Step |
Hyp |
Ref |
Expression |
1 |
|
cantnfs.s |
⊢ 𝑆 = dom ( 𝐴 CNF 𝐵 ) |
2 |
|
cantnfs.a |
⊢ ( 𝜑 → 𝐴 ∈ On ) |
3 |
|
cantnfs.b |
⊢ ( 𝜑 → 𝐵 ∈ On ) |
4 |
|
cantnfcl.g |
⊢ 𝐺 = OrdIso ( E , ( 𝐹 supp ∅ ) ) |
5 |
|
cantnfcl.f |
⊢ ( 𝜑 → 𝐹 ∈ 𝑆 ) |
6 |
|
cantnfval.h |
⊢ 𝐻 = seqω ( ( 𝑘 ∈ V , 𝑧 ∈ V ↦ ( ( ( 𝐴 ↑o ( 𝐺 ‘ 𝑘 ) ) ·o ( 𝐹 ‘ ( 𝐺 ‘ 𝑘 ) ) ) +o 𝑧 ) ) , ∅ ) |
7 |
|
cantnfle.c |
⊢ ( 𝜑 → 𝐶 ∈ 𝐵 ) |
8 |
|
oveq2 |
⊢ ( ( 𝐹 ‘ 𝐶 ) = ∅ → ( ( 𝐴 ↑o 𝐶 ) ·o ( 𝐹 ‘ 𝐶 ) ) = ( ( 𝐴 ↑o 𝐶 ) ·o ∅ ) ) |
9 |
8
|
sseq1d |
⊢ ( ( 𝐹 ‘ 𝐶 ) = ∅ → ( ( ( 𝐴 ↑o 𝐶 ) ·o ( 𝐹 ‘ 𝐶 ) ) ⊆ ( ( 𝐴 CNF 𝐵 ) ‘ 𝐹 ) ↔ ( ( 𝐴 ↑o 𝐶 ) ·o ∅ ) ⊆ ( ( 𝐴 CNF 𝐵 ) ‘ 𝐹 ) ) ) |
10 |
|
ovexd |
⊢ ( 𝜑 → ( 𝐹 supp ∅ ) ∈ V ) |
11 |
1 2 3 4 5
|
cantnfcl |
⊢ ( 𝜑 → ( E We ( 𝐹 supp ∅ ) ∧ dom 𝐺 ∈ ω ) ) |
12 |
11
|
simpld |
⊢ ( 𝜑 → E We ( 𝐹 supp ∅ ) ) |
13 |
4
|
oiiso |
⊢ ( ( ( 𝐹 supp ∅ ) ∈ V ∧ E We ( 𝐹 supp ∅ ) ) → 𝐺 Isom E , E ( dom 𝐺 , ( 𝐹 supp ∅ ) ) ) |
14 |
10 12 13
|
syl2anc |
⊢ ( 𝜑 → 𝐺 Isom E , E ( dom 𝐺 , ( 𝐹 supp ∅ ) ) ) |
15 |
|
isof1o |
⊢ ( 𝐺 Isom E , E ( dom 𝐺 , ( 𝐹 supp ∅ ) ) → 𝐺 : dom 𝐺 –1-1-onto→ ( 𝐹 supp ∅ ) ) |
16 |
14 15
|
syl |
⊢ ( 𝜑 → 𝐺 : dom 𝐺 –1-1-onto→ ( 𝐹 supp ∅ ) ) |
17 |
16
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝐹 ‘ 𝐶 ) ≠ ∅ ) → 𝐺 : dom 𝐺 –1-1-onto→ ( 𝐹 supp ∅ ) ) |
18 |
|
f1ocnv |
⊢ ( 𝐺 : dom 𝐺 –1-1-onto→ ( 𝐹 supp ∅ ) → ◡ 𝐺 : ( 𝐹 supp ∅ ) –1-1-onto→ dom 𝐺 ) |
19 |
|
f1of |
