| Step | Hyp | Ref | Expression | 
						
							| 1 |  | cantnfs.s | ⊢ 𝑆  =  dom  ( 𝐴  CNF  𝐵 ) | 
						
							| 2 |  | cantnfs.a | ⊢ ( 𝜑  →  𝐴  ∈  On ) | 
						
							| 3 |  | cantnfs.b | ⊢ ( 𝜑  →  𝐵  ∈  On ) | 
						
							| 4 |  | oemapval.t | ⊢ 𝑇  =  { 〈 𝑥 ,  𝑦 〉  ∣  ∃ 𝑧  ∈  𝐵 ( ( 𝑥 ‘ 𝑧 )  ∈  ( 𝑦 ‘ 𝑧 )  ∧  ∀ 𝑤  ∈  𝐵 ( 𝑧  ∈  𝑤  →  ( 𝑥 ‘ 𝑤 )  =  ( 𝑦 ‘ 𝑤 ) ) ) } | 
						
							| 5 | 1 2 3 4 | oemapso | ⊢ ( 𝜑  →  𝑇  Or  𝑆 ) | 
						
							| 6 |  | oecl | ⊢ ( ( 𝐴  ∈  On  ∧  𝐵  ∈  On )  →  ( 𝐴  ↑o  𝐵 )  ∈  On ) | 
						
							| 7 | 2 3 6 | syl2anc | ⊢ ( 𝜑  →  ( 𝐴  ↑o  𝐵 )  ∈  On ) | 
						
							| 8 |  | eloni | ⊢ ( ( 𝐴  ↑o  𝐵 )  ∈  On  →  Ord  ( 𝐴  ↑o  𝐵 ) ) | 
						
							| 9 | 7 8 | syl | ⊢ ( 𝜑  →  Ord  ( 𝐴  ↑o  𝐵 ) ) | 
						
							| 10 |  | ordwe | ⊢ ( Ord  ( 𝐴  ↑o  𝐵 )  →   E   We  ( 𝐴  ↑o  𝐵 ) ) | 
						
							| 11 |  | weso | ⊢ (  E   We  ( 𝐴  ↑o  𝐵 )  →   E   Or  ( 𝐴  ↑o  𝐵 ) ) | 
						
							| 12 |  | sopo | ⊢ (  E   Or  ( 𝐴  ↑o  𝐵 )  →   E   Po  ( 𝐴  ↑o  𝐵 ) ) | 
						
							| 13 | 9 10 11 12 | 4syl | ⊢ ( 𝜑  →   E   Po  ( 𝐴  ↑o  𝐵 ) ) | 
						
							| 14 | 1 2 3 | cantnff | ⊢ ( 𝜑  →  ( 𝐴  CNF  𝐵 ) : 𝑆 ⟶ ( 𝐴  ↑o  𝐵 ) ) | 
						
							| 15 | 14 | frnd | ⊢ ( 𝜑  →  ran  ( 𝐴  CNF  𝐵 )  ⊆  ( 𝐴  ↑o  𝐵 ) ) | 
						
							| 16 |  | onss | ⊢ ( ( 𝐴  ↑o  𝐵 )  ∈  On  →  ( 𝐴  ↑o  𝐵 )  ⊆  On ) | 
						
							| 17 | 7 16 | syl | ⊢ ( 𝜑  →  ( 𝐴  ↑o  𝐵 )  ⊆  On ) | 
						
							| 18 | 17 | sseld | ⊢ ( 𝜑  →  ( 𝑡  ∈  ( 𝐴  ↑o  𝐵 )  →  𝑡  ∈  On ) ) | 
						
							| 19 |  | eleq1w | ⊢ ( 𝑡  =  𝑦  →  ( 𝑡  ∈  ( 𝐴  ↑o  𝐵 )  ↔  𝑦  ∈  ( 𝐴  ↑o  𝐵 ) ) ) | 
						
							| 20 |  | eleq1w | ⊢ ( 𝑡  =  𝑦  →  ( 𝑡  ∈  ran  ( 𝐴  CNF  𝐵 )  ↔  𝑦  ∈  ran  ( 𝐴  CNF  𝐵 ) ) ) | 
						
							| 21 | 19 20 | imbi12d | ⊢ ( 𝑡  =  𝑦  →  ( ( 𝑡  ∈  ( 𝐴  ↑o  𝐵 )  →  𝑡  ∈  ran  ( 𝐴  CNF  𝐵 ) )  ↔  ( 𝑦  ∈  ( 𝐴  ↑o  𝐵 )  →  𝑦  ∈  ran  ( 𝐴  CNF  𝐵 ) ) ) ) | 
						
							| 22 | 21 | imbi2d | ⊢ ( 𝑡  =  𝑦  →  ( ( 𝜑  →  ( 𝑡  ∈  ( 𝐴  ↑o  𝐵 )  →  𝑡  ∈  ran  ( 𝐴  CNF  𝐵 ) ) )  ↔  ( 𝜑  →  ( 𝑦  ∈  ( 𝐴  ↑o  𝐵 )  →  𝑦  ∈  ran  ( 𝐴  CNF  𝐵 ) ) ) ) ) | 
						
							| 23 |  | r19.21v | ⊢ ( ∀ 𝑦  ∈  𝑡 ( 𝜑  →  ( 𝑦  ∈  ( 𝐴  ↑o  𝐵 )  →  𝑦  ∈  ran  ( 𝐴  CNF  𝐵 ) ) )  ↔  ( 𝜑  →  ∀ 𝑦  ∈  𝑡 ( 𝑦  ∈  ( 𝐴  ↑o  𝐵 )  →  𝑦  ∈  ran  ( 𝐴  CNF  𝐵 ) ) ) ) | 
						
							| 24 |  | ordelss | ⊢ ( ( Ord  ( 𝐴  ↑o  𝐵 )  ∧  𝑡  ∈  ( 𝐴  ↑o  𝐵 ) )  →  𝑡  ⊆  ( 𝐴  ↑o  𝐵 ) ) | 
						
							| 25 | 9 24 | sylan | ⊢ ( ( 𝜑  ∧  𝑡  ∈  ( 𝐴  ↑o  𝐵 ) )  →  𝑡  ⊆  ( 𝐴  ↑o  𝐵 ) ) | 
						
							| 26 | 25 | sselda | ⊢ ( ( ( 𝜑  ∧  𝑡  ∈  ( 𝐴  ↑o  𝐵 ) )  ∧  𝑦  ∈  𝑡 )  →  𝑦  ∈  ( 𝐴  ↑o  𝐵 ) ) | 
						
							| 27 |  | pm5.5 | ⊢ ( 𝑦  ∈  ( 𝐴  ↑o  𝐵 )  →  ( ( 𝑦  ∈  ( 𝐴  ↑o  𝐵 )  →  𝑦  ∈  ran  ( 𝐴  CNF  𝐵 ) )  ↔  𝑦  ∈  ran  ( 𝐴  CNF  𝐵 ) ) ) | 
						
