| Step | Hyp | Ref | Expression | 
						
							| 1 |  | cantnffval.s | ⊢ 𝑆  =  { 𝑔  ∈  ( 𝐴  ↑m  𝐵 )  ∣  𝑔  finSupp  ∅ } | 
						
							| 2 |  | cantnffval.a | ⊢ ( 𝜑  →  𝐴  ∈  On ) | 
						
							| 3 |  | cantnffval.b | ⊢ ( 𝜑  →  𝐵  ∈  On ) | 
						
							| 4 |  | oveq12 | ⊢ ( ( 𝑥  =  𝐴  ∧  𝑦  =  𝐵 )  →  ( 𝑥  ↑m  𝑦 )  =  ( 𝐴  ↑m  𝐵 ) ) | 
						
							| 5 | 4 | rabeqdv | ⊢ ( ( 𝑥  =  𝐴  ∧  𝑦  =  𝐵 )  →  { 𝑔  ∈  ( 𝑥  ↑m  𝑦 )  ∣  𝑔  finSupp  ∅ }  =  { 𝑔  ∈  ( 𝐴  ↑m  𝐵 )  ∣  𝑔  finSupp  ∅ } ) | 
						
							| 6 | 5 1 | eqtr4di | ⊢ ( ( 𝑥  =  𝐴  ∧  𝑦  =  𝐵 )  →  { 𝑔  ∈  ( 𝑥  ↑m  𝑦 )  ∣  𝑔  finSupp  ∅ }  =  𝑆 ) | 
						
							| 7 |  | simp1l | ⊢ ( ( ( 𝑥  =  𝐴  ∧  𝑦  =  𝐵 )  ∧  𝑘  ∈  V  ∧  𝑧  ∈  V )  →  𝑥  =  𝐴 ) | 
						
							| 8 | 7 | oveq1d | ⊢ ( ( ( 𝑥  =  𝐴  ∧  𝑦  =  𝐵 )  ∧  𝑘  ∈  V  ∧  𝑧  ∈  V )  →  ( 𝑥  ↑o  ( ℎ ‘ 𝑘 ) )  =  ( 𝐴  ↑o  ( ℎ ‘ 𝑘 ) ) ) | 
						
							| 9 | 8 | oveq1d | ⊢ ( ( ( 𝑥  =  𝐴  ∧  𝑦  =  𝐵 )  ∧  𝑘  ∈  V  ∧  𝑧  ∈  V )  →  ( ( 𝑥  ↑o  ( ℎ ‘ 𝑘 ) )  ·o  ( 𝑓 ‘ ( ℎ ‘ 𝑘 ) ) )  =  ( ( 𝐴  ↑o  ( ℎ ‘ 𝑘 ) )  ·o  ( 𝑓 ‘ ( ℎ ‘ 𝑘 ) ) ) ) | 
						
							| 10 | 9 | oveq1d | ⊢ ( ( ( 𝑥  =  𝐴  ∧  𝑦  =  𝐵 )  ∧  𝑘  ∈  V  ∧  𝑧  ∈  V )  →  ( ( ( 𝑥  ↑o  ( ℎ ‘ 𝑘 ) )  ·o  ( 𝑓 ‘ ( ℎ ‘ 𝑘 ) ) )  +o  𝑧 )  =  ( ( ( 𝐴  ↑o  ( ℎ ‘ 𝑘 ) )  ·o  ( 𝑓 ‘ ( ℎ ‘ 𝑘 ) ) )  +o  𝑧 ) ) | 
						
							| 11 | 10 | mpoeq3dva | ⊢ ( ( 𝑥  =  𝐴  ∧  𝑦  =  𝐵 )  →  ( 𝑘  ∈  V ,  𝑧  ∈  V  ↦  ( ( ( 𝑥  ↑o  ( ℎ ‘ 𝑘 ) )  ·o  ( 𝑓 ‘ ( ℎ ‘ 𝑘 ) ) )  +o  𝑧 ) )  =  ( 𝑘  ∈  V ,  𝑧  ∈  V  ↦  ( ( ( 𝐴  ↑o  ( ℎ ‘ 𝑘 ) )  ·o  ( 𝑓 ‘ ( ℎ ‘ 𝑘 ) ) )  +o  𝑧 ) ) ) | 
						
