Step |
Hyp |
Ref |
Expression |
1 |
|
cantnfs.s |
⊢ 𝑆 = dom ( 𝐴 CNF 𝐵 ) |
2 |
|
cantnfs.a |
⊢ ( 𝜑 → 𝐴 ∈ On ) |
3 |
|
cantnfs.b |
⊢ ( 𝜑 → 𝐵 ∈ On ) |
4 |
|
cantnfcl.g |
⊢ 𝐺 = OrdIso ( E , ( 𝐹 supp ∅ ) ) |
5 |
|
cantnfcl.f |
⊢ ( 𝜑 → 𝐹 ∈ 𝑆 ) |
6 |
|
suppssdm |
⊢ ( 𝐹 supp ∅ ) ⊆ dom 𝐹 |
7 |
1 2 3
|
cantnfs |
⊢ ( 𝜑 → ( 𝐹 ∈ 𝑆 ↔ ( 𝐹 : 𝐵 ⟶ 𝐴 ∧ 𝐹 finSupp ∅ ) ) ) |
8 |
5 7
|
mpbid |
⊢ ( 𝜑 → ( 𝐹 : 𝐵 ⟶ 𝐴 ∧ 𝐹 finSupp ∅ ) ) |
9 |
8
|
simpld |
⊢ ( 𝜑 → 𝐹 : 𝐵 ⟶ 𝐴 ) |
10 |
6 9
|
fssdm |
⊢ ( 𝜑 → ( 𝐹 supp ∅ ) ⊆ 𝐵 ) |
11 |
|
onss |
⊢ ( 𝐵 ∈ On → 𝐵 ⊆ On ) |
12 |
3 11
|
syl |
⊢ ( 𝜑 → 𝐵 ⊆ On ) |
13 |
10 12
|
sstrd |
⊢ ( 𝜑 → ( 𝐹 supp ∅ ) ⊆ On ) |
14 |
|
epweon |
⊢ E We On |
15 |
|
wess |
⊢ ( ( 𝐹 supp ∅ ) ⊆ On → ( E We On → E We ( 𝐹 supp ∅ ) ) ) |
16 |
13 14 15
|
mpisyl |
⊢ ( 𝜑 → E We ( 𝐹 supp ∅ ) ) |
17 |
|
ovexd |
⊢ ( 𝜑 → ( 𝐹 supp ∅ ) ∈ V ) |
18 |
4
|
oion |
⊢ ( ( 𝐹 supp ∅ ) ∈ V → dom 𝐺 ∈ On ) |
19 |
17 18
|
syl |
⊢ ( 𝜑 → dom 𝐺 ∈ On ) |
20 |
8
|
simprd |
⊢ ( 𝜑 → 𝐹 finSupp ∅ ) |
21 |
20
|
fsuppimpd |
⊢ ( 𝜑 → ( 𝐹 supp ∅ ) ∈ Fin ) |
22 |
4
|
oien |
⊢ ( ( ( 𝐹 supp ∅ ) ∈ V ∧ E We ( 𝐹 supp ∅ ) ) → dom 𝐺 ≈ ( 𝐹 supp ∅ ) ) |
23 |
17 16 22
|
syl2anc |
⊢ ( 𝜑 → dom 𝐺 ≈ ( 𝐹 supp ∅ ) ) |
24 |
|
enfii |
⊢ ( ( ( 𝐹 supp ∅ ) ∈ Fin ∧ dom 𝐺 ≈ ( 𝐹 supp ∅ ) ) → dom 𝐺 ∈ Fin ) |
25 |
21 23 24
|
syl2anc |
⊢ ( 𝜑 → dom 𝐺 ∈ Fin ) |
26 |
19 25
|
elind |
⊢ ( 𝜑 → dom 𝐺 ∈ ( On ∩ Fin ) ) |
27 |
|
onfin2 |
⊢ ω = ( On ∩ Fin ) |
28 |
26 27
|
eleqtrrdi |
⊢ ( 𝜑 → dom 𝐺 ∈ ω ) |
29 |
16 28
|
jca |
⊢ ( 𝜑 → ( E We ( 𝐹 supp ∅ ) ∧ dom 𝐺 ∈ ω ) ) |