							| 28 | 26 27 | syl | ⊢ ( ( ( 𝜑  ∧  𝑡  ∈  ( 𝐴  ↑o  𝐵 ) )  ∧  𝑦  ∈  𝑡 )  →  ( ( 𝑦  ∈  ( 𝐴  ↑o  𝐵 )  →  𝑦  ∈  ran  ( 𝐴  CNF  𝐵 ) )  ↔  𝑦  ∈  ran  ( 𝐴  CNF  𝐵 ) ) ) | 
						
							| 29 | 28 | ralbidva | ⊢ ( ( 𝜑  ∧  𝑡  ∈  ( 𝐴  ↑o  𝐵 ) )  →  ( ∀ 𝑦  ∈  𝑡 ( 𝑦  ∈  ( 𝐴  ↑o  𝐵 )  →  𝑦  ∈  ran  ( 𝐴  CNF  𝐵 ) )  ↔  ∀ 𝑦  ∈  𝑡 𝑦  ∈  ran  ( 𝐴  CNF  𝐵 ) ) ) | 
						
							| 30 |  | dfss3 | ⊢ ( 𝑡  ⊆  ran  ( 𝐴  CNF  𝐵 )  ↔  ∀ 𝑦  ∈  𝑡 𝑦  ∈  ran  ( 𝐴  CNF  𝐵 ) ) | 
						
							| 31 | 29 30 | bitr4di | ⊢ ( ( 𝜑  ∧  𝑡  ∈  ( 𝐴  ↑o  𝐵 ) )  →  ( ∀ 𝑦  ∈  𝑡 ( 𝑦  ∈  ( 𝐴  ↑o  𝐵 )  →  𝑦  ∈  ran  ( 𝐴  CNF  𝐵 ) )  ↔  𝑡  ⊆  ran  ( 𝐴  CNF  𝐵 ) ) ) | 
						
							| 32 |  | eleq1 | ⊢ ( 𝑡  =  ∅  →  ( 𝑡  ∈  ran  ( 𝐴  CNF  𝐵 )  ↔  ∅  ∈  ran  ( 𝐴  CNF  𝐵 ) ) ) | 
						
							| 33 | 2 | adantr | ⊢ ( ( 𝜑  ∧  ( 𝑡  ∈  ( 𝐴  ↑o  𝐵 )  ∧  𝑡  ⊆  ran  ( 𝐴  CNF  𝐵 ) ) )  →  𝐴  ∈  On ) | 
						
							| 34 | 33 | adantr | ⊢ ( ( ( 𝜑  ∧  ( 𝑡  ∈  ( 𝐴  ↑o  𝐵 )  ∧  𝑡  ⊆  ran  ( 𝐴  CNF  𝐵 ) ) )  ∧  𝑡  ≠  ∅ )  →  𝐴  ∈  On ) | 
						
							| 35 | 3 | adantr | ⊢ ( ( 𝜑  ∧  ( 𝑡  ∈  ( 𝐴  ↑o  𝐵 )  ∧  𝑡  ⊆  ran  ( 𝐴  CNF  𝐵 ) ) )  →  𝐵  ∈  On ) | 
						
							| 36 | 35 | adantr | ⊢ ( ( ( 𝜑  ∧  ( 𝑡  ∈  ( 𝐴  ↑o  𝐵 )  ∧  𝑡  ⊆  ran  ( 𝐴  CNF  𝐵 ) ) )  ∧  𝑡  ≠  ∅ )  →  𝐵  ∈  On ) | 
						
							| 37 |  | simplrl | ⊢ ( ( ( 𝜑  ∧  ( 𝑡  ∈  ( 𝐴  ↑o  𝐵 )  ∧  𝑡  ⊆  ran  ( 𝐴  CNF  𝐵 ) ) )  ∧  𝑡  ≠  ∅ )  →  𝑡  ∈  ( 𝐴  ↑o  𝐵 ) ) | 
						
							| 38 |  | simplrr | ⊢ ( ( ( 𝜑  ∧  ( 𝑡  ∈  ( 𝐴  ↑o  𝐵 )  ∧  𝑡  ⊆  ran  ( 𝐴  CNF  𝐵 ) ) )  ∧  𝑡  ≠  ∅ )  →  𝑡  ⊆  ran  ( 𝐴  CNF  𝐵 ) ) | 
						
							| 39 | 7 | adantr | ⊢ ( ( 𝜑  ∧  ( 𝑡  ∈  ( 𝐴  ↑o  𝐵 )  ∧  𝑡  ⊆  ran  ( 𝐴  CNF  𝐵 ) ) )  →  ( 𝐴  ↑o  𝐵 )  ∈  On ) | 
						
							| 40 |  | simprl | ⊢ ( ( 𝜑  ∧  ( 𝑡  ∈  ( 𝐴  ↑o  𝐵 )  ∧  𝑡  ⊆  ran  ( 𝐴  CNF  𝐵 ) ) )  →  𝑡  ∈  ( 𝐴  ↑o  𝐵 ) ) | 
						
							| 41 |  | onelon | ⊢ ( ( ( 𝐴  ↑o  𝐵 )  ∈  On  ∧  𝑡  ∈  ( 𝐴  ↑o  𝐵 ) )  →  𝑡  ∈  On ) | 
						
							| 42 | 39 40 41 | syl2anc | ⊢ ( ( 𝜑  ∧  ( 𝑡  ∈  ( 𝐴  ↑o  𝐵 )  ∧  𝑡  ⊆  ran  ( 𝐴  CNF  𝐵 ) ) )  →  𝑡  ∈  On ) | 
						
							| 43 |  | on0eln0 | ⊢ ( 𝑡  ∈  On  →  ( ∅  ∈  𝑡  ↔  𝑡  ≠  ∅ ) ) | 
						
							| 44 | 42 43 | syl | ⊢ ( ( 𝜑  ∧  ( 𝑡  ∈  ( 𝐴  ↑o  𝐵 )  ∧  𝑡  ⊆  ran  ( 𝐴  CNF  𝐵 ) ) )  →  ( ∅  ∈  𝑡  ↔  𝑡  ≠  ∅ ) ) | 
						
							| 45 | 44 | biimpar | ⊢ ( ( ( 𝜑  ∧  ( 𝑡  ∈  ( 𝐴  ↑o  𝐵 )  ∧  𝑡  ⊆  ran  ( 𝐴  CNF  𝐵 ) ) )  ∧  𝑡  ≠  ∅ )  →  ∅  ∈  𝑡 ) | 
						
							| 46 |  | eqid | ⊢ ∪  ∩  { 𝑐  ∈  On  ∣  𝑡  ∈  ( 𝐴  ↑o  𝑐 ) }  =  ∪  ∩  { 𝑐  ∈  On  ∣  𝑡  ∈  ( 𝐴  ↑o  𝑐 ) } | 
						