⊢ ( ◡ 𝐺 : ( 𝐹 supp ∅ ) –1-1-onto→ dom 𝐺 → ◡ 𝐺 : ( 𝐹 supp ∅ ) ⟶ dom 𝐺 ) |
20 |
17 18 19
|
3syl |
⊢ ( ( 𝜑 ∧ ( 𝐹 ‘ 𝐶 ) ≠ ∅ ) → ◡ 𝐺 : ( 𝐹 supp ∅ ) ⟶ dom 𝐺 ) |
21 |
7
|
anim1i |
⊢ ( ( 𝜑 ∧ ( 𝐹 ‘ 𝐶 ) ≠ ∅ ) → ( 𝐶 ∈ 𝐵 ∧ ( 𝐹 ‘ 𝐶 ) ≠ ∅ ) ) |
22 |
1 2 3
|
cantnfs |
⊢ ( 𝜑 → ( 𝐹 ∈ 𝑆 ↔ ( 𝐹 : 𝐵 ⟶ 𝐴 ∧ 𝐹 finSupp ∅ ) ) ) |
23 |
5 22
|
mpbid |
⊢ ( 𝜑 → ( 𝐹 : 𝐵 ⟶ 𝐴 ∧ 𝐹 finSupp ∅ ) ) |
24 |
23
|
simpld |
⊢ ( 𝜑 → 𝐹 : 𝐵 ⟶ 𝐴 ) |
25 |
24
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝐹 ‘ 𝐶 ) ≠ ∅ ) → 𝐹 : 𝐵 ⟶ 𝐴 ) |
26 |
25
|
ffnd |
⊢ ( ( 𝜑 ∧ ( 𝐹 ‘ 𝐶 ) ≠ ∅ ) → 𝐹 Fn 𝐵 ) |
27 |
3
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝐹 ‘ 𝐶 ) ≠ ∅ ) → 𝐵 ∈ On ) |
28 |
|
0ex |
⊢ ∅ ∈ V |
29 |
28
|
a1i |
⊢ ( ( 𝜑 ∧ ( 𝐹 ‘ 𝐶 ) ≠ ∅ ) → ∅ ∈ V ) |
30 |
|
elsuppfn |
⊢ ( ( 𝐹 Fn 𝐵 ∧ 𝐵 ∈ On ∧ ∅ ∈ V ) → ( 𝐶 ∈ ( 𝐹 supp ∅ ) ↔ ( 𝐶 ∈ 𝐵 ∧ ( 𝐹 ‘ 𝐶 ) ≠ ∅ ) ) ) |
31 |
26 27 29 30
|
syl3anc |
⊢ ( ( 𝜑 ∧ ( 𝐹 ‘ 𝐶 ) ≠ ∅ ) → ( 𝐶 ∈ ( 𝐹 supp ∅ ) ↔ ( 𝐶 ∈ 𝐵 ∧ ( 𝐹 ‘ 𝐶 ) ≠ ∅ ) ) ) |
32 |
21 31
|
mpbird |
⊢ ( ( 𝜑 ∧ ( 𝐹 ‘ 𝐶 ) ≠ ∅ ) → 𝐶 ∈ ( 𝐹 supp ∅ ) ) |
33 |
20 32
|
ffvelrnd |
⊢ ( ( 𝜑 ∧ ( 𝐹 ‘ 𝐶 ) ≠ ∅ ) → ( ◡ 𝐺 ‘ 𝐶 ) ∈ dom 𝐺 ) |
34 |
11
|
simprd |
⊢ ( 𝜑 → dom 𝐺 ∈ ω ) |
35 |
34
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝐹 ‘ 𝐶 ) ≠ ∅ ) → dom 𝐺 ∈ ω ) |
36 |
|
eqimss |
⊢ ( 𝑥 = dom 𝐺 → 𝑥 ⊆ dom 𝐺 ) |
37 |
36
|
biantrurd |
⊢ ( 𝑥 = dom 𝐺 → ( ( ◡ 𝐺 ‘ 𝐶 ) ∈ 𝑥 ↔ ( 𝑥 ⊆ dom 𝐺 ∧ ( ◡ 𝐺 ‘ 𝐶 ) ∈ 𝑥 ) ) ) |
38 |
|
eleq2 |
