Step |
Hyp |
Ref |
Expression |
1 |
|
cantnfs.s |
⊢ 𝑆 = dom ( 𝐴 CNF 𝐵 ) |
2 |
|
cantnfs.a |
⊢ ( 𝜑 → 𝐴 ∈ On ) |
3 |
|
cantnfs.b |
⊢ ( 𝜑 → 𝐵 ∈ On ) |
4 |
|
fvex |
⊢ ( seqω ( ( 𝑘 ∈ V , 𝑧 ∈ V ↦ ( ( ( 𝐴 ↑o ( ℎ ‘ 𝑘 ) ) ·o ( 𝑓 ‘ ( ℎ ‘ 𝑘 ) ) ) +o 𝑧 ) ) , ∅ ) ‘ dom ℎ ) ∈ V |
5 |
4
|
csbex |
⊢ ⦋ OrdIso ( E , ( 𝑓 supp ∅ ) ) / ℎ ⦌ ( seqω ( ( 𝑘 ∈ V , 𝑧 ∈ V ↦ ( ( ( 𝐴 ↑o ( ℎ ‘ 𝑘 ) ) ·o ( 𝑓 ‘ ( ℎ ‘ 𝑘 ) ) ) +o 𝑧 ) ) , ∅ ) ‘ dom ℎ ) ∈ V |
6 |
5
|
a1i |
⊢ ( ( 𝜑 ∧ 𝑓 ∈ 𝑆 ) → ⦋ OrdIso ( E , ( 𝑓 supp ∅ ) ) / ℎ ⦌ ( seqω ( ( 𝑘 ∈ V , 𝑧 ∈ V ↦ ( ( ( 𝐴 ↑o ( ℎ ‘ 𝑘 ) ) ·o ( 𝑓 ‘ ( ℎ ‘ 𝑘 ) ) ) +o 𝑧 ) ) , ∅ ) ‘ dom ℎ ) ∈ V ) |
7 |
|
eqid |
⊢ { 𝑔 ∈ ( 𝐴 ↑m 𝐵 ) ∣ 𝑔 finSupp ∅ } = { 𝑔 ∈ ( 𝐴 ↑m 𝐵 ) ∣ 𝑔 finSupp ∅ } |
8 |
7 2 3
|
cantnffval |
⊢ ( 𝜑 → ( 𝐴 CNF 𝐵 ) = ( 𝑓 ∈ { 𝑔 ∈ ( 𝐴 ↑m 𝐵 ) ∣ 𝑔 finSupp ∅ } ↦ ⦋ OrdIso ( E , ( 𝑓 supp ∅ ) ) / ℎ ⦌ ( seqω ( ( 𝑘 ∈ V , 𝑧 ∈ V ↦ ( ( ( 𝐴 ↑o ( ℎ ‘ 𝑘 ) ) ·o ( 𝑓 ‘ ( ℎ ‘ 𝑘 ) ) ) +o 𝑧 ) ) , ∅ ) ‘ dom ℎ ) ) ) |
9 |
7 2 3
|
cantnfdm |
⊢ ( 𝜑 → dom ( 𝐴 CNF 𝐵 ) = { 𝑔 ∈ ( 𝐴 ↑m 𝐵 ) ∣ 𝑔 finSupp ∅ } ) |
10 |
1 9
|
eqtrid |
⊢ ( 𝜑 → 𝑆 = { 𝑔 ∈ ( 𝐴 ↑m 𝐵 ) ∣ 𝑔 finSupp ∅ } ) |
11 |
10
|
mpteq1d |
⊢ ( 𝜑 → ( 𝑓 ∈ 𝑆 ↦ ⦋ OrdIso ( E , ( 𝑓 supp ∅ ) ) / ℎ ⦌ ( seqω ( ( 𝑘 ∈ V , 𝑧 ∈ V ↦ ( ( ( 𝐴 ↑o ( ℎ ‘ 𝑘 ) ) ·o ( 𝑓 ‘ ( ℎ ‘ 𝑘 ) ) ) +o 𝑧 ) ) , ∅ ) ‘ dom ℎ ) ) = ( 𝑓 ∈ { 𝑔 ∈ ( 𝐴 ↑m 𝐵 ) ∣ 𝑔 finSupp ∅ } ↦ ⦋ OrdIso ( E , ( 𝑓 supp ∅ ) ) / ℎ ⦌ ( seqω ( ( 𝑘 ∈ V , 𝑧 ∈ V ↦ ( ( ( 𝐴 ↑o ( ℎ ‘ 𝑘 ) ) ·o ( 𝑓 ‘ ( ℎ ‘ 𝑘 ) ) ) +o 𝑧 ) ) , ∅ ) ‘ dom ℎ ) ) ) |
12 |
8 11
|
eqtr4d |
⊢ ( 𝜑 → ( 𝐴 CNF 𝐵 ) = ( 𝑓 ∈ 𝑆 ↦ ⦋ OrdIso ( E , ( 𝑓 supp ∅ ) ) / ℎ ⦌ ( seqω ( ( 𝑘 ∈ V , 𝑧 ∈ V ↦ ( ( ( 𝐴 ↑o ( ℎ ‘ 𝑘 ) ) ·o ( 𝑓 ‘ ( ℎ ‘ 𝑘 ) ) ) +o 𝑧 ) ) , ∅ ) ‘ dom ℎ ) ) ) |
13 |
2
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑆 ) → 𝐴 ∈ On ) |
14 |
3
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑆 ) → 𝐵 ∈ On ) |
15 |
|
eqid |
⊢ OrdIso ( E , ( 𝑥 supp ∅ ) ) = OrdIso ( E , ( 𝑥 supp ∅ ) ) |
16 |
|
simpr |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑆 ) → 𝑥 ∈ 𝑆 ) |