							| 47 |  | eqid | ⊢ ( ℩ 𝑑 ∃ 𝑎  ∈  On ∃ 𝑏  ∈  ( 𝐴  ↑o  ∪  ∩  { 𝑐  ∈  On  ∣  𝑡  ∈  ( 𝐴  ↑o  𝑐 ) } ) ( 𝑑  =  〈 𝑎 ,  𝑏 〉  ∧  ( ( ( 𝐴  ↑o  ∪  ∩  { 𝑐  ∈  On  ∣  𝑡  ∈  ( 𝐴  ↑o  𝑐 ) } )  ·o  𝑎 )  +o  𝑏 )  =  𝑡 ) )  =  ( ℩ 𝑑 ∃ 𝑎  ∈  On ∃ 𝑏  ∈  ( 𝐴  ↑o  ∪  ∩  { 𝑐  ∈  On  ∣  𝑡  ∈  ( 𝐴  ↑o  𝑐 ) } ) ( 𝑑  =  〈 𝑎 ,  𝑏 〉  ∧  ( ( ( 𝐴  ↑o  ∪  ∩  { 𝑐  ∈  On  ∣  𝑡  ∈  ( 𝐴  ↑o  𝑐 ) } )  ·o  𝑎 )  +o  𝑏 )  =  𝑡 ) ) | 
						
							| 48 |  | eqid | ⊢ ( 1st  ‘ ( ℩ 𝑑 ∃ 𝑎  ∈  On ∃ 𝑏  ∈  ( 𝐴  ↑o  ∪  ∩  { 𝑐  ∈  On  ∣  𝑡  ∈  ( 𝐴  ↑o  𝑐 ) } ) ( 𝑑  =  〈 𝑎 ,  𝑏 〉  ∧  ( ( ( 𝐴  ↑o  ∪  ∩  { 𝑐  ∈  On  ∣  𝑡  ∈  ( 𝐴  ↑o  𝑐 ) } )  ·o  𝑎 )  +o  𝑏 )  =  𝑡 ) ) )  =  ( 1st  ‘ ( ℩ 𝑑 ∃ 𝑎  ∈  On ∃ 𝑏  ∈  ( 𝐴  ↑o  ∪  ∩  { 𝑐  ∈  On  ∣  𝑡  ∈  ( 𝐴  ↑o  𝑐 ) } ) ( 𝑑  =  〈 𝑎 ,  𝑏 〉  ∧  ( ( ( 𝐴  ↑o  ∪  ∩  { 𝑐  ∈  On  ∣  𝑡  ∈  ( 𝐴  ↑o  𝑐 ) } )  ·o  𝑎 )  +o  𝑏 )  =  𝑡 ) ) ) | 
						
							| 49 |  | eqid | ⊢ ( 2nd  ‘ ( ℩ 𝑑 ∃ 𝑎  ∈  On ∃ 𝑏  ∈  ( 𝐴  ↑o  ∪  ∩  { 𝑐  ∈  On  ∣  𝑡  ∈  ( 𝐴  ↑o  𝑐 ) } ) ( 𝑑  =  〈 𝑎 ,  𝑏 〉  ∧  ( ( ( 𝐴  ↑o  ∪  ∩  { 𝑐  ∈  On  ∣  𝑡  ∈  ( 𝐴  ↑o  𝑐 ) } )  ·o  𝑎 )  +o  𝑏 )  =  𝑡 ) ) )  =  ( 2nd  ‘ ( ℩ 𝑑 ∃ 𝑎  ∈  On ∃ 𝑏  ∈  ( 𝐴  ↑o  ∪  ∩  { 𝑐  ∈  On  ∣  𝑡  ∈  ( 𝐴  ↑o  𝑐 ) } ) ( 𝑑  =  〈 𝑎 ,  𝑏 〉  ∧  ( ( ( 𝐴  ↑o  ∪  ∩  { 𝑐  ∈  On  ∣  𝑡  ∈  ( 𝐴  ↑o  𝑐 ) } )  ·o  𝑎 )  +o  𝑏 )  =  𝑡 ) ) ) | 
						
							| 50 | 1 34 36 4 37 38 45 46 47 48 49 | cantnflem4 | ⊢ ( ( ( 𝜑  ∧  ( 𝑡  ∈  ( 𝐴  ↑o  𝐵 )  ∧  𝑡  ⊆  ran  ( 𝐴  CNF  𝐵 ) ) )  ∧  𝑡  ≠  ∅ )  →  𝑡  ∈  ran  ( 𝐴  CNF  𝐵 ) ) | 
						
							| 51 |  | fczsupp0 | ⊢ ( ( 𝐵  ×  { ∅ } )  supp  ∅ )  =  ∅ | 
						
							| 52 | 51 | eqcomi | ⊢ ∅  =  ( ( 𝐵  ×  { ∅ } )  supp  ∅ ) | 
						
							| 53 |  | oieq2 | ⊢ ( ∅  =  ( ( 𝐵  ×  { ∅ } )  supp  ∅ )  →  OrdIso (  E  ,  ∅ )  =  OrdIso (  E  ,  ( ( 𝐵  ×  { ∅ } )  supp  ∅ ) ) ) | 
						
							| 54 | 52 53 | ax-mp | ⊢ OrdIso (  E  ,  ∅ )  =  OrdIso (  E  ,  ( ( 𝐵  ×  { ∅ } )  supp  ∅ ) ) | 
						
							| 55 |  | ne0i | ⊢ ( 𝑡  ∈  ( 𝐴  ↑o  𝐵 )  →  ( 𝐴  ↑o  𝐵 )  ≠  ∅ ) | 
						
							| 56 | 55 | ad2antrl | ⊢ ( ( 𝜑  ∧  ( 𝑡  ∈  ( 𝐴  ↑o  𝐵 )  ∧  𝑡  ⊆  ran  ( 𝐴  CNF  𝐵 ) ) )  →  ( 𝐴  ↑o  𝐵 )  ≠  ∅ ) | 
						
							| 57 |  | oveq1 | ⊢ ( 𝐴  =  ∅  →  ( 𝐴  ↑o  𝐵 )  =  ( ∅  ↑o  𝐵 ) ) | 
						
							| 58 | 57 | neeq1d | ⊢ ( 𝐴  =  ∅  →  ( ( 𝐴  ↑o  𝐵 )  ≠  ∅  ↔  ( ∅  ↑o  𝐵 )  ≠  ∅ ) ) | 
						
							| 59 | 56 58 | syl5ibcom | ⊢ ( ( 𝜑  ∧  ( 𝑡  ∈  ( 𝐴  ↑o  𝐵 )  ∧  𝑡  ⊆  ran  ( 𝐴  CNF  𝐵 ) ) )  →  ( 𝐴  =  ∅  →  ( ∅  ↑o  𝐵 )  ≠  ∅ ) ) | 
						
							| 60 | 59 | necon2d | ⊢ ( ( 𝜑  ∧  ( 𝑡  ∈  ( 𝐴  ↑o  𝐵 )  ∧  𝑡  ⊆  ran  ( 𝐴  CNF  𝐵 ) ) )  →  ( ( ∅  ↑o  𝐵 )  =  ∅  →  𝐴  ≠  ∅ ) ) | 
						
							| 61 |  | on0eln0 | ⊢ ( 𝐵  ∈  On  →  ( ∅  ∈  𝐵  ↔  𝐵  ≠  ∅ ) ) | 
						
							| 62 |  | oe0m1 | ⊢ ( 𝐵  ∈  On  →  ( ∅  ∈  𝐵  ↔  ( ∅  ↑o  𝐵 )  =  ∅ ) ) | 
						
							| 63 | 61 62 | bitr3d | ⊢ ( 𝐵  ∈  On  →  ( 𝐵  ≠  ∅  ↔  ( ∅  ↑o  𝐵 )  =  ∅ ) ) | 
						
							| 64 | 35 63 | syl | ⊢ ( ( 𝜑  ∧  ( 𝑡  ∈  ( 𝐴  ↑o  𝐵 )  ∧  𝑡  ⊆  ran  ( 𝐴  CNF  𝐵 ) ) )  →  ( 𝐵  ≠  ∅  ↔  ( ∅  ↑o  𝐵 )  =  ∅ ) ) | 
						