⊢ ( 𝑥 = dom 𝐺 → ( ( ◡ 𝐺 ‘ 𝐶 ) ∈ 𝑥 ↔ ( ◡ 𝐺 ‘ 𝐶 ) ∈ dom 𝐺 ) ) |
39 |
37 38
|
bitr3d |
⊢ ( 𝑥 = dom 𝐺 → ( ( 𝑥 ⊆ dom 𝐺 ∧ ( ◡ 𝐺 ‘ 𝐶 ) ∈ 𝑥 ) ↔ ( ◡ 𝐺 ‘ 𝐶 ) ∈ dom 𝐺 ) ) |
40 |
|
fveq2 |
⊢ ( 𝑥 = dom 𝐺 → ( 𝐻 ‘ 𝑥 ) = ( 𝐻 ‘ dom 𝐺 ) ) |
41 |
40
|
sseq2d |
⊢ ( 𝑥 = dom 𝐺 → ( ( ( 𝐴 ↑o 𝐶 ) ·o ( 𝐹 ‘ 𝐶 ) ) ⊆ ( 𝐻 ‘ 𝑥 ) ↔ ( ( 𝐴 ↑o 𝐶 ) ·o ( 𝐹 ‘ 𝐶 ) ) ⊆ ( 𝐻 ‘ dom 𝐺 ) ) ) |
42 |
39 41
|
imbi12d |
⊢ ( 𝑥 = dom 𝐺 → ( ( ( 𝑥 ⊆ dom 𝐺 ∧ ( ◡ 𝐺 ‘ 𝐶 ) ∈ 𝑥 ) → ( ( 𝐴 ↑o 𝐶 ) ·o ( 𝐹 ‘ 𝐶 ) ) ⊆ ( 𝐻 ‘ 𝑥 ) ) ↔ ( ( ◡ 𝐺 ‘ 𝐶 ) ∈ dom 𝐺 → ( ( 𝐴 ↑o 𝐶 ) ·o ( 𝐹 ‘ 𝐶 ) ) ⊆ ( 𝐻 ‘ dom 𝐺 ) ) ) ) |
43 |
42
|
imbi2d |
⊢ ( 𝑥 = dom 𝐺 → ( ( ( 𝜑 ∧ ( 𝐹 ‘ 𝐶 ) ≠ ∅ ) → ( ( 𝑥 ⊆ dom 𝐺 ∧ ( ◡ 𝐺 ‘ 𝐶 ) ∈ 𝑥 ) → ( ( 𝐴 ↑o 𝐶 ) ·o ( 𝐹 ‘ 𝐶 ) ) ⊆ ( 𝐻 ‘ 𝑥 ) ) ) ↔ ( ( 𝜑 ∧ ( 𝐹 ‘ 𝐶 ) ≠ ∅ ) → ( ( ◡ 𝐺 ‘ 𝐶 ) ∈ dom 𝐺 → ( ( 𝐴 ↑o 𝐶 ) ·o ( 𝐹 ‘ 𝐶 ) ) ⊆ ( 𝐻 ‘ dom 𝐺 ) ) ) ) ) |
44 |
|
sseq1 |
⊢ ( 𝑥 = ∅ → ( 𝑥 ⊆ dom 𝐺 ↔ ∅ ⊆ dom 𝐺 ) ) |
45 |
|
eleq2 |
⊢ ( 𝑥 = ∅ → ( ( ◡ 𝐺 ‘ 𝐶 ) ∈ 𝑥 ↔ ( ◡ 𝐺 ‘ 𝐶 ) ∈ ∅ ) ) |
46 |
44 45
|
anbi12d |
⊢ ( 𝑥 = ∅ → ( ( 𝑥 ⊆ dom 𝐺 ∧ ( ◡ 𝐺 ‘ 𝐶 ) ∈ 𝑥 ) ↔ ( ∅ ⊆ dom 𝐺 ∧ ( ◡ 𝐺 ‘ 𝐶 ) ∈ ∅ ) ) ) |
47 |
|
fveq2 |
⊢ ( 𝑥 = ∅ → ( 𝐻 ‘ 𝑥 ) = ( 𝐻 ‘ ∅ ) ) |
48 |
47
|
sseq2d |
⊢ ( 𝑥 = ∅ → ( ( ( 𝐴 ↑o 𝐶 ) ·o ( 𝐹 ‘ 𝐶 ) ) ⊆ ( 𝐻 ‘ 𝑥 ) ↔ ( ( 𝐴 ↑o 𝐶 ) ·o ( 𝐹 ‘ 𝐶 ) ) ⊆ ( 𝐻 ‘ ∅ ) ) ) |
49 |
46 48
|
imbi12d |
⊢ ( 𝑥 = ∅ → ( ( ( 𝑥 ⊆ dom 𝐺 ∧ ( ◡ 𝐺 ‘ 𝐶 ) ∈ 𝑥 ) → ( ( 𝐴 ↑o 𝐶 ) ·o ( 𝐹 ‘ 𝐶 ) ) ⊆ ( 𝐻 ‘ 𝑥 ) ) ↔ ( ( ∅ ⊆ dom 𝐺 ∧ ( ◡ 𝐺 ‘ 𝐶 ) ∈ ∅ ) → ( ( 𝐴 ↑o 𝐶 ) ·o ( 𝐹 ‘ 𝐶 ) ) ⊆ ( 𝐻 ‘ ∅ ) ) ) ) |
