| Step | Hyp | Ref | Expression | 
						
							| 1 |  | cantnff1o.1 | ⊢ 𝑆  =  dom  ( 𝐴  CNF  𝐵 ) | 
						
							| 2 |  | cantnff1o.2 | ⊢ ( 𝜑  →  𝐴  ∈  On ) | 
						
							| 3 |  | cantnff1o.3 | ⊢ ( 𝜑  →  𝐵  ∈  On ) | 
						
							| 4 |  | eqid | ⊢ { 〈 𝑥 ,  𝑦 〉  ∣  ∃ 𝑧  ∈  𝐵 ( ( 𝑥 ‘ 𝑧 )  ∈  ( 𝑦 ‘ 𝑧 )  ∧  ∀ 𝑤  ∈  𝐵 ( 𝑧  ∈  𝑤  →  ( 𝑥 ‘ 𝑤 )  =  ( 𝑦 ‘ 𝑤 ) ) ) }  =  { 〈 𝑥 ,  𝑦 〉  ∣  ∃ 𝑧  ∈  𝐵 ( ( 𝑥 ‘ 𝑧 )  ∈  ( 𝑦 ‘ 𝑧 )  ∧  ∀ 𝑤  ∈  𝐵 ( 𝑧  ∈  𝑤  →  ( 𝑥 ‘ 𝑤 )  =  ( 𝑦 ‘ 𝑤 ) ) ) } | 
						
							| 5 | 1 2 3 4 | cantnf | ⊢ ( 𝜑  →  ( 𝐴  CNF  𝐵 )  Isom  { 〈 𝑥 ,  𝑦 〉  ∣  ∃ 𝑧  ∈  𝐵 ( ( 𝑥 ‘ 𝑧 )  ∈  ( 𝑦 ‘ 𝑧 )  ∧  ∀ 𝑤  ∈  𝐵 ( 𝑧  ∈  𝑤  →  ( 𝑥 ‘ 𝑤 )  =  ( 𝑦 ‘ 𝑤 ) ) ) } ,   E  ( 𝑆 ,  ( 𝐴  ↑o  𝐵 ) ) ) | 
						
							| 6 |  | isof1o | ⊢ ( ( 𝐴  CNF  𝐵 )  Isom  { 〈 𝑥 ,  𝑦 〉  ∣  ∃ 𝑧  ∈  𝐵 ( ( 𝑥 ‘ 𝑧 )  ∈  ( 𝑦 ‘ 𝑧 )  ∧  ∀ 𝑤  ∈  𝐵 ( 𝑧  ∈  𝑤  →  ( 𝑥 ‘ 𝑤 )  =  ( 𝑦 ‘ 𝑤 ) ) ) } ,   E  ( 𝑆 ,  ( 𝐴  ↑o  𝐵 ) )  →  ( 𝐴  CNF  𝐵 ) : 𝑆 –1-1-onto→ ( 𝐴  ↑o  𝐵 ) ) | 
						
							| 7 | 5 6 | syl | ⊢ ( 𝜑  →  ( 𝐴  CNF  𝐵 ) : 𝑆 –1-1-onto→ ( 𝐴  ↑o  𝐵 ) ) |