							| 65 |  | on0eln0 | ⊢ ( 𝐴  ∈  On  →  ( ∅  ∈  𝐴  ↔  𝐴  ≠  ∅ ) ) | 
						
							| 66 | 33 65 | syl | ⊢ ( ( 𝜑  ∧  ( 𝑡  ∈  ( 𝐴  ↑o  𝐵 )  ∧  𝑡  ⊆  ran  ( 𝐴  CNF  𝐵 ) ) )  →  ( ∅  ∈  𝐴  ↔  𝐴  ≠  ∅ ) ) | 
						
							| 67 | 60 64 66 | 3imtr4d | ⊢ ( ( 𝜑  ∧  ( 𝑡  ∈  ( 𝐴  ↑o  𝐵 )  ∧  𝑡  ⊆  ran  ( 𝐴  CNF  𝐵 ) ) )  →  ( 𝐵  ≠  ∅  →  ∅  ∈  𝐴 ) ) | 
						
							| 68 |  | ne0i | ⊢ ( 𝑦  ∈  𝐵  →  𝐵  ≠  ∅ ) | 
						
							| 69 | 67 68 | impel | ⊢ ( ( ( 𝜑  ∧  ( 𝑡  ∈  ( 𝐴  ↑o  𝐵 )  ∧  𝑡  ⊆  ran  ( 𝐴  CNF  𝐵 ) ) )  ∧  𝑦  ∈  𝐵 )  →  ∅  ∈  𝐴 ) | 
						
							| 70 |  | fconstmpt | ⊢ ( 𝐵  ×  { ∅ } )  =  ( 𝑦  ∈  𝐵  ↦  ∅ ) | 
						
							| 71 | 69 70 | fmptd | ⊢ ( ( 𝜑  ∧  ( 𝑡  ∈  ( 𝐴  ↑o  𝐵 )  ∧  𝑡  ⊆  ran  ( 𝐴  CNF  𝐵 ) ) )  →  ( 𝐵  ×  { ∅ } ) : 𝐵 ⟶ 𝐴 ) | 
						
							| 72 |  | 0ex | ⊢ ∅  ∈  V | 
						
							| 73 | 72 | a1i | ⊢ ( 𝜑  →  ∅  ∈  V ) | 
						
							| 74 | 3 73 | fczfsuppd | ⊢ ( 𝜑  →  ( 𝐵  ×  { ∅ } )  finSupp  ∅ ) | 
						
							| 75 | 74 | adantr | ⊢ ( ( 𝜑  ∧  ( 𝑡  ∈  ( 𝐴  ↑o  𝐵 )  ∧  𝑡  ⊆  ran  ( 𝐴  CNF  𝐵 ) ) )  →  ( 𝐵  ×  { ∅ } )  finSupp  ∅ ) | 
						
							| 76 | 1 2 3 | cantnfs | ⊢ ( 𝜑  →  ( ( 𝐵  ×  { ∅ } )  ∈  𝑆  ↔  ( ( 𝐵  ×  { ∅ } ) : 𝐵 ⟶ 𝐴  ∧  ( 𝐵  ×  { ∅ } )  finSupp  ∅ ) ) ) | 
						
							| 77 | 76 | adantr | ⊢ ( ( 𝜑  ∧  ( 𝑡  ∈  ( 𝐴  ↑o  𝐵 )  ∧  𝑡  ⊆  ran  ( 𝐴  CNF  𝐵 ) ) )  →  ( ( 𝐵  ×  { ∅ } )  ∈  𝑆  ↔  ( ( 𝐵  ×  { ∅ } ) : 𝐵 ⟶ 𝐴  ∧  ( 𝐵  ×  { ∅ } )  finSupp  ∅ ) ) ) | 
						
							| 78 | 71 75 77 | mpbir2and | ⊢ ( ( 𝜑  ∧  ( 𝑡  ∈  ( 𝐴  ↑o  𝐵 )  ∧  𝑡  ⊆  ran  ( 𝐴  CNF  𝐵 ) ) )  →  ( 𝐵  ×  { ∅ } )  ∈  𝑆 ) | 
						
							| 79 |  | eqid | ⊢ seqω ( ( 𝑘  ∈  V ,  𝑧  ∈  V  ↦  ( ( ( 𝐴  ↑o  ( OrdIso (  E  ,  ∅ ) ‘ 𝑘 ) )  ·o  ( ( 𝐵  ×  { ∅ } ) ‘ ( OrdIso (  E  ,  ∅ ) ‘ 𝑘 ) ) )  +o  𝑧 ) ) ,  ∅ )  =  seqω ( ( 𝑘  ∈  V ,  𝑧  ∈  V  ↦  ( ( ( 𝐴  ↑o  ( OrdIso (  E  ,  ∅ ) ‘ 𝑘 ) )  ·o  ( ( 𝐵  ×  { ∅ } ) ‘ ( OrdIso (  E  ,  ∅ ) ‘ 𝑘 ) ) )  +o  𝑧 ) ) ,  ∅ ) | 
						
							| 80 | 1 33 35 54 78 79 | cantnfval | ⊢ ( ( 𝜑  ∧  ( 𝑡  ∈  ( 𝐴  ↑o  𝐵 )  ∧  𝑡  ⊆  ran  ( 𝐴  CNF  𝐵 ) ) )  →  ( ( 𝐴  CNF  𝐵 ) ‘ ( 𝐵  ×  { ∅ } ) )  =  ( seqω ( ( 𝑘  ∈  V ,  𝑧  ∈  V  ↦  ( ( ( 𝐴  ↑o  ( OrdIso (  E  ,  ∅ ) ‘ 𝑘 ) )  ·o  ( ( 𝐵  ×  { ∅ } ) ‘ ( OrdIso (  E  ,  ∅ ) ‘ 𝑘 ) ) )  +o  𝑧 ) ) ,  ∅ ) ‘ dom  OrdIso (  E  ,  ∅ ) ) ) | 
						
							| 81 |  | we0 | ⊢  E   We  ∅ | 
						
							| 82 |  | eqid | ⊢ OrdIso (  E  ,  ∅ )  =  OrdIso (  E  ,  ∅ ) | 
						
							| 83 | 82 | oien | ⊢ ( ( ∅  ∈  V  ∧   E   We  ∅ )  →  dom  OrdIso (  E  ,  ∅ )  ≈  ∅ ) | 
						
							| 84 | 72 81 83 | mp2an | ⊢ dom  OrdIso (  E  ,  ∅ )  ≈  ∅ | 
						
							| 85 |  | en0 | ⊢ ( dom  OrdIso (  E  ,  ∅ )  ≈  ∅  ↔  dom  OrdIso (  E  ,  ∅ )  =  ∅ ) | 
						