17 |
|
eqid |
⊢ seqω ( ( 𝑘 ∈ V , 𝑧 ∈ V ↦ ( ( ( 𝐴 ↑o ( OrdIso ( E , ( 𝑥 supp ∅ ) ) ‘ 𝑘 ) ) ·o ( 𝑥 ‘ ( OrdIso ( E , ( 𝑥 supp ∅ ) ) ‘ 𝑘 ) ) ) +o 𝑧 ) ) , ∅ ) = seqω ( ( 𝑘 ∈ V , 𝑧 ∈ V ↦ ( ( ( 𝐴 ↑o ( OrdIso ( E , ( 𝑥 supp ∅ ) ) ‘ 𝑘 ) ) ·o ( 𝑥 ‘ ( OrdIso ( E , ( 𝑥 supp ∅ ) ) ‘ 𝑘 ) ) ) +o 𝑧 ) ) , ∅ ) |
18 |
1 13 14 15 16 17
|
cantnfval |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑆 ) → ( ( 𝐴 CNF 𝐵 ) ‘ 𝑥 ) = ( seqω ( ( 𝑘 ∈ V , 𝑧 ∈ V ↦ ( ( ( 𝐴 ↑o ( OrdIso ( E , ( 𝑥 supp ∅ ) ) ‘ 𝑘 ) ) ·o ( 𝑥 ‘ ( OrdIso ( E , ( 𝑥 supp ∅ ) ) ‘ 𝑘 ) ) ) +o 𝑧 ) ) , ∅ ) ‘ dom OrdIso ( E , ( 𝑥 supp ∅ ) ) ) ) |
19 |
18
|
adantr |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ 𝑆 ) ∧ 𝐴 = ∅ ) → ( ( 𝐴 CNF 𝐵 ) ‘ 𝑥 ) = ( seqω ( ( 𝑘 ∈ V , 𝑧 ∈ V ↦ ( ( ( 𝐴 ↑o ( OrdIso ( E , ( 𝑥 supp ∅ ) ) ‘ 𝑘 ) ) ·o ( 𝑥 ‘ ( OrdIso ( E , ( 𝑥 supp ∅ ) ) ‘ 𝑘 ) ) ) +o 𝑧 ) ) , ∅ ) ‘ dom OrdIso ( E , ( 𝑥 supp ∅ ) ) ) ) |
20 |
|
ovex |
⊢ ( 𝑥 supp ∅ ) ∈ V |
21 |
1 13 14 15 16
|
cantnfcl |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑆 ) → ( E We ( 𝑥 supp ∅ ) ∧ dom OrdIso ( E , ( 𝑥 supp ∅ ) ) ∈ ω ) ) |
22 |
21
|
simpld |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑆 ) → E We ( 𝑥 supp ∅ ) ) |
23 |
15
|
oien |
⊢ ( ( ( 𝑥 supp ∅ ) ∈ V ∧ E We ( 𝑥 supp ∅ ) ) → dom OrdIso ( E , ( 𝑥 supp ∅ ) ) ≈ ( 𝑥 supp ∅ ) ) |
24 |
20 22 23
|
sylancr |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑆 ) → dom OrdIso ( E , ( 𝑥 supp ∅ ) ) ≈ ( 𝑥 supp ∅ ) ) |
25 |
24
|
adantr |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ 𝑆 ) ∧ 𝐴 = ∅ ) → dom OrdIso ( E , ( 𝑥 supp ∅ ) ) ≈ ( 𝑥 supp ∅ ) ) |
26 |
|
suppssdm |
⊢ ( 𝑥 supp ∅ ) ⊆ dom 𝑥 |
27 |
1 2 3
|
cantnfs |
⊢ ( 𝜑 → ( 𝑥 ∈ 𝑆 ↔ ( 𝑥 : 𝐵 ⟶ 𝐴 ∧ 𝑥 finSupp ∅ ) ) ) |
28 |
27
|
simprbda |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑆 ) → 𝑥 : 𝐵 ⟶ 𝐴 ) |
29 |
26 28
|
fssdm |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑆 ) → ( 𝑥 supp ∅ ) ⊆ 𝐵 ) |
30 |
|
feq3 |
