| Step | Hyp | Ref | Expression | 
						
							| 1 |  | cantnffval.s | ⊢ 𝑆  =  { 𝑔  ∈  ( 𝐴  ↑m  𝐵 )  ∣  𝑔  finSupp  ∅ } | 
						
							| 2 |  | cantnffval.a | ⊢ ( 𝜑  →  𝐴  ∈  On ) | 
						
							| 3 |  | cantnffval.b | ⊢ ( 𝜑  →  𝐵  ∈  On ) | 
						
							| 4 | 1 2 3 | cantnffval | ⊢ ( 𝜑  →  ( 𝐴  CNF  𝐵 )  =  ( 𝑓  ∈  𝑆  ↦  ⦋ OrdIso (  E  ,  ( 𝑓  supp  ∅ ) )  /  ℎ ⦌ ( seqω ( ( 𝑘  ∈  V ,  𝑧  ∈  V  ↦  ( ( ( 𝐴  ↑o  ( ℎ ‘ 𝑘 ) )  ·o  ( 𝑓 ‘ ( ℎ ‘ 𝑘 ) ) )  +o  𝑧 ) ) ,  ∅ ) ‘ dom  ℎ ) ) ) | 
						
							| 5 | 4 | dmeqd | ⊢ ( 𝜑  →  dom  ( 𝐴  CNF  𝐵 )  =  dom  ( 𝑓  ∈  𝑆  ↦  ⦋ OrdIso (  E  ,  ( 𝑓  supp  ∅ ) )  /  ℎ ⦌ ( seqω ( ( 𝑘  ∈  V ,  𝑧  ∈  V  ↦  ( ( ( 𝐴  ↑o  ( ℎ ‘ 𝑘 ) )  ·o  ( 𝑓 ‘ ( ℎ ‘ 𝑘 ) ) )  +o  𝑧 ) ) ,  ∅ ) ‘ dom  ℎ ) ) ) | 
						
							| 6 |  | fvex | ⊢ ( seqω ( ( 𝑘  ∈  V ,  𝑧  ∈  V  ↦  ( ( ( 𝐴  ↑o  ( ℎ ‘ 𝑘 ) )  ·o  ( 𝑓 ‘ ( ℎ ‘ 𝑘 ) ) )  +o  𝑧 ) ) ,  ∅ ) ‘ dom  ℎ )  ∈  V | 
						
							| 7 | 6 | csbex | ⊢ ⦋ OrdIso (  E  ,  ( 𝑓  supp  ∅ ) )  /  ℎ ⦌ ( seqω ( ( 𝑘  ∈  V ,  𝑧  ∈  V  ↦  ( ( ( 𝐴  ↑o  ( ℎ ‘ 𝑘 ) )  ·o  ( 𝑓 ‘ ( ℎ ‘ 𝑘 ) ) )  +o  𝑧 ) ) ,  ∅ ) ‘ dom  ℎ )  ∈  V | 
						
							| 8 | 7 | rgenw | ⊢ ∀ 𝑓  ∈  𝑆 ⦋ OrdIso (  E  ,  ( 𝑓  supp  ∅ ) )  /  ℎ ⦌ ( seqω ( ( 𝑘  ∈  V ,  𝑧  ∈  V  ↦  ( ( ( 𝐴  ↑o  ( ℎ ‘ 𝑘 ) )  ·o  ( 𝑓 ‘ ( ℎ ‘ 𝑘 ) ) )  +o  𝑧 ) ) ,  ∅ ) ‘ dom  ℎ )  ∈  V | 
						
							| 9 |  | dmmptg | ⊢ ( ∀ 𝑓  ∈  𝑆 ⦋ OrdIso (  E  ,  ( 𝑓  supp  ∅ ) )  /  ℎ ⦌ ( seqω ( ( 𝑘  ∈  V ,  𝑧  ∈  V  ↦  ( ( ( 𝐴  ↑o  ( ℎ ‘ 𝑘 ) )  ·o  ( 𝑓 ‘ ( ℎ ‘ 𝑘 ) ) )  +o  𝑧 ) ) ,  ∅ ) ‘ dom  ℎ )  ∈  V  →  dom  ( 𝑓  ∈  𝑆  ↦  ⦋ OrdIso (  E  ,  ( 𝑓  supp  ∅ ) )  /  ℎ ⦌ ( seqω ( ( 𝑘  ∈  V ,  𝑧  ∈  V  ↦  ( ( ( 𝐴  ↑o  ( ℎ ‘ 𝑘 ) )  ·o  ( 𝑓 ‘ ( ℎ ‘ 𝑘 ) ) )  +o  𝑧 ) ) ,  ∅ ) ‘ dom  ℎ ) )  =  𝑆 ) | 
						
							| 10 | 8 9 | ax-mp | ⊢ dom  ( 𝑓  ∈  𝑆  ↦  ⦋ OrdIso (  E  ,  ( 𝑓  supp  ∅ ) )  /  ℎ ⦌ ( seqω ( ( 𝑘  ∈  V ,  𝑧  ∈  V  ↦  ( ( ( 𝐴  ↑o  ( ℎ ‘ 𝑘 ) )  ·o  ( 𝑓 ‘ ( ℎ ‘ 𝑘 ) ) )  +o  𝑧 ) ) ,  ∅ ) ‘ dom  ℎ ) )  =  𝑆 | 
						
							| 11 | 5 10 | eqtrdi | ⊢ ( 𝜑  →  dom  ( 𝐴  CNF  𝐵 )  =  𝑆 ) |