50 |
|
sseq1 |
⊢ ( 𝑥 = 𝑦 → ( 𝑥 ⊆ dom 𝐺 ↔ 𝑦 ⊆ dom 𝐺 ) ) |
51 |
|
eleq2 |
⊢ ( 𝑥 = 𝑦 → ( ( ◡ 𝐺 ‘ 𝐶 ) ∈ 𝑥 ↔ ( ◡ 𝐺 ‘ 𝐶 ) ∈ 𝑦 ) ) |
52 |
50 51
|
anbi12d |
⊢ ( 𝑥 = 𝑦 → ( ( 𝑥 ⊆ dom 𝐺 ∧ ( ◡ 𝐺 ‘ 𝐶 ) ∈ 𝑥 ) ↔ ( 𝑦 ⊆ dom 𝐺 ∧ ( ◡ 𝐺 ‘ 𝐶 ) ∈ 𝑦 ) ) ) |
53 |
|
fveq2 |
⊢ ( 𝑥 = 𝑦 → ( 𝐻 ‘ 𝑥 ) = ( 𝐻 ‘ 𝑦 ) ) |
54 |
53
|
sseq2d |
⊢ ( 𝑥 = 𝑦 → ( ( ( 𝐴 ↑o 𝐶 ) ·o ( 𝐹 ‘ 𝐶 ) ) ⊆ ( 𝐻 ‘ 𝑥 ) ↔ ( ( 𝐴 ↑o 𝐶 ) ·o ( 𝐹 ‘ 𝐶 ) ) ⊆ ( 𝐻 ‘ 𝑦 ) ) ) |
55 |
52 54
|
imbi12d |
⊢ ( 𝑥 = 𝑦 → ( ( ( 𝑥 ⊆ dom 𝐺 ∧ ( ◡ 𝐺 ‘ 𝐶 ) ∈ 𝑥 ) → ( ( 𝐴 ↑o 𝐶 ) ·o ( 𝐹 ‘ 𝐶 ) ) ⊆ ( 𝐻 ‘ 𝑥 ) ) ↔ ( ( 𝑦 ⊆ dom 𝐺 ∧ ( ◡ 𝐺 ‘ 𝐶 ) ∈ 𝑦 ) → ( ( 𝐴 ↑o 𝐶 ) ·o ( 𝐹 ‘ 𝐶 ) ) ⊆ ( 𝐻 ‘ 𝑦 ) ) ) ) |
56 |
|
sseq1 |
⊢ ( 𝑥 = suc 𝑦 → ( 𝑥 ⊆ dom 𝐺 ↔ suc 𝑦 ⊆ dom 𝐺 ) ) |
57 |
|
eleq2 |
⊢ ( 𝑥 = suc 𝑦 → ( ( ◡ 𝐺 ‘ 𝐶 ) ∈ 𝑥 ↔ ( ◡ 𝐺 ‘ 𝐶 ) ∈ suc 𝑦 ) ) |
58 |
56 57
|
anbi12d |
⊢ ( 𝑥 = suc 𝑦 → ( ( 𝑥 ⊆ dom 𝐺 ∧ ( ◡ 𝐺 ‘ 𝐶 ) ∈ 𝑥 ) ↔ ( suc 𝑦 ⊆ dom 𝐺 ∧ ( ◡ 𝐺 ‘ 𝐶 ) ∈ suc 𝑦 ) ) ) |
59 |
|
fveq2 |
⊢ ( 𝑥 = suc 𝑦 → ( 𝐻 ‘ 𝑥 ) = ( 𝐻 ‘ suc 𝑦 ) ) |
60 |
59
|
sseq2d |
⊢ ( 𝑥 = suc 𝑦 → ( ( ( 𝐴 ↑o 𝐶 ) ·o ( 𝐹 ‘ 𝐶 ) ) ⊆ ( 𝐻 ‘ 𝑥 ) ↔ ( ( 𝐴 ↑o 𝐶 ) ·o ( 𝐹 ‘ 𝐶 ) ) ⊆ ( 𝐻 ‘ suc 𝑦 ) ) ) |
61 |
58 60
|
imbi12d |
⊢ ( 𝑥 = suc 𝑦 → ( ( ( 𝑥 ⊆ dom 𝐺 ∧ ( ◡ 𝐺 ‘ 𝐶 ) ∈ 𝑥 ) → ( ( 𝐴 ↑o 𝐶 ) ·o ( 𝐹 ‘ 𝐶 ) ) ⊆ ( 𝐻 ‘ 𝑥 ) ) ↔ ( ( suc 𝑦 ⊆ dom 𝐺 ∧ ( ◡ 𝐺 ‘ 𝐶 ) ∈ suc 𝑦 ) → ( ( 𝐴 ↑o 𝐶 ) ·o ( 𝐹 ‘ 𝐶 ) ) ⊆ ( 𝐻 ‘ suc 𝑦 ) ) ) ) |
62 |
|
noel |
⊢ ¬ ( ◡ 𝐺 ‘ 𝐶 ) ∈ ∅ |
63 |
62
|
pm2.21i |
