| Step | Hyp | Ref | Expression | 
						
							| 1 |  | cantnfs.s | ⊢ 𝑆  =  dom  ( 𝐴  CNF  𝐵 ) | 
						
							| 2 |  | cantnfs.a | ⊢ ( 𝜑  →  𝐴  ∈  On ) | 
						
							| 3 |  | cantnfs.b | ⊢ ( 𝜑  →  𝐵  ∈  On ) | 
						
							| 4 |  | cantnf0.a | ⊢ ( 𝜑  →  ∅  ∈  𝐴 ) | 
						
							| 5 |  | eqid | ⊢ OrdIso (  E  ,  ( ( 𝐵  ×  { ∅ } )  supp  ∅ ) )  =  OrdIso (  E  ,  ( ( 𝐵  ×  { ∅ } )  supp  ∅ ) ) | 
						
							| 6 |  | fconst6g | ⊢ ( ∅  ∈  𝐴  →  ( 𝐵  ×  { ∅ } ) : 𝐵 ⟶ 𝐴 ) | 
						
							| 7 | 4 6 | syl | ⊢ ( 𝜑  →  ( 𝐵  ×  { ∅ } ) : 𝐵 ⟶ 𝐴 ) | 
						
							| 8 | 3 4 | fczfsuppd | ⊢ ( 𝜑  →  ( 𝐵  ×  { ∅ } )  finSupp  ∅ ) | 
						
							| 9 | 1 2 3 | cantnfs | ⊢ ( 𝜑  →  ( ( 𝐵  ×  { ∅ } )  ∈  𝑆  ↔  ( ( 𝐵  ×  { ∅ } ) : 𝐵 ⟶ 𝐴  ∧  ( 𝐵  ×  { ∅ } )  finSupp  ∅ ) ) ) | 
						
							| 10 | 7 8 9 | mpbir2and | ⊢ ( 𝜑  →  ( 𝐵  ×  { ∅ } )  ∈  𝑆 ) | 
						
							| 11 |  | eqid | ⊢ seqω ( ( 𝑘  ∈  V ,  𝑧  ∈  V  ↦  ( ( ( 𝐴  ↑o  ( OrdIso (  E  ,  ( ( 𝐵  ×  { ∅ } )  supp  ∅ ) ) ‘ 𝑘 ) )  ·o  ( ( 𝐵  ×  { ∅ } ) ‘ ( OrdIso (  E  ,  ( ( 𝐵  ×  { ∅ } )  supp  ∅ ) ) ‘ 𝑘 ) ) )  +o  𝑧 ) ) ,  ∅ )  =  seqω ( ( 𝑘  ∈  V ,  𝑧  ∈  V  ↦  ( ( ( 𝐴  ↑o  ( OrdIso (  E  ,  ( ( 𝐵  ×  { ∅ } )  supp  ∅ ) ) ‘ 𝑘 ) )  ·o  ( ( 𝐵  ×  { ∅ } ) ‘ ( OrdIso (  E  ,  ( ( 𝐵  ×  { ∅ } )  supp  ∅ ) ) ‘ 𝑘 ) ) )  +o  𝑧 ) ) ,  ∅ ) | 
						
							| 12 | 1 2 3 5 10 11 | cantnfval | ⊢ ( 𝜑  →  ( ( 𝐴  CNF  𝐵 ) ‘ ( 𝐵  ×  { ∅ } ) )  =  ( seqω ( ( 𝑘  ∈  V ,  𝑧  ∈  V  ↦  ( ( ( 𝐴  ↑o  ( OrdIso (  E  ,  ( ( 𝐵  ×  { ∅ } )  supp  ∅ ) ) ‘ 𝑘 ) )  ·o  ( ( 𝐵  ×  { ∅ } ) ‘ ( OrdIso (  E  ,  ( ( 𝐵  ×  { ∅ } )  supp  ∅ ) ) ‘ 𝑘 ) ) )  +o  𝑧 ) ) ,  ∅ ) ‘ dom  OrdIso (  E  ,  ( ( 𝐵  ×  { ∅ } )  supp  ∅ ) ) ) ) | 
						
							| 13 |  | eqidd | ⊢ ( 𝜑  →  ( 𝐵  ×  { ∅ } )  =  ( 𝐵  ×  { ∅ } ) ) | 
						
							| 14 |  | 0ex | ⊢ ∅  ∈  V | 
						
							| 15 |  | fnconstg | ⊢ ( ∅  ∈  V  →  ( 𝐵  ×  { ∅ } )  Fn  𝐵 ) | 
						
							| 16 | 14 15 | mp1i | ⊢ ( 𝜑  →  ( 𝐵  ×  { ∅ } )  Fn  𝐵 ) | 
						
							| 17 | 14 | a1i | ⊢ ( 𝜑  →  ∅  ∈  V ) | 
						
							| 18 |  | fnsuppeq0 | ⊢ ( ( ( 𝐵  ×  { ∅ } )  Fn  𝐵  ∧  𝐵  ∈  On  ∧  ∅  ∈  V )  →  ( ( ( 𝐵  ×  { ∅ } )  supp  ∅ )  =  ∅  ↔  ( 𝐵  ×  { ∅ } )  =  ( 𝐵  ×  { ∅ } ) ) ) | 
						