							| 86 | 84 85 | mpbi | ⊢ dom  OrdIso (  E  ,  ∅ )  =  ∅ | 
						
							| 87 | 86 | fveq2i | ⊢ ( seqω ( ( 𝑘  ∈  V ,  𝑧  ∈  V  ↦  ( ( ( 𝐴  ↑o  ( OrdIso (  E  ,  ∅ ) ‘ 𝑘 ) )  ·o  ( ( 𝐵  ×  { ∅ } ) ‘ ( OrdIso (  E  ,  ∅ ) ‘ 𝑘 ) ) )  +o  𝑧 ) ) ,  ∅ ) ‘ dom  OrdIso (  E  ,  ∅ ) )  =  ( seqω ( ( 𝑘  ∈  V ,  𝑧  ∈  V  ↦  ( ( ( 𝐴  ↑o  ( OrdIso (  E  ,  ∅ ) ‘ 𝑘 ) )  ·o  ( ( 𝐵  ×  { ∅ } ) ‘ ( OrdIso (  E  ,  ∅ ) ‘ 𝑘 ) ) )  +o  𝑧 ) ) ,  ∅ ) ‘ ∅ ) | 
						
							| 88 | 79 | seqom0g | ⊢ ( ∅  ∈  V  →  ( seqω ( ( 𝑘  ∈  V ,  𝑧  ∈  V  ↦  ( ( ( 𝐴  ↑o  ( OrdIso (  E  ,  ∅ ) ‘ 𝑘 ) )  ·o  ( ( 𝐵  ×  { ∅ } ) ‘ ( OrdIso (  E  ,  ∅ ) ‘ 𝑘 ) ) )  +o  𝑧 ) ) ,  ∅ ) ‘ ∅ )  =  ∅ ) | 
						
							| 89 | 72 88 | ax-mp | ⊢ ( seqω ( ( 𝑘  ∈  V ,  𝑧  ∈  V  ↦  ( ( ( 𝐴  ↑o  ( OrdIso (  E  ,  ∅ ) ‘ 𝑘 ) )  ·o  ( ( 𝐵  ×  { ∅ } ) ‘ ( OrdIso (  E  ,  ∅ ) ‘ 𝑘 ) ) )  +o  𝑧 ) ) ,  ∅ ) ‘ ∅ )  =  ∅ | 
						
							| 90 | 87 89 | eqtri | ⊢ ( seqω ( ( 𝑘  ∈  V ,  𝑧  ∈  V  ↦  ( ( ( 𝐴  ↑o  ( OrdIso (  E  ,  ∅ ) ‘ 𝑘 ) )  ·o  ( ( 𝐵  ×  { ∅ } ) ‘ ( OrdIso (  E  ,  ∅ ) ‘ 𝑘 ) ) )  +o  𝑧 ) ) ,  ∅ ) ‘ dom  OrdIso (  E  ,  ∅ ) )  =  ∅ | 
						
							| 91 | 80 90 | eqtrdi | ⊢ ( ( 𝜑  ∧  ( 𝑡  ∈  ( 𝐴  ↑o  𝐵 )  ∧  𝑡  ⊆  ran  ( 𝐴  CNF  𝐵 ) ) )  →  ( ( 𝐴  CNF  𝐵 ) ‘ ( 𝐵  ×  { ∅ } ) )  =  ∅ ) | 
						
							| 92 | 14 | adantr | ⊢ ( ( 𝜑  ∧  ( 𝑡  ∈  ( 𝐴  ↑o  𝐵 )  ∧  𝑡  ⊆  ran  ( 𝐴  CNF  𝐵 ) ) )  →  ( 𝐴  CNF  𝐵 ) : 𝑆 ⟶ ( 𝐴  ↑o  𝐵 ) ) | 
						
							| 93 | 92 | ffnd | ⊢ ( ( 𝜑  ∧  ( 𝑡  ∈  ( 𝐴  ↑o  𝐵 )  ∧  𝑡  ⊆  ran  ( 𝐴  CNF  𝐵 ) ) )  →  ( 𝐴  CNF  𝐵 )  Fn  𝑆 ) | 
						
							| 94 |  | fnfvelrn | ⊢ ( ( ( 𝐴  CNF  𝐵 )  Fn  𝑆  ∧  ( 𝐵  ×  { ∅ } )  ∈  𝑆 )  →  ( ( 𝐴  CNF  𝐵 ) ‘ ( 𝐵  ×  { ∅ } ) )  ∈  ran  ( 𝐴  CNF  𝐵 ) ) | 
						
							| 95 | 93 78 94 | syl2anc | ⊢ ( ( 𝜑  ∧  ( 𝑡  ∈  ( 𝐴  ↑o  𝐵 )  ∧  𝑡  ⊆  ran  ( 𝐴  CNF  𝐵 ) ) )  →  ( ( 𝐴  CNF  𝐵 ) ‘ ( 𝐵  ×  { ∅ } ) )  ∈  ran  ( 𝐴  CNF  𝐵 ) ) | 
						
							| 96 | 91 95 | eqeltrrd | ⊢ ( ( 𝜑  ∧  ( 𝑡  ∈  ( 𝐴  ↑o  𝐵 )  ∧  𝑡  ⊆  ran  ( 𝐴  CNF  𝐵 ) ) )  →  ∅  ∈  ran  ( 𝐴  CNF  𝐵 ) ) | 
						
							| 97 | 32 50 96 | pm2.61ne | ⊢ ( ( 𝜑  ∧  ( 𝑡  ∈  ( 𝐴  ↑o  𝐵 )  ∧  𝑡  ⊆  ran  ( 𝐴  CNF  𝐵 ) ) )  →  𝑡  ∈  ran  ( 𝐴  CNF  𝐵 ) ) | 
						
							| 98 | 97 | expr | ⊢ ( ( 𝜑  ∧  𝑡  ∈  ( 𝐴  ↑o  𝐵 ) )  →  ( 𝑡  ⊆  ran  ( 𝐴  CNF  𝐵 )  →  𝑡  ∈  ran  ( 𝐴  CNF  𝐵 ) ) ) | 
						
							| 99 | 31 98 | sylbid | ⊢ ( ( 𝜑  ∧  𝑡  ∈  ( 𝐴  ↑o  𝐵 ) )  →  ( ∀ 𝑦  ∈  𝑡 ( 𝑦  ∈  ( 𝐴  ↑o  𝐵 )  →  𝑦  ∈  ran  ( 𝐴  CNF  𝐵 ) )  →  𝑡  ∈  ran  ( 𝐴  CNF  𝐵 ) ) ) | 
						
							| 100 | 99 | ex | ⊢ ( 𝜑  →  ( 𝑡  ∈  ( 𝐴  ↑o  𝐵 )  →  ( ∀ 𝑦  ∈  𝑡 ( 𝑦  ∈  ( 𝐴  ↑o  𝐵 )  →  𝑦  ∈  ran  ( 𝐴  CNF  𝐵 ) )  →  𝑡  ∈  ran  ( 𝐴  CNF  𝐵 ) ) ) ) | 
						