⊢ ( 𝐴 = ∅ → ( 𝑥 : 𝐵 ⟶ 𝐴 ↔ 𝑥 : 𝐵 ⟶ ∅ ) ) |
31 |
28 30
|
syl5ibcom |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑆 ) → ( 𝐴 = ∅ → 𝑥 : 𝐵 ⟶ ∅ ) ) |
32 |
31
|
imp |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ 𝑆 ) ∧ 𝐴 = ∅ ) → 𝑥 : 𝐵 ⟶ ∅ ) |
33 |
|
f00 |
⊢ ( 𝑥 : 𝐵 ⟶ ∅ ↔ ( 𝑥 = ∅ ∧ 𝐵 = ∅ ) ) |
34 |
32 33
|
sylib |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ 𝑆 ) ∧ 𝐴 = ∅ ) → ( 𝑥 = ∅ ∧ 𝐵 = ∅ ) ) |
35 |
34
|
simprd |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ 𝑆 ) ∧ 𝐴 = ∅ ) → 𝐵 = ∅ ) |
36 |
|
sseq0 |
⊢ ( ( ( 𝑥 supp ∅ ) ⊆ 𝐵 ∧ 𝐵 = ∅ ) → ( 𝑥 supp ∅ ) = ∅ ) |
37 |
29 35 36
|
syl2an2r |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ 𝑆 ) ∧ 𝐴 = ∅ ) → ( 𝑥 supp ∅ ) = ∅ ) |
38 |
25 37
|
breqtrd |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ 𝑆 ) ∧ 𝐴 = ∅ ) → dom OrdIso ( E , ( 𝑥 supp ∅ ) ) ≈ ∅ ) |
39 |
|
en0 |
⊢ ( dom OrdIso ( E , ( 𝑥 supp ∅ ) ) ≈ ∅ ↔ dom OrdIso ( E , ( 𝑥 supp ∅ ) ) = ∅ ) |
40 |
38 39
|
sylib |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ 𝑆 ) ∧ 𝐴 = ∅ ) → dom OrdIso ( E , ( 𝑥 supp ∅ ) ) = ∅ ) |
41 |
40
|
fveq2d |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ 𝑆 ) ∧ 𝐴 = ∅ ) → ( seqω ( ( 𝑘 ∈ V , 𝑧 ∈ V ↦ ( ( ( 𝐴 ↑o ( OrdIso ( E , ( 𝑥 supp ∅ ) ) ‘ 𝑘 ) ) ·o ( 𝑥 ‘ ( OrdIso ( E , ( 𝑥 supp ∅ ) ) ‘ 𝑘 ) ) ) +o 𝑧 ) ) , ∅ ) ‘ dom OrdIso ( E , ( 𝑥 supp ∅ ) ) ) = ( seqω ( ( 𝑘 ∈ V , 𝑧 ∈ V ↦ ( ( ( 𝐴 ↑o ( OrdIso ( E , ( 𝑥 supp ∅ ) ) ‘ 𝑘 ) ) ·o ( 𝑥 ‘ ( OrdIso ( E , ( 𝑥 supp ∅ ) ) ‘ 𝑘 ) ) ) +o 𝑧 ) ) , ∅ ) ‘ ∅ ) ) |
42 |
|
0ex |
⊢ ∅ ∈ V |
43 |
17
|
seqom0g |
⊢ ( ∅ ∈ V → ( seqω ( ( 𝑘 ∈ V , 𝑧 ∈ V ↦ ( ( ( 𝐴 ↑o ( OrdIso ( E , ( 𝑥 supp ∅ ) ) ‘ 𝑘 ) ) ·o ( 𝑥 ‘ ( OrdIso ( E , ( 𝑥 supp ∅ ) ) ‘ 𝑘 ) ) ) +o 𝑧 ) ) , ∅ ) ‘ ∅ ) = ∅ ) |
44 |
42 43
|
mp1i |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ 𝑆 ) ∧ 𝐴 = ∅ ) → ( seqω ( ( 𝑘 ∈ V , 𝑧 ∈ V ↦ ( ( ( 𝐴 ↑o ( OrdIso ( E , ( 𝑥 supp ∅ ) ) ‘ 𝑘 ) ) ·o ( 𝑥 ‘ ( OrdIso ( E , ( 𝑥 supp ∅ ) ) ‘ 𝑘 ) ) ) +o 𝑧 ) ) , ∅ ) ‘ ∅ ) = ∅ ) |