							| 19 | 16 3 17 18 | syl3anc | ⊢ ( 𝜑  →  ( ( ( 𝐵  ×  { ∅ } )  supp  ∅ )  =  ∅  ↔  ( 𝐵  ×  { ∅ } )  =  ( 𝐵  ×  { ∅ } ) ) ) | 
						
							| 20 | 13 19 | mpbird | ⊢ ( 𝜑  →  ( ( 𝐵  ×  { ∅ } )  supp  ∅ )  =  ∅ ) | 
						
							| 21 |  | oieq2 | ⊢ ( ( ( 𝐵  ×  { ∅ } )  supp  ∅ )  =  ∅  →  OrdIso (  E  ,  ( ( 𝐵  ×  { ∅ } )  supp  ∅ ) )  =  OrdIso (  E  ,  ∅ ) ) | 
						
							| 22 | 20 21 | syl | ⊢ ( 𝜑  →  OrdIso (  E  ,  ( ( 𝐵  ×  { ∅ } )  supp  ∅ ) )  =  OrdIso (  E  ,  ∅ ) ) | 
						
							| 23 | 22 | dmeqd | ⊢ ( 𝜑  →  dom  OrdIso (  E  ,  ( ( 𝐵  ×  { ∅ } )  supp  ∅ ) )  =  dom  OrdIso (  E  ,  ∅ ) ) | 
						
							| 24 |  | we0 | ⊢  E   We  ∅ | 
						
							| 25 |  | eqid | ⊢ OrdIso (  E  ,  ∅ )  =  OrdIso (  E  ,  ∅ ) | 
						
							| 26 | 25 | oien | ⊢ ( ( ∅  ∈  V  ∧   E   We  ∅ )  →  dom  OrdIso (  E  ,  ∅ )  ≈  ∅ ) | 
						
							| 27 | 14 24 26 | mp2an | ⊢ dom  OrdIso (  E  ,  ∅ )  ≈  ∅ | 
						
							| 28 |  | en0 | ⊢ ( dom  OrdIso (  E  ,  ∅ )  ≈  ∅  ↔  dom  OrdIso (  E  ,  ∅ )  =  ∅ ) | 
						
							| 29 | 27 28 | mpbi | ⊢ dom  OrdIso (  E  ,  ∅ )  =  ∅ | 
						
							| 30 | 23 29 | eqtrdi | ⊢ ( 𝜑  →  dom  OrdIso (  E  ,  ( ( 𝐵  ×  { ∅ } )  supp  ∅ ) )  =  ∅ ) | 
						
							| 31 | 30 | fveq2d | ⊢ ( 𝜑  →  ( seqω ( ( 𝑘  ∈  V ,  𝑧  ∈  V  ↦  ( ( ( 𝐴  ↑o  ( OrdIso (  E  ,  ( ( 𝐵  ×  { ∅ } )  supp  ∅ ) ) ‘ 𝑘 ) )  ·o  ( ( 𝐵  ×  { ∅ } ) ‘ ( OrdIso (  E  ,  ( ( 𝐵  ×  { ∅ } )  supp  ∅ ) ) ‘ 𝑘 ) ) )  +o  𝑧 ) ) ,  ∅ ) ‘ dom  OrdIso (  E  ,  ( ( 𝐵  ×  { ∅ } )  supp  ∅ ) ) )  =  ( seqω ( ( 𝑘  ∈  V ,  𝑧  ∈  V  ↦  ( ( ( 𝐴  ↑o  ( OrdIso (  E  ,  ( ( 𝐵  ×  { ∅ } )  supp  ∅ ) ) ‘ 𝑘 ) )  ·o  ( ( 𝐵  ×  { ∅ } ) ‘ ( OrdIso (  E  ,  ( ( 𝐵  ×  { ∅ } )  supp  ∅ ) ) ‘ 𝑘 ) ) )  +o  𝑧 ) ) ,  ∅ ) ‘ ∅ ) ) | 
						
							| 32 | 11 | seqom0g | ⊢ ( ∅  ∈  V  →  ( seqω ( ( 𝑘  ∈  V ,  𝑧  ∈  V  ↦  ( ( ( 𝐴  ↑o  ( OrdIso (  E  ,  ( ( 𝐵  ×  { ∅ } )  supp  ∅ ) ) ‘ 𝑘 ) )  ·o  ( ( 𝐵  ×  { ∅ } ) ‘ ( OrdIso (  E  ,  ( ( 𝐵  ×  { ∅ } )  supp  ∅ ) ) ‘ 𝑘 ) ) )  +o  𝑧 ) ) ,  ∅ ) ‘ ∅ )  =  ∅ ) | 
						
							| 33 | 14 32 | mp1i | ⊢ ( 𝜑  →  ( seqω ( ( 𝑘  ∈  V ,  𝑧  ∈  V  ↦  ( ( ( 𝐴  ↑o  ( OrdIso (  E  ,  ( ( 𝐵  ×  { ∅ } )  supp  ∅ ) ) ‘ 𝑘 ) )  ·o  ( ( 𝐵  ×  { ∅ } ) ‘ ( OrdIso (  E  ,  ( ( 𝐵  ×  { ∅ } )  supp  ∅ ) ) ‘ 𝑘 ) ) )  +o  𝑧 ) ) ,  ∅ ) ‘ ∅ )  =  ∅ ) | 
						
							| 34 | 12 31 33 | 3eqtrd | ⊢ ( 𝜑  →  ( ( 𝐴  CNF  𝐵 ) ‘ ( 𝐵  ×  { ∅ } ) )  =  ∅ ) |