							| 12 |  | eqid | ⊢ ∅  =  ∅ | 
						
							| 13 |  | seqomeq12 | ⊢ ( ( ( 𝑘  ∈  V ,  𝑧  ∈  V  ↦  ( ( ( 𝑥  ↑o  ( ℎ ‘ 𝑘 ) )  ·o  ( 𝑓 ‘ ( ℎ ‘ 𝑘 ) ) )  +o  𝑧 ) )  =  ( 𝑘  ∈  V ,  𝑧  ∈  V  ↦  ( ( ( 𝐴  ↑o  ( ℎ ‘ 𝑘 ) )  ·o  ( 𝑓 ‘ ( ℎ ‘ 𝑘 ) ) )  +o  𝑧 ) )  ∧  ∅  =  ∅ )  →  seqω ( ( 𝑘  ∈  V ,  𝑧  ∈  V  ↦  ( ( ( 𝑥  ↑o  ( ℎ ‘ 𝑘 ) )  ·o  ( 𝑓 ‘ ( ℎ ‘ 𝑘 ) ) )  +o  𝑧 ) ) ,  ∅ )  =  seqω ( ( 𝑘  ∈  V ,  𝑧  ∈  V  ↦  ( ( ( 𝐴  ↑o  ( ℎ ‘ 𝑘 ) )  ·o  ( 𝑓 ‘ ( ℎ ‘ 𝑘 ) ) )  +o  𝑧 ) ) ,  ∅ ) ) | 
						
							| 14 | 11 12 13 | sylancl | ⊢ ( ( 𝑥  =  𝐴  ∧  𝑦  =  𝐵 )  →  seqω ( ( 𝑘  ∈  V ,  𝑧  ∈  V  ↦  ( ( ( 𝑥  ↑o  ( ℎ ‘ 𝑘 ) )  ·o  ( 𝑓 ‘ ( ℎ ‘ 𝑘 ) ) )  +o  𝑧 ) ) ,  ∅ )  =  seqω ( ( 𝑘  ∈  V ,  𝑧  ∈  V  ↦  ( ( ( 𝐴  ↑o  ( ℎ ‘ 𝑘 ) )  ·o  ( 𝑓 ‘ ( ℎ ‘ 𝑘 ) ) )  +o  𝑧 ) ) ,  ∅ ) ) | 
						
							| 15 | 14 | fveq1d | ⊢ ( ( 𝑥  =  𝐴  ∧  𝑦  =  𝐵 )  →  ( seqω ( ( 𝑘  ∈  V ,  𝑧  ∈  V  ↦  ( ( ( 𝑥  ↑o  ( ℎ ‘ 𝑘 ) )  ·o  ( 𝑓 ‘ ( ℎ ‘ 𝑘 ) ) )  +o  𝑧 ) ) ,  ∅ ) ‘ dom  ℎ )  =  ( seqω ( ( 𝑘  ∈  V ,  𝑧  ∈  V  ↦  ( ( ( 𝐴  ↑o  ( ℎ ‘ 𝑘 ) )  ·o  ( 𝑓 ‘ ( ℎ ‘ 𝑘 ) ) )  +o  𝑧 ) ) ,  ∅ ) ‘ dom  ℎ ) ) | 
						
							| 16 | 15 | csbeq2dv | ⊢ ( ( 𝑥  =  𝐴  ∧  𝑦  =  𝐵 )  →  ⦋ OrdIso (  E  ,  ( 𝑓  supp  ∅ ) )  /  ℎ ⦌ ( seqω ( ( 𝑘  ∈  V ,  𝑧  ∈  V  ↦  ( ( ( 𝑥  ↑o  ( ℎ ‘ 𝑘 ) )  ·o  ( 𝑓 ‘ ( ℎ ‘ 𝑘 ) ) )  +o  𝑧 ) ) ,  ∅ ) ‘ dom  ℎ )  =  ⦋ OrdIso (  E  ,  ( 𝑓  supp  ∅ ) )  /  ℎ ⦌ ( seqω ( ( 𝑘  ∈  V ,  𝑧  ∈  V  ↦  ( ( ( 𝐴  ↑o  ( ℎ ‘ 𝑘 ) )  ·o  ( 𝑓 ‘ ( ℎ ‘ 𝑘 ) ) )  +o  𝑧 ) ) ,  ∅ ) ‘ dom  ℎ ) ) | 
						