							| 101 | 100 | com23 | ⊢ ( 𝜑  →  ( ∀ 𝑦  ∈  𝑡 ( 𝑦  ∈  ( 𝐴  ↑o  𝐵 )  →  𝑦  ∈  ran  ( 𝐴  CNF  𝐵 ) )  →  ( 𝑡  ∈  ( 𝐴  ↑o  𝐵 )  →  𝑡  ∈  ran  ( 𝐴  CNF  𝐵 ) ) ) ) | 
						
							| 102 | 101 | a2i | ⊢ ( ( 𝜑  →  ∀ 𝑦  ∈  𝑡 ( 𝑦  ∈  ( 𝐴  ↑o  𝐵 )  →  𝑦  ∈  ran  ( 𝐴  CNF  𝐵 ) ) )  →  ( 𝜑  →  ( 𝑡  ∈  ( 𝐴  ↑o  𝐵 )  →  𝑡  ∈  ran  ( 𝐴  CNF  𝐵 ) ) ) ) | 
						
							| 103 | 102 | a1i | ⊢ ( 𝑡  ∈  On  →  ( ( 𝜑  →  ∀ 𝑦  ∈  𝑡 ( 𝑦  ∈  ( 𝐴  ↑o  𝐵 )  →  𝑦  ∈  ran  ( 𝐴  CNF  𝐵 ) ) )  →  ( 𝜑  →  ( 𝑡  ∈  ( 𝐴  ↑o  𝐵 )  →  𝑡  ∈  ran  ( 𝐴  CNF  𝐵 ) ) ) ) ) | 
						
							| 104 | 23 103 | biimtrid | ⊢ ( 𝑡  ∈  On  →  ( ∀ 𝑦  ∈  𝑡 ( 𝜑  →  ( 𝑦  ∈  ( 𝐴  ↑o  𝐵 )  →  𝑦  ∈  ran  ( 𝐴  CNF  𝐵 ) ) )  →  ( 𝜑  →  ( 𝑡  ∈  ( 𝐴  ↑o  𝐵 )  →  𝑡  ∈  ran  ( 𝐴  CNF  𝐵 ) ) ) ) ) | 
						
							| 105 | 22 104 | tfis2 | ⊢ ( 𝑡  ∈  On  →  ( 𝜑  →  ( 𝑡  ∈  ( 𝐴  ↑o  𝐵 )  →  𝑡  ∈  ran  ( 𝐴  CNF  𝐵 ) ) ) ) | 
						
							| 106 | 105 | com3l | ⊢ ( 𝜑  →  ( 𝑡  ∈  ( 𝐴  ↑o  𝐵 )  →  ( 𝑡  ∈  On  →  𝑡  ∈  ran  ( 𝐴  CNF  𝐵 ) ) ) ) | 
						
							| 107 | 18 106 | mpdd | ⊢ ( 𝜑  →  ( 𝑡  ∈  ( 𝐴  ↑o  𝐵 )  →  𝑡  ∈  ran  ( 𝐴  CNF  𝐵 ) ) ) | 
						
							| 108 | 107 | ssrdv | ⊢ ( 𝜑  →  ( 𝐴  ↑o  𝐵 )  ⊆  ran  ( 𝐴  CNF  𝐵 ) ) | 
						
							| 109 | 15 108 | eqssd | ⊢ ( 𝜑  →  ran  ( 𝐴  CNF  𝐵 )  =  ( 𝐴  ↑o  𝐵 ) ) | 
						
							| 110 |  | dffo2 | ⊢ ( ( 𝐴  CNF  𝐵 ) : 𝑆 –onto→ ( 𝐴  ↑o  𝐵 )  ↔  ( ( 𝐴  CNF  𝐵 ) : 𝑆 ⟶ ( 𝐴  ↑o  𝐵 )  ∧  ran  ( 𝐴  CNF  𝐵 )  =  ( 𝐴  ↑o  𝐵 ) ) ) | 
						
							| 111 | 14 109 110 | sylanbrc | ⊢ ( 𝜑  →  ( 𝐴  CNF  𝐵 ) : 𝑆 –onto→ ( 𝐴  ↑o  𝐵 ) ) | 
						
							| 112 | 2 | adantr | ⊢ ( ( 𝜑  ∧  ( ( 𝑓  ∈  𝑆  ∧  𝑔  ∈  𝑆 )  ∧  𝑓 𝑇 𝑔 ) )  →  𝐴  ∈  On ) | 
						
							| 113 | 3 | adantr | ⊢ ( ( 𝜑  ∧  ( ( 𝑓  ∈  𝑆  ∧  𝑔  ∈  𝑆 )  ∧  𝑓 𝑇 𝑔 ) )  →  𝐵  ∈  On ) | 
						
							| 114 |  | fveq2 | ⊢ ( 𝑧  =  𝑡  →  ( 𝑥 ‘ 𝑧 )  =  ( 𝑥 ‘ 𝑡 ) ) | 
						
							| 115 |  | fveq2 | ⊢ ( 𝑧  =  𝑡  →  ( 𝑦 ‘ 𝑧 )  =  ( 𝑦 ‘ 𝑡 ) ) | 
						
							| 116 | 114 115 | eleq12d | ⊢ ( 𝑧  =  𝑡  →  ( ( 𝑥 ‘ 𝑧 )  ∈  ( 𝑦 ‘ 𝑧 )  ↔  ( 𝑥 ‘ 𝑡 )  ∈  ( 𝑦 ‘ 𝑡 ) ) ) | 
						
							| 117 |  | eleq1w | ⊢ ( 𝑧  =  𝑡  →  ( 𝑧  ∈  𝑤  ↔  𝑡  ∈  𝑤 ) ) | 
						
							| 118 | 117 | imbi1d | ⊢ ( 𝑧  =  𝑡  →  ( ( 𝑧  ∈  𝑤  →  ( 𝑥 ‘ 𝑤 )  =  ( 𝑦 ‘ 𝑤 ) )  ↔  ( 𝑡  ∈  𝑤  →  ( 𝑥 ‘ 𝑤 )  =  ( 𝑦 ‘ 𝑤 ) ) ) ) | 
						
							| 119 | 118 | ralbidv | ⊢ ( 𝑧  =  𝑡  →  ( ∀ 𝑤  ∈  𝐵 ( 𝑧  ∈  𝑤  →  ( 𝑥 ‘ 𝑤 )  =  ( 𝑦 ‘ 𝑤 ) )  ↔  ∀ 𝑤  ∈  𝐵 ( 𝑡  ∈  𝑤  →  ( 𝑥 ‘ 𝑤 )  =  ( 𝑦 ‘ 𝑤 ) ) ) ) | 
						
							| 120 | 116 119 | anbi12d | ⊢ ( 𝑧  =  𝑡  →  ( ( ( 𝑥 ‘ 𝑧 )  ∈  ( 𝑦 ‘ 𝑧 )  ∧  ∀ 𝑤  ∈  𝐵 ( 𝑧  ∈  𝑤  →  ( 𝑥 ‘ 𝑤 )  =  ( 𝑦 ‘ 𝑤 ) ) )  ↔  ( ( 𝑥 ‘ 𝑡 )  ∈  ( 𝑦 ‘ 𝑡 )  ∧  ∀ 𝑤  ∈  𝐵 ( 𝑡  ∈  𝑤  →  ( 𝑥 ‘ 𝑤 )  =  ( 𝑦 ‘ 𝑤 ) ) ) ) ) | 
						