⊢ ( ( ◡ 𝐺 ‘ 𝐶 ) ∈ ∅ → ( ( 𝐴 ↑o 𝐶 ) ·o ( 𝐹 ‘ 𝐶 ) ) ⊆ ( 𝐻 ‘ ∅ ) ) |
64 |
63
|
adantl |
⊢ ( ( ∅ ⊆ dom 𝐺 ∧ ( ◡ 𝐺 ‘ 𝐶 ) ∈ ∅ ) → ( ( 𝐴 ↑o 𝐶 ) ·o ( 𝐹 ‘ 𝐶 ) ) ⊆ ( 𝐻 ‘ ∅ ) ) |
65 |
64
|
a1i |
⊢ ( ( 𝜑 ∧ ( 𝐹 ‘ 𝐶 ) ≠ ∅ ) → ( ( ∅ ⊆ dom 𝐺 ∧ ( ◡ 𝐺 ‘ 𝐶 ) ∈ ∅ ) → ( ( 𝐴 ↑o 𝐶 ) ·o ( 𝐹 ‘ 𝐶 ) ) ⊆ ( 𝐻 ‘ ∅ ) ) ) |
66 |
|
fvex |
⊢ ( ◡ 𝐺 ‘ 𝐶 ) ∈ V |
67 |
66
|
elsuc |
⊢ ( ( ◡ 𝐺 ‘ 𝐶 ) ∈ suc 𝑦 ↔ ( ( ◡ 𝐺 ‘ 𝐶 ) ∈ 𝑦 ∨ ( ◡ 𝐺 ‘ 𝐶 ) = 𝑦 ) ) |
68 |
|
sssucid |
⊢ 𝑦 ⊆ suc 𝑦 |
69 |
|
sstr |
⊢ ( ( 𝑦 ⊆ suc 𝑦 ∧ suc 𝑦 ⊆ dom 𝐺 ) → 𝑦 ⊆ dom 𝐺 ) |
70 |
68 69
|
mpan |
⊢ ( suc 𝑦 ⊆ dom 𝐺 → 𝑦 ⊆ dom 𝐺 ) |
71 |
70
|
ad2antrl |
⊢ ( ( ( ( 𝜑 ∧ ( 𝐹 ‘ 𝐶 ) ≠ ∅ ) ∧ 𝑦 ∈ ω ) ∧ ( suc 𝑦 ⊆ dom 𝐺 ∧ ( ◡ 𝐺 ‘ 𝐶 ) ∈ 𝑦 ) ) → 𝑦 ⊆ dom 𝐺 ) |
72 |
|
simprr |
⊢ ( ( ( ( 𝜑 ∧ ( 𝐹 ‘ 𝐶 ) ≠ ∅ ) ∧ 𝑦 ∈ ω ) ∧ ( suc 𝑦 ⊆ dom 𝐺 ∧ ( ◡ 𝐺 ‘ 𝐶 ) ∈ 𝑦 ) ) → ( ◡ 𝐺 ‘ 𝐶 ) ∈ 𝑦 ) |
73 |
|
pm2.27 |
⊢ ( ( 𝑦 ⊆ dom 𝐺 ∧ ( ◡ 𝐺 ‘ 𝐶 ) ∈ 𝑦 ) → ( ( ( 𝑦 ⊆ dom 𝐺 ∧ ( ◡ 𝐺 ‘ 𝐶 ) ∈ 𝑦 ) → ( ( 𝐴 ↑o 𝐶 ) ·o ( 𝐹 ‘ 𝐶 ) ) ⊆ ( 𝐻 ‘ 𝑦 ) ) → ( ( 𝐴 ↑o 𝐶 ) ·o ( 𝐹 ‘ 𝐶 ) ) ⊆ ( 𝐻 ‘ 𝑦 ) ) ) |
74 |
71 72 73
|
syl2anc |
⊢ ( ( ( ( 𝜑 ∧ ( 𝐹 ‘ 𝐶 ) ≠ ∅ ) ∧ 𝑦 ∈ ω ) ∧ ( suc 𝑦 ⊆ dom 𝐺 ∧ ( ◡ 𝐺 ‘ 𝐶 ) ∈ 𝑦 ) ) → ( ( ( 𝑦 ⊆ dom 𝐺 ∧ ( ◡ 𝐺 ‘ 𝐶 ) ∈ 𝑦 ) → ( ( 𝐴 ↑o 𝐶 ) ·o ( 𝐹 ‘ 𝐶 ) ) ⊆ ( 𝐻 ‘ 𝑦 ) ) → ( ( 𝐴 ↑o 𝐶 ) ·o ( 𝐹 ‘ 𝐶 ) ) ⊆ ( 𝐻 ‘ 𝑦 ) ) ) |
75 |
6
|
cantnfvalf |
⊢ 𝐻 : ω ⟶ On |
76 |
75
|
ffvelrni |
⊢ ( 𝑦 ∈ ω → ( 𝐻 ‘ 𝑦 ) ∈ On ) |
77 |
76
|
ad2antlr |
⊢ ( ( ( ( 𝜑 ∧ ( 𝐹 ‘ 𝐶 ) ≠ ∅ ) ∧ 𝑦 ∈ ω ) ∧ suc 𝑦 ⊆ dom 𝐺 ) → ( 𝐻 ‘ 𝑦 ) ∈ On ) |