							| 17 | 6 16 | mpteq12dv | ⊢ ( ( 𝑥  =  𝐴  ∧  𝑦  =  𝐵 )  →  ( 𝑓  ∈  { 𝑔  ∈  ( 𝑥  ↑m  𝑦 )  ∣  𝑔  finSupp  ∅ }  ↦  ⦋ OrdIso (  E  ,  ( 𝑓  supp  ∅ ) )  /  ℎ ⦌ ( seqω ( ( 𝑘  ∈  V ,  𝑧  ∈  V  ↦  ( ( ( 𝑥  ↑o  ( ℎ ‘ 𝑘 ) )  ·o  ( 𝑓 ‘ ( ℎ ‘ 𝑘 ) ) )  +o  𝑧 ) ) ,  ∅ ) ‘ dom  ℎ ) )  =  ( 𝑓  ∈  𝑆  ↦  ⦋ OrdIso (  E  ,  ( 𝑓  supp  ∅ ) )  /  ℎ ⦌ ( seqω ( ( 𝑘  ∈  V ,  𝑧  ∈  V  ↦  ( ( ( 𝐴  ↑o  ( ℎ ‘ 𝑘 ) )  ·o  ( 𝑓 ‘ ( ℎ ‘ 𝑘 ) ) )  +o  𝑧 ) ) ,  ∅ ) ‘ dom  ℎ ) ) ) | 
						
							| 18 |  | df-cnf | ⊢  CNF   =  ( 𝑥  ∈  On ,  𝑦  ∈  On  ↦  ( 𝑓  ∈  { 𝑔  ∈  ( 𝑥  ↑m  𝑦 )  ∣  𝑔  finSupp  ∅ }  ↦  ⦋ OrdIso (  E  ,  ( 𝑓  supp  ∅ ) )  /  ℎ ⦌ ( seqω ( ( 𝑘  ∈  V ,  𝑧  ∈  V  ↦  ( ( ( 𝑥  ↑o  ( ℎ ‘ 𝑘 ) )  ·o  ( 𝑓 ‘ ( ℎ ‘ 𝑘 ) ) )  +o  𝑧 ) ) ,  ∅ ) ‘ dom  ℎ ) ) ) | 
						
							| 19 |  | ovex | ⊢ ( 𝐴  ↑m  𝐵 )  ∈  V | 
						
							| 20 | 1 19 | rabex2 | ⊢ 𝑆  ∈  V | 
						
							| 21 | 20 | mptex | ⊢ ( 𝑓  ∈  𝑆  ↦  ⦋ OrdIso (  E  ,  ( 𝑓  supp  ∅ ) )  /  ℎ ⦌ ( seqω ( ( 𝑘  ∈  V ,  𝑧  ∈  V  ↦  ( ( ( 𝐴  ↑o  ( ℎ ‘ 𝑘 ) )  ·o  ( 𝑓 ‘ ( ℎ ‘ 𝑘 ) ) )  +o  𝑧 ) ) ,  ∅ ) ‘ dom  ℎ ) )  ∈  V | 
						
							| 22 | 17 18 21 | ovmpoa | ⊢ ( ( 𝐴  ∈  On  ∧  𝐵  ∈  On )  →  ( 𝐴  CNF  𝐵 )  =  ( 𝑓  ∈  𝑆  ↦  ⦋ OrdIso (  E  ,  ( 𝑓  supp  ∅ ) )  /  ℎ ⦌ ( seqω ( ( 𝑘  ∈  V ,  𝑧  ∈  V  ↦  ( ( ( 𝐴  ↑o  ( ℎ ‘ 𝑘 ) )  ·o  ( 𝑓 ‘ ( ℎ ‘ 𝑘 ) ) )  +o  𝑧 ) ) ,  ∅ ) ‘ dom  ℎ ) ) ) | 
						
							| 23 | 2 3 22 | syl2anc | ⊢ ( 𝜑  →  ( 𝐴  CNF  𝐵 )  =  ( 𝑓  ∈  𝑆  ↦  ⦋ OrdIso (  E  ,  ( 𝑓  supp  ∅ ) )  /  ℎ ⦌ ( seqω ( ( 𝑘  ∈  V ,  𝑧  ∈  V  ↦  ( ( ( 𝐴  ↑o  ( ℎ ‘ 𝑘 ) )  ·o  ( 𝑓 ‘ ( ℎ ‘ 𝑘 ) ) )  +o  𝑧 ) ) ,  ∅ ) ‘ dom  ℎ ) ) ) |