45 |
19 41 44
|
3eqtrd |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ 𝑆 ) ∧ 𝐴 = ∅ ) → ( ( 𝐴 CNF 𝐵 ) ‘ 𝑥 ) = ∅ ) |
46 |
|
el1o |
⊢ ( ( ( 𝐴 CNF 𝐵 ) ‘ 𝑥 ) ∈ 1o ↔ ( ( 𝐴 CNF 𝐵 ) ‘ 𝑥 ) = ∅ ) |
47 |
45 46
|
sylibr |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ 𝑆 ) ∧ 𝐴 = ∅ ) → ( ( 𝐴 CNF 𝐵 ) ‘ 𝑥 ) ∈ 1o ) |
48 |
35
|
oveq2d |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ 𝑆 ) ∧ 𝐴 = ∅ ) → ( 𝐴 ↑o 𝐵 ) = ( 𝐴 ↑o ∅ ) ) |
49 |
13
|
adantr |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ 𝑆 ) ∧ 𝐴 = ∅ ) → 𝐴 ∈ On ) |
50 |
|
oe0 |
⊢ ( 𝐴 ∈ On → ( 𝐴 ↑o ∅ ) = 1o ) |
51 |
49 50
|
syl |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ 𝑆 ) ∧ 𝐴 = ∅ ) → ( 𝐴 ↑o ∅ ) = 1o ) |
52 |
48 51
|
eqtrd |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ 𝑆 ) ∧ 𝐴 = ∅ ) → ( 𝐴 ↑o 𝐵 ) = 1o ) |
53 |
47 52
|
eleqtrrd |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ 𝑆 ) ∧ 𝐴 = ∅ ) → ( ( 𝐴 CNF 𝐵 ) ‘ 𝑥 ) ∈ ( 𝐴 ↑o 𝐵 ) ) |
54 |
13
|
adantr |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ 𝑆 ) ∧ 𝐴 ≠ ∅ ) → 𝐴 ∈ On ) |
55 |
14
|
adantr |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ 𝑆 ) ∧ 𝐴 ≠ ∅ ) → 𝐵 ∈ On ) |
56 |
16
|
adantr |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ 𝑆 ) ∧ 𝐴 ≠ ∅ ) → 𝑥 ∈ 𝑆 ) |
57 |
|
on0eln0 |
⊢ ( 𝐴 ∈ On → ( ∅ ∈ 𝐴 ↔ 𝐴 ≠ ∅ ) ) |
58 |
13 57
|
syl |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑆 ) → ( ∅ ∈ 𝐴 ↔ 𝐴 ≠ ∅ ) ) |
59 |
58
|
biimpar |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ 𝑆 ) ∧ 𝐴 ≠ ∅ ) → ∅ ∈ 𝐴 ) |
60 |
29
|
adantr |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ 𝑆 ) ∧ 𝐴 ≠ ∅ ) → ( 𝑥 supp ∅ ) ⊆ 𝐵 ) |
61 |
1 54 55 56 59 55 60
|
cantnflt2 |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ 𝑆 ) ∧ 𝐴 ≠ ∅ ) → ( ( 𝐴 CNF 𝐵 ) ‘ 𝑥 ) ∈ ( 𝐴 ↑o 𝐵 ) ) |
62 |
53 61
|
pm2.61dane |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑆 ) → ( ( 𝐴 CNF 𝐵 ) ‘ 𝑥 ) ∈ ( 𝐴 ↑o 𝐵 ) ) |
63 |
6 12 62
|
fmpt2d |
⊢ ( 𝜑 → ( 𝐴 CNF 𝐵 ) : 𝑆 ⟶ ( 𝐴 ↑o 𝐵 ) ) |