78 |
2
|
ad3antrrr |
⊢ ( ( ( ( 𝜑 ∧ ( 𝐹 ‘ 𝐶 ) ≠ ∅ ) ∧ 𝑦 ∈ ω ) ∧ suc 𝑦 ⊆ dom 𝐺 ) → 𝐴 ∈ On ) |
79 |
3
|
ad3antrrr |
⊢ ( ( ( ( 𝜑 ∧ ( 𝐹 ‘ 𝐶 ) ≠ ∅ ) ∧ 𝑦 ∈ ω ) ∧ suc 𝑦 ⊆ dom 𝐺 ) → 𝐵 ∈ On ) |
80 |
|
suppssdm |
⊢ ( 𝐹 supp ∅ ) ⊆ dom 𝐹 |
81 |
80 24
|
fssdm |
⊢ ( 𝜑 → ( 𝐹 supp ∅ ) ⊆ 𝐵 ) |
82 |
81
|
ad3antrrr |
⊢ ( ( ( ( 𝜑 ∧ ( 𝐹 ‘ 𝐶 ) ≠ ∅ ) ∧ 𝑦 ∈ ω ) ∧ suc 𝑦 ⊆ dom 𝐺 ) → ( 𝐹 supp ∅ ) ⊆ 𝐵 ) |
83 |
|
simpr |
⊢ ( ( ( ( 𝜑 ∧ ( 𝐹 ‘ 𝐶 ) ≠ ∅ ) ∧ 𝑦 ∈ ω ) ∧ suc 𝑦 ⊆ dom 𝐺 ) → suc 𝑦 ⊆ dom 𝐺 ) |
84 |
|
sucidg |
⊢ ( 𝑦 ∈ ω → 𝑦 ∈ suc 𝑦 ) |
85 |
84
|
ad2antlr |
⊢ ( ( ( ( 𝜑 ∧ ( 𝐹 ‘ 𝐶 ) ≠ ∅ ) ∧ 𝑦 ∈ ω ) ∧ suc 𝑦 ⊆ dom 𝐺 ) → 𝑦 ∈ suc 𝑦 ) |
86 |
83 85
|
sseldd |
⊢ ( ( ( ( 𝜑 ∧ ( 𝐹 ‘ 𝐶 ) ≠ ∅ ) ∧ 𝑦 ∈ ω ) ∧ suc 𝑦 ⊆ dom 𝐺 ) → 𝑦 ∈ dom 𝐺 ) |
87 |
4
|
oif |
⊢ 𝐺 : dom 𝐺 ⟶ ( 𝐹 supp ∅ ) |
88 |
87
|
ffvelrni |
⊢ ( 𝑦 ∈ dom 𝐺 → ( 𝐺 ‘ 𝑦 ) ∈ ( 𝐹 supp ∅ ) ) |
89 |
86 88
|
syl |
⊢ ( ( ( ( 𝜑 ∧ ( 𝐹 ‘ 𝐶 ) ≠ ∅ ) ∧ 𝑦 ∈ ω ) ∧ suc 𝑦 ⊆ dom 𝐺 ) → ( 𝐺 ‘ 𝑦 ) ∈ ( 𝐹 supp ∅ ) ) |
90 |
82 89
|
sseldd |
⊢ ( ( ( ( 𝜑 ∧ ( 𝐹 ‘ 𝐶 ) ≠ ∅ ) ∧ 𝑦 ∈ ω ) ∧ suc 𝑦 ⊆ dom 𝐺 ) → ( 𝐺 ‘ 𝑦 ) ∈ 𝐵 ) |
91 |
|
onelon |
⊢ ( ( 𝐵 ∈ On ∧ ( 𝐺 ‘ 𝑦 ) ∈ 𝐵 ) → ( 𝐺 ‘ 𝑦 ) ∈ On ) |
92 |
79 90 91
|
syl2anc |
⊢ ( ( ( ( 𝜑 ∧ ( 𝐹 ‘ 𝐶 ) ≠ ∅ ) ∧ 𝑦 ∈ ω ) ∧ suc 𝑦 ⊆ dom 𝐺 ) → ( 𝐺 ‘ 𝑦 ) ∈ On ) |
93 |
|
oecl |
⊢ ( ( 𝐴 ∈ On ∧ ( 𝐺 ‘ 𝑦 ) ∈ On ) → ( 𝐴 ↑o ( 𝐺 ‘ 𝑦 ) ) ∈ On ) |
94 |
78 92 93
|
syl2anc |
⊢ ( ( ( ( 𝜑 ∧ ( 𝐹 ‘ 𝐶 ) ≠ ∅ ) ∧ 𝑦 ∈ ω ) ∧ suc 𝑦 ⊆ dom 𝐺 ) → ( 𝐴 ↑o ( 𝐺 ‘ 𝑦 ) ) ∈ On ) |