							| 121 | 120 | cbvrexvw | ⊢ ( ∃ 𝑧  ∈  𝐵 ( ( 𝑥 ‘ 𝑧 )  ∈  ( 𝑦 ‘ 𝑧 )  ∧  ∀ 𝑤  ∈  𝐵 ( 𝑧  ∈  𝑤  →  ( 𝑥 ‘ 𝑤 )  =  ( 𝑦 ‘ 𝑤 ) ) )  ↔  ∃ 𝑡  ∈  𝐵 ( ( 𝑥 ‘ 𝑡 )  ∈  ( 𝑦 ‘ 𝑡 )  ∧  ∀ 𝑤  ∈  𝐵 ( 𝑡  ∈  𝑤  →  ( 𝑥 ‘ 𝑤 )  =  ( 𝑦 ‘ 𝑤 ) ) ) ) | 
						
							| 122 |  | fveq1 | ⊢ ( 𝑥  =  𝑢  →  ( 𝑥 ‘ 𝑡 )  =  ( 𝑢 ‘ 𝑡 ) ) | 
						
							| 123 |  | fveq1 | ⊢ ( 𝑦  =  𝑣  →  ( 𝑦 ‘ 𝑡 )  =  ( 𝑣 ‘ 𝑡 ) ) | 
						
							| 124 |  | eleq12 | ⊢ ( ( ( 𝑥 ‘ 𝑡 )  =  ( 𝑢 ‘ 𝑡 )  ∧  ( 𝑦 ‘ 𝑡 )  =  ( 𝑣 ‘ 𝑡 ) )  →  ( ( 𝑥 ‘ 𝑡 )  ∈  ( 𝑦 ‘ 𝑡 )  ↔  ( 𝑢 ‘ 𝑡 )  ∈  ( 𝑣 ‘ 𝑡 ) ) ) | 
						
							| 125 | 122 123 124 | syl2an | ⊢ ( ( 𝑥  =  𝑢  ∧  𝑦  =  𝑣 )  →  ( ( 𝑥 ‘ 𝑡 )  ∈  ( 𝑦 ‘ 𝑡 )  ↔  ( 𝑢 ‘ 𝑡 )  ∈  ( 𝑣 ‘ 𝑡 ) ) ) | 
						
							| 126 |  | fveq1 | ⊢ ( 𝑥  =  𝑢  →  ( 𝑥 ‘ 𝑤 )  =  ( 𝑢 ‘ 𝑤 ) ) | 
						
							| 127 |  | fveq1 | ⊢ ( 𝑦  =  𝑣  →  ( 𝑦 ‘ 𝑤 )  =  ( 𝑣 ‘ 𝑤 ) ) | 
						
							| 128 | 126 127 | eqeqan12d | ⊢ ( ( 𝑥  =  𝑢  ∧  𝑦  =  𝑣 )  →  ( ( 𝑥 ‘ 𝑤 )  =  ( 𝑦 ‘ 𝑤 )  ↔  ( 𝑢 ‘ 𝑤 )  =  ( 𝑣 ‘ 𝑤 ) ) ) | 
						
							| 129 | 128 | imbi2d | ⊢ ( ( 𝑥  =  𝑢  ∧  𝑦  =  𝑣 )  →  ( ( 𝑡  ∈  𝑤  →  ( 𝑥 ‘ 𝑤 )  =  ( 𝑦 ‘ 𝑤 ) )  ↔  ( 𝑡  ∈  𝑤  →  ( 𝑢 ‘ 𝑤 )  =  ( 𝑣 ‘ 𝑤 ) ) ) ) | 
						
							| 130 | 129 | ralbidv | ⊢ ( ( 𝑥  =  𝑢  ∧  𝑦  =  𝑣 )  →  ( ∀ 𝑤  ∈  𝐵 ( 𝑡  ∈  𝑤  →  ( 𝑥 ‘ 𝑤 )  =  ( 𝑦 ‘ 𝑤 ) )  ↔  ∀ 𝑤  ∈  𝐵 ( 𝑡  ∈  𝑤  →  ( 𝑢 ‘ 𝑤 )  =  ( 𝑣 ‘ 𝑤 ) ) ) ) | 
						
							| 131 | 125 130 | anbi12d | ⊢ ( ( 𝑥  =  𝑢  ∧  𝑦  =  𝑣 )  →  ( ( ( 𝑥 ‘ 𝑡 )  ∈  ( 𝑦 ‘ 𝑡 )  ∧  ∀ 𝑤  ∈  𝐵 ( 𝑡  ∈  𝑤  →  ( 𝑥 ‘ 𝑤 )  =  ( 𝑦 ‘ 𝑤 ) ) )  ↔  ( ( 𝑢 ‘ 𝑡 )  ∈  ( 𝑣 ‘ 𝑡 )  ∧  ∀ 𝑤  ∈  𝐵 ( 𝑡  ∈  𝑤  →  ( 𝑢 ‘ 𝑤 )  =  ( 𝑣 ‘ 𝑤 ) ) ) ) ) | 
						
							| 132 | 131 | rexbidv | ⊢ ( ( 𝑥  =  𝑢  ∧  𝑦  =  𝑣 )  →  ( ∃ 𝑡  ∈  𝐵 ( ( 𝑥 ‘ 𝑡 )  ∈  ( 𝑦 ‘ 𝑡 )  ∧  ∀ 𝑤  ∈  𝐵 ( 𝑡  ∈  𝑤  →  ( 𝑥 ‘ 𝑤 )  =  ( 𝑦 ‘ 𝑤 ) ) )  ↔  ∃ 𝑡  ∈  𝐵 ( ( 𝑢 ‘ 𝑡 )  ∈  ( 𝑣 ‘ 𝑡 )  ∧  ∀ 𝑤  ∈  𝐵 ( 𝑡  ∈  𝑤  →  ( 𝑢 ‘ 𝑤 )  =  ( 𝑣 ‘ 𝑤 ) ) ) ) ) | 
						
							| 133 | 121 132 | bitrid | ⊢ ( ( 𝑥  =  𝑢  ∧  𝑦  =  𝑣 )  →  ( ∃ 𝑧  ∈  𝐵 ( ( 𝑥 ‘ 𝑧 )  ∈  ( 𝑦 ‘ 𝑧 )  ∧  ∀ 𝑤  ∈  𝐵 ( 𝑧  ∈  𝑤  →  ( 𝑥 ‘ 𝑤 )  =  ( 𝑦 ‘ 𝑤 ) ) )  ↔  ∃ 𝑡  ∈  𝐵 ( ( 𝑢 ‘ 𝑡 )  ∈  ( 𝑣 ‘ 𝑡 )  ∧  ∀ 𝑤  ∈  𝐵 ( 𝑡  ∈  𝑤  →  ( 𝑢 ‘ 𝑤 )  =  ( 𝑣 ‘ 𝑤 ) ) ) ) ) | 
						
