 ‘ 〈 𝐶 , ( ( 𝑊 ‘ 𝐵 ) ∩ ( 𝐶 × 𝐶 ) ) 〉 ) = ( 𝐹 ‘ 〈 𝐵 , ( 𝑊 ‘ 𝐵 ) 〉 ) ↔ 〈 𝐶 , ( ( 𝑊 ‘ 𝐵 ) ∩ ( 𝐶 × 𝐶 ) ) 〉 = 〈 𝐵 , ( 𝑊 ‘ 𝐵 ) 〉 ) ) |
87 |
30 86
|
mpbid |
⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝐹 : 𝑂 –1-1→ 𝐴 ) → 〈 𝐶 , ( ( 𝑊 ‘ 𝐵 ) ∩ ( 𝐶 × 𝐶 ) ) 〉 = 〈 𝐵 , ( 𝑊 ‘ 𝐵 ) 〉 ) |
88 |
56 57
|
opth1 |
⊢ ( 〈 𝐶 , ( ( 𝑊 ‘ 𝐵 ) ∩ ( 𝐶 × 𝐶 ) ) 〉 = 〈 𝐵 , ( 𝑊 ‘ 𝐵 ) 〉 → 𝐶 = 𝐵 ) |
89 |
87 88
|
syl |
⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝐹 : 𝑂 –1-1→ 𝐴 ) → 𝐶 = 𝐵 ) |
90 |
20 89
|
eleqtrrd |
⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝐹 : 𝑂 –1-1→ 𝐴 ) → ( 𝐵 𝐹 ( 𝑊 ‘ 𝐵 ) ) ∈ 𝐶 ) |
91 |
90 4
|
eleqtrdi |
⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝐹 : 𝑂 –1-1→ 𝐴 ) → ( 𝐵 𝐹 ( 𝑊 ‘ 𝐵 ) ) ∈ ( ◡ ( 𝑊 ‘ 𝐵 ) “ { ( 𝐵 𝐹 ( 𝑊 ‘ 𝐵 ) ) } ) ) |
92 |
|
ovex |
⊢ ( 𝐵 𝐹 ( 𝑊 ‘ 𝐵 ) ) ∈ V |
93 |
92
|
eliniseg |
⊢ ( ( 𝐵 𝐹 ( 𝑊 ‘ 𝐵 ) ) ∈ 𝐵 → ( ( 𝐵 𝐹 ( 𝑊 ‘ 𝐵 ) ) ∈ ( ◡ ( 𝑊 ‘ 𝐵 ) “ { ( 𝐵 𝐹 ( 𝑊 ‘ 𝐵 ) ) } ) ↔ ( 𝐵 𝐹 ( 𝑊 ‘ 𝐵 ) ) ( 𝑊 ‘ 𝐵 ) ( 𝐵 𝐹 ( 𝑊 ‘ 𝐵 ) ) ) ) |
94 |
20 93
|
syl |
⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝐹 : 𝑂 –1-1→ 𝐴 ) → ( ( 𝐵 𝐹 ( 𝑊 ‘ 𝐵 ) ) ∈ ( ◡ ( 𝑊 ‘ 𝐵 ) “ { ( 𝐵 𝐹 ( 𝑊 ‘ 𝐵 ) ) } ) ↔ ( 𝐵 𝐹 ( 𝑊 ‘ 𝐵 ) ) ( 𝑊 ‘ 𝐵 ) ( 𝐵 𝐹 ( 𝑊 ‘ 𝐵 ) ) ) ) |
95 |
91 94
|
mpbid |
⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝐹 : 𝑂 –1-1→ 𝐴 ) → ( 𝐵 𝐹 ( 𝑊 ‘ 𝐵 ) ) ( 𝑊 ‘ 𝐵 ) ( 𝐵 𝐹 ( 𝑊 ‘ 𝐵 ) ) ) |
96 |
|
weso |
⊢ ( ( 𝑊 ‘ 𝐵 ) We 𝐵 → ( 𝑊 ‘ 𝐵 ) Or 𝐵 ) |
97 |
48 96
|
syl |
⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝐹 : 𝑂 –1-1→ 𝐴 ) → ( 𝑊 ‘ 𝐵 ) Or 𝐵 ) |
98 |
|
sonr |
⊢ ( ( ( 𝑊 ‘ 𝐵 ) Or 𝐵 ∧ ( 𝐵 𝐹 ( 𝑊 ‘ 𝐵 ) ) ∈ 𝐵 ) → ¬ ( 𝐵 𝐹 ( 𝑊 ‘ 𝐵 ) ) ( 𝑊 ‘ 𝐵 ) ( 𝐵 𝐹 ( 𝑊 ‘ 𝐵 ) ) ) |
99 |
97 20 98
|
syl2anc |
⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝐹 : 𝑂 –1-1→ 𝐴 ) → ¬ ( 𝐵 𝐹 ( 𝑊 ‘ 𝐵 ) ) ( 𝑊 ‘ 𝐵 ) ( 𝐵 𝐹 ( 𝑊 ‘ 𝐵 ) ) ) |
100 |
95 99
|
pm2.65da |
⊢ ( 𝐴 ∈ 𝑉 → ¬ 𝐹 : 𝑂 –1-1→ 𝐴 ) |