| Step | Hyp | Ref | Expression | 
						
							| 1 |  | cantnfs.s | ⊢ 𝑆  =  dom  ( 𝐴  CNF  𝐵 ) | 
						
							| 2 |  | cantnfs.a | ⊢ ( 𝜑  →  𝐴  ∈  On ) | 
						
							| 3 |  | cantnfs.b | ⊢ ( 𝜑  →  𝐵  ∈  On ) | 
						
							| 4 |  | oemapval.t | ⊢ 𝑇  =  { 〈 𝑥 ,  𝑦 〉  ∣  ∃ 𝑧  ∈  𝐵 ( ( 𝑥 ‘ 𝑧 )  ∈  ( 𝑦 ‘ 𝑧 )  ∧  ∀ 𝑤  ∈  𝐵 ( 𝑧  ∈  𝑤  →  ( 𝑥 ‘ 𝑤 )  =  ( 𝑦 ‘ 𝑤 ) ) ) } | 
						
							| 5 | 1 2 3 4 | cantnf | ⊢ ( 𝜑  →  ( 𝐴  CNF  𝐵 )  Isom  𝑇 ,   E  ( 𝑆 ,  ( 𝐴  ↑o  𝐵 ) ) ) | 
						
							| 6 |  | isof1o | ⊢ ( ( 𝐴  CNF  𝐵 )  Isom  𝑇 ,   E  ( 𝑆 ,  ( 𝐴  ↑o  𝐵 ) )  →  ( 𝐴  CNF  𝐵 ) : 𝑆 –1-1-onto→ ( 𝐴  ↑o  𝐵 ) ) | 
						
							| 7 |  | f1orel | ⊢ ( ( 𝐴  CNF  𝐵 ) : 𝑆 –1-1-onto→ ( 𝐴  ↑o  𝐵 )  →  Rel  ( 𝐴  CNF  𝐵 ) ) | 
						
							| 8 | 5 6 7 | 3syl | ⊢ ( 𝜑  →  Rel  ( 𝐴  CNF  𝐵 ) ) | 
						
							| 9 |  | dfrel2 | ⊢ ( Rel  ( 𝐴  CNF  𝐵 )  ↔  ◡ ◡ ( 𝐴  CNF  𝐵 )  =  ( 𝐴  CNF  𝐵 ) ) | 
						
							| 10 | 8 9 | sylib | ⊢ ( 𝜑  →  ◡ ◡ ( 𝐴  CNF  𝐵 )  =  ( 𝐴  CNF  𝐵 ) ) | 
						
							| 11 |  | oecl | ⊢ ( ( 𝐴  ∈  On  ∧  𝐵  ∈  On )  →  ( 𝐴  ↑o  𝐵 )  ∈  On ) | 
						
							| 12 | 2 3 11 | syl2anc | ⊢ ( 𝜑  →  ( 𝐴  ↑o  𝐵 )  ∈  On ) | 
						
							| 13 |  | eloni | ⊢ ( ( 𝐴  ↑o  𝐵 )  ∈  On  →  Ord  ( 𝐴  ↑o  𝐵 ) ) | 
						
							| 14 | 12 13 | syl | ⊢ ( 𝜑  →  Ord  ( 𝐴  ↑o  𝐵 ) ) | 
						
							| 15 |  | isocnv | ⊢ ( ( 𝐴  CNF  𝐵 )  Isom  𝑇 ,   E  ( 𝑆 ,  ( 𝐴  ↑o  𝐵 ) )  →  ◡ ( 𝐴  CNF  𝐵 )  Isom   E  ,  𝑇 ( ( 𝐴  ↑o  𝐵 ) ,  𝑆 ) ) | 
						
							| 16 | 5 15 | syl | ⊢ ( 𝜑  →  ◡ ( 𝐴  CNF  𝐵 )  Isom   E  ,  𝑇 ( ( 𝐴  ↑o  𝐵 ) ,  𝑆 ) ) | 
						
							| 17 | 1 2 3 4 | oemapwe | ⊢ ( 𝜑  →  ( 𝑇  We  𝑆  ∧  dom  OrdIso ( 𝑇 ,  𝑆 )  =  ( 𝐴  ↑o  𝐵 ) ) ) | 
						
							| 18 | 17 | simpld | ⊢ ( 𝜑  →  𝑇  We  𝑆 ) | 
						
							| 19 |  | ovex | ⊢ ( 𝐴  CNF  𝐵 )  ∈  V | 
						
							| 20 | 19 | dmex | ⊢ dom  ( 𝐴  CNF  𝐵 )  ∈  V | 
						
							| 21 | 1 20 | eqeltri | ⊢ 𝑆  ∈  V | 
						
							| 22 |  | exse | ⊢ ( 𝑆  ∈  V  →  𝑇  Se  𝑆 ) | 
						
							| 23 | 21 22 | ax-mp | ⊢ 𝑇  Se  𝑆 | 
						
							| 24 |  | eqid | ⊢ OrdIso ( 𝑇 ,  𝑆 )  =  OrdIso ( 𝑇 ,  𝑆 ) | 
						
							| 25 | 24 | oieu | ⊢ ( ( 𝑇  We  𝑆  ∧  𝑇  Se  𝑆 )  →  ( ( Ord  ( 𝐴  ↑o  𝐵 )  ∧  ◡ ( 𝐴  CNF  𝐵 )  Isom   E  ,  𝑇 ( ( 𝐴  ↑o  𝐵 ) ,  𝑆 ) )  ↔  ( ( 𝐴  ↑o  𝐵 )  =  dom  OrdIso ( 𝑇 ,  𝑆 )  ∧  ◡ ( 𝐴  CNF  𝐵 )  =  OrdIso ( 𝑇 ,  𝑆 ) ) ) ) | 
						
							| 26 | 18 23 25 | sylancl | ⊢ ( 𝜑  →  ( ( Ord  ( 𝐴  ↑o  𝐵 )  ∧  ◡ ( 𝐴  CNF  𝐵 )  Isom   E  ,  𝑇 ( ( 𝐴  ↑o  𝐵 ) ,  𝑆 ) )  ↔  ( ( 𝐴  ↑o  𝐵 )  =  dom  OrdIso ( 𝑇 ,  𝑆 )  ∧  ◡ ( 𝐴  CNF  𝐵 )  =  OrdIso ( 𝑇 ,  𝑆 ) ) ) ) | 
						
							| 27 | 14 16 26 | mpbi2and | ⊢ ( 𝜑  →  ( ( 𝐴  ↑o  𝐵 )  =  dom  OrdIso ( 𝑇 ,  𝑆 )  ∧  ◡ ( 𝐴  CNF  𝐵 )  =  OrdIso ( 𝑇 ,  𝑆 ) ) ) | 
						
							| 28 | 27 | simprd | ⊢ ( 𝜑  →  ◡ ( 𝐴  CNF  𝐵 )  =  OrdIso ( 𝑇 ,  𝑆 ) ) | 
						
							| 29 | 28 | cnveqd | ⊢ ( 𝜑  →  ◡ ◡ ( 𝐴  CNF  𝐵 )  =  ◡ OrdIso ( 𝑇 ,  𝑆 ) ) | 
						
							| 30 | 10 29 | eqtr3d | ⊢ ( 𝜑  →  ( 𝐴  CNF  𝐵 )  =  ◡ OrdIso ( 𝑇 ,  𝑆 ) ) |