							| 134 | 133 | cbvopabv | ⊢ { 〈 𝑥 ,  𝑦 〉  ∣  ∃ 𝑧  ∈  𝐵 ( ( 𝑥 ‘ 𝑧 )  ∈  ( 𝑦 ‘ 𝑧 )  ∧  ∀ 𝑤  ∈  𝐵 ( 𝑧  ∈  𝑤  →  ( 𝑥 ‘ 𝑤 )  =  ( 𝑦 ‘ 𝑤 ) ) ) }  =  { 〈 𝑢 ,  𝑣 〉  ∣  ∃ 𝑡  ∈  𝐵 ( ( 𝑢 ‘ 𝑡 )  ∈  ( 𝑣 ‘ 𝑡 )  ∧  ∀ 𝑤  ∈  𝐵 ( 𝑡  ∈  𝑤  →  ( 𝑢 ‘ 𝑤 )  =  ( 𝑣 ‘ 𝑤 ) ) ) } | 
						
							| 135 | 4 134 | eqtri | ⊢ 𝑇  =  { 〈 𝑢 ,  𝑣 〉  ∣  ∃ 𝑡  ∈  𝐵 ( ( 𝑢 ‘ 𝑡 )  ∈  ( 𝑣 ‘ 𝑡 )  ∧  ∀ 𝑤  ∈  𝐵 ( 𝑡  ∈  𝑤  →  ( 𝑢 ‘ 𝑤 )  =  ( 𝑣 ‘ 𝑤 ) ) ) } | 
						
							| 136 |  | simprll | ⊢ ( ( 𝜑  ∧  ( ( 𝑓  ∈  𝑆  ∧  𝑔  ∈  𝑆 )  ∧  𝑓 𝑇 𝑔 ) )  →  𝑓  ∈  𝑆 ) | 
						
							| 137 |  | simprlr | ⊢ ( ( 𝜑  ∧  ( ( 𝑓  ∈  𝑆  ∧  𝑔  ∈  𝑆 )  ∧  𝑓 𝑇 𝑔 ) )  →  𝑔  ∈  𝑆 ) | 
						
							| 138 |  | simprr | ⊢ ( ( 𝜑  ∧  ( ( 𝑓  ∈  𝑆  ∧  𝑔  ∈  𝑆 )  ∧  𝑓 𝑇 𝑔 ) )  →  𝑓 𝑇 𝑔 ) | 
						
							| 139 |  | eqid | ⊢ ∪  { 𝑐  ∈  𝐵  ∣  ( 𝑓 ‘ 𝑐 )  ∈  ( 𝑔 ‘ 𝑐 ) }  =  ∪  { 𝑐  ∈  𝐵  ∣  ( 𝑓 ‘ 𝑐 )  ∈  ( 𝑔 ‘ 𝑐 ) } | 
						
							| 140 |  | eqid | ⊢ OrdIso (  E  ,  ( 𝑔  supp  ∅ ) )  =  OrdIso (  E  ,  ( 𝑔  supp  ∅ ) ) | 
						
							| 141 |  | eqid | ⊢ seqω ( ( 𝑘  ∈  V ,  𝑡  ∈  V  ↦  ( ( ( 𝐴  ↑o  ( OrdIso (  E  ,  ( 𝑔  supp  ∅ ) ) ‘ 𝑘 ) )  ·o  ( 𝑔 ‘ ( OrdIso (  E  ,  ( 𝑔  supp  ∅ ) ) ‘ 𝑘 ) ) )  +o  𝑡 ) ) ,  ∅ )  =  seqω ( ( 𝑘  ∈  V ,  𝑡  ∈  V  ↦  ( ( ( 𝐴  ↑o  ( OrdIso (  E  ,  ( 𝑔  supp  ∅ ) ) ‘ 𝑘 ) )  ·o  ( 𝑔 ‘ ( OrdIso (  E  ,  ( 𝑔  supp  ∅ ) ) ‘ 𝑘 ) ) )  +o  𝑡 ) ) ,  ∅ ) | 
						
							| 142 | 1 112 113 135 136 137 138 139 140 141 | cantnflem1 | ⊢ ( ( 𝜑  ∧  ( ( 𝑓  ∈  𝑆  ∧  𝑔  ∈  𝑆 )  ∧  𝑓 𝑇 𝑔 ) )  →  ( ( 𝐴  CNF  𝐵 ) ‘ 𝑓 )  ∈  ( ( 𝐴  CNF  𝐵 ) ‘ 𝑔 ) ) | 
						
							| 143 |  | fvex | ⊢ ( ( 𝐴  CNF  𝐵 ) ‘ 𝑔 )  ∈  V | 
						
							| 144 | 143 | epeli | ⊢ ( ( ( 𝐴  CNF  𝐵 ) ‘ 𝑓 )  E  ( ( 𝐴  CNF  𝐵 ) ‘ 𝑔 )  ↔  ( ( 𝐴  CNF  𝐵 ) ‘ 𝑓 )  ∈  ( ( 𝐴  CNF  𝐵 ) ‘ 𝑔 ) ) | 
						
							| 145 | 142 144 | sylibr | ⊢ ( ( 𝜑  ∧  ( ( 𝑓  ∈  𝑆  ∧  𝑔  ∈  𝑆 )  ∧  𝑓 𝑇 𝑔 ) )  →  ( ( 𝐴  CNF  𝐵 ) ‘ 𝑓 )  E  ( ( 𝐴  CNF  𝐵 ) ‘ 𝑔 ) ) | 
						
							| 146 | 145 | expr | ⊢ ( ( 𝜑  ∧  ( 𝑓  ∈  𝑆  ∧  𝑔  ∈  𝑆 ) )  →  ( 𝑓 𝑇 𝑔  →  ( ( 𝐴  CNF  𝐵 ) ‘ 𝑓 )  E  ( ( 𝐴  CNF  𝐵 ) ‘ 𝑔 ) ) ) | 
						
							| 147 | 146 | ralrimivva | ⊢ ( 𝜑  →  ∀ 𝑓  ∈  𝑆 ∀ 𝑔  ∈  𝑆 ( 𝑓 𝑇 𝑔  →  ( ( 𝐴  CNF  𝐵 ) ‘ 𝑓 )  E  ( ( 𝐴  CNF  𝐵 ) ‘ 𝑔 ) ) ) | 
						
							| 148 |  | soisoi | ⊢ ( ( ( 𝑇  Or  𝑆  ∧   E   Po  ( 𝐴  ↑o  𝐵 ) )  ∧  ( ( 𝐴  CNF  𝐵 ) : 𝑆 –onto→ ( 𝐴  ↑o  𝐵 )  ∧  ∀ 𝑓  ∈  𝑆 ∀ 𝑔  ∈  𝑆 ( 𝑓 𝑇 𝑔  →  ( ( 𝐴  CNF  𝐵 ) ‘ 𝑓 )  E  ( ( 𝐴  CNF  𝐵 ) ‘ 𝑔 ) ) ) )  →  ( 𝐴  CNF  𝐵 )  Isom  𝑇 ,   E  ( 𝑆 ,  ( 𝐴  ↑o  𝐵 ) ) ) | 
						
							| 149 | 5 13 111 147 148 | syl22anc | ⊢ ( 𝜑  →  ( 𝐴  CNF  𝐵 )  Isom  𝑇 ,   E  ( 𝑆 ,  ( 𝐴  ↑o  𝐵 ) ) ) |