95 |
24
|
ad3antrrr |
⊢ ( ( ( ( 𝜑 ∧ ( 𝐹 ‘ 𝐶 ) ≠ ∅ ) ∧ 𝑦 ∈ ω ) ∧ suc 𝑦 ⊆ dom 𝐺 ) → 𝐹 : 𝐵 ⟶ 𝐴 ) |
96 |
95 90
|
ffvelrnd |
⊢ ( ( ( ( 𝜑 ∧ ( 𝐹 ‘ 𝐶 ) ≠ ∅ ) ∧ 𝑦 ∈ ω ) ∧ suc 𝑦 ⊆ dom 𝐺 ) → ( 𝐹 ‘ ( 𝐺 ‘ 𝑦 ) ) ∈ 𝐴 ) |
97 |
|
onelon |
⊢ ( ( 𝐴 ∈ On ∧ ( 𝐹 ‘ ( 𝐺 ‘ 𝑦 ) ) ∈ 𝐴 ) → ( 𝐹 ‘ ( 𝐺 ‘ 𝑦 ) ) ∈ On ) |
98 |
78 96 97
|
syl2anc |
⊢ ( ( ( ( 𝜑 ∧ ( 𝐹 ‘ 𝐶 ) ≠ ∅ ) ∧ 𝑦 ∈ ω ) ∧ suc 𝑦 ⊆ dom 𝐺 ) → ( 𝐹 ‘ ( 𝐺 ‘ 𝑦 ) ) ∈ On ) |
99 |
|
omcl |
⊢ ( ( ( 𝐴 ↑o ( 𝐺 ‘ 𝑦 ) ) ∈ On ∧ ( 𝐹 ‘ ( 𝐺 ‘ 𝑦 ) ) ∈ On ) → ( ( 𝐴 ↑o ( 𝐺 ‘ 𝑦 ) ) ·o ( 𝐹 ‘ ( 𝐺 ‘ 𝑦 ) ) ) ∈ On ) |
100 |
94 98 99
|
syl2anc |
⊢ ( ( ( ( 𝜑 ∧ ( 𝐹 ‘ 𝐶 ) ≠ ∅ ) ∧ 𝑦 ∈ ω ) ∧ suc 𝑦 ⊆ dom 𝐺 ) → ( ( 𝐴 ↑o ( 𝐺 ‘ 𝑦 ) ) ·o ( 𝐹 ‘ ( 𝐺 ‘ 𝑦 ) ) ) ∈ On ) |
101 |
|
oaword2 |
⊢ ( ( ( 𝐻 ‘ 𝑦 ) ∈ On ∧ ( ( 𝐴 ↑o ( 𝐺 ‘ 𝑦 ) ) ·o ( 𝐹 ‘ ( 𝐺 ‘ 𝑦 ) ) ) ∈ On ) → ( 𝐻 ‘ 𝑦 ) ⊆ ( ( ( 𝐴 ↑o ( 𝐺 ‘ 𝑦 ) ) ·o ( 𝐹 ‘ ( 𝐺 ‘ 𝑦 ) ) ) +o ( 𝐻 ‘ 𝑦 ) ) ) |
102 |
77 100 101
|
syl2anc |
⊢ ( ( ( ( 𝜑 ∧ ( 𝐹 ‘ 𝐶 ) ≠ ∅ ) ∧ 𝑦 ∈ ω ) ∧ suc 𝑦 ⊆ dom 𝐺 ) → ( 𝐻 ‘ 𝑦 ) ⊆ ( ( ( 𝐴 ↑o ( 𝐺 ‘ 𝑦 ) ) ·o ( 𝐹 ‘ ( 𝐺 ‘ 𝑦 ) ) ) +o ( 𝐻 ‘ 𝑦 ) ) ) |
103 |
1 2 3 4 5 6
|
cantnfsuc |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ ω ) → ( 𝐻 ‘ suc 𝑦 ) = ( ( ( 𝐴 ↑o ( 𝐺 ‘ 𝑦 ) ) ·o ( 𝐹 ‘ ( 𝐺 ‘ 𝑦 ) ) ) +o ( 𝐻 ‘ 𝑦 ) ) ) |
104 |
103
|
ad4ant13 |
⊢ ( ( ( ( 𝜑 ∧ ( 𝐹 ‘ 𝐶 ) ≠ ∅ ) ∧ 𝑦 ∈ ω ) ∧ suc 𝑦 ⊆ dom 𝐺 ) → ( 𝐻 ‘ suc 𝑦 ) = ( ( ( 𝐴 ↑o ( 𝐺 ‘ 𝑦 ) ) ·o ( 𝐹 ‘ ( 𝐺 ‘ 𝑦 ) ) ) +o ( 𝐻 ‘ 𝑦 ) ) ) |
105 |
102 104
|
sseqtrrd |
⊢ ( ( ( ( 𝜑 ∧ ( 𝐹 ‘ 𝐶 ) ≠ ∅ ) ∧ 𝑦 ∈ ω ) ∧ suc 𝑦 ⊆ dom 𝐺 ) → ( 𝐻 ‘ 𝑦 ) ⊆ ( 𝐻 ‘ suc 𝑦 ) ) |
106 |
|
sstr |
⊢ ( ( ( ( 𝐴 ↑o 𝐶 ) ·o ( 𝐹 ‘ 𝐶 ) ) ⊆ ( 𝐻 ‘ 𝑦 ) ∧ ( 𝐻 ‘ 𝑦 ) ⊆ ( 𝐻 ‘ suc 𝑦 ) ) → ( ( 𝐴 ↑o 𝐶 ) ·o ( 𝐹 ‘ 𝐶 ) ) ⊆ ( 𝐻 ‘ suc 𝑦 ) ) |
107 |
106
|
expcom |
⊢ ( ( 𝐻 ‘ 𝑦 ) ⊆ ( 𝐻 ‘ suc 𝑦 ) → ( ( ( 𝐴 ↑o 𝐶 ) ·o ( 𝐹 ‘ 𝐶 ) ) ⊆ ( 𝐻 ‘ 𝑦 ) → ( ( 𝐴 ↑o 𝐶 ) ·o ( 𝐹 ‘ 𝐶 ) ) ⊆ ( 𝐻 ‘ suc 𝑦 ) ) ) |
108 |
105 107
|
syl |
⊢ ( ( ( ( 𝜑 ∧ ( 𝐹 ‘ 𝐶 ) ≠ ∅ ) ∧ 𝑦 ∈ ω ) ∧ suc 𝑦 ⊆ dom 𝐺 ) → ( ( ( 𝐴 ↑o 𝐶 ) ·o ( 𝐹 ‘ 𝐶 ) ) ⊆ ( 𝐻 ‘ 𝑦 ) → ( ( 𝐴 ↑o 𝐶 ) ·o ( 𝐹 ‘ 𝐶 ) ) ⊆ ( 𝐻 ‘ suc 𝑦 ) ) ) |
109 |
108
|
adantrr |
⊢ ( ( ( ( 𝜑 ∧ ( 𝐹 ‘ 𝐶 ) ≠ ∅ ) ∧ 𝑦 ∈ ω ) ∧ ( suc 𝑦 ⊆ dom 𝐺 ∧ ( ◡ 𝐺 ‘ 𝐶 ) ∈ 𝑦 ) ) → ( ( ( 𝐴 ↑o 𝐶 ) ·o ( 𝐹 ‘ 𝐶 ) ) ⊆ ( 𝐻 ‘ 𝑦 ) → ( ( 𝐴 ↑o 𝐶 ) ·o ( 𝐹 ‘ 𝐶 ) ) ⊆ ( 𝐻 ‘ suc 𝑦 ) ) ) |
110 |
74 109
|
syld |
⊢ ( ( ( ( 𝜑 ∧ ( 𝐹 ‘ 𝐶 ) ≠ ∅ ) ∧ 𝑦 ∈ ω ) ∧ ( suc 𝑦 ⊆ dom 𝐺 ∧ ( ◡ 𝐺 ‘ 𝐶 ) ∈ 𝑦 ) ) → ( ( ( 𝑦 ⊆ dom 𝐺 ∧ ( ◡ 𝐺 ‘ 𝐶 ) ∈ 𝑦 ) → ( ( 𝐴 ↑o 𝐶 ) ·o ( 𝐹 ‘ 𝐶 ) ) ⊆ ( 𝐻 ‘ 𝑦 ) ) → ( ( 𝐴 ↑o 𝐶 ) ·o ( 𝐹 ‘ 𝐶 ) ) ⊆ ( 𝐻 ‘ suc 𝑦 ) ) ) |
111 |
110
|
expr |
⊢ ( ( ( ( 𝜑 ∧ ( 𝐹 ‘ 𝐶 ) ≠ ∅ ) ∧ 𝑦 ∈ ω ) ∧ suc 𝑦 ⊆ dom 𝐺 ) → ( ( ◡ 𝐺 ‘ 𝐶 ) ∈ 𝑦 → ( ( ( 𝑦 ⊆ dom 𝐺 ∧ ( ◡ 𝐺 ‘ 𝐶 ) ∈ 𝑦 ) → ( ( 𝐴 ↑o 𝐶 ) ·o ( 𝐹 ‘ 𝐶 ) ) ⊆ ( 𝐻 ‘ 𝑦 ) ) → ( ( 𝐴 ↑o 𝐶 ) ·o ( 𝐹 ‘ 𝐶 ) ) ⊆ ( 𝐻 ‘ suc 𝑦 ) ) ) ) |
112 |
|
simprr |
⊢ ( ( ( ( 𝜑 ∧ ( 𝐹 ‘ 𝐶 ) ≠ ∅ ) ∧ 𝑦 ∈ ω ) ∧ ( suc 𝑦 ⊆ dom 𝐺 ∧ ( ◡ 𝐺 ‘ 𝐶 ) = 𝑦 ) ) → ( ◡ 𝐺 ‘ 𝐶 ) = 𝑦 ) |
113 |
112
|
fveq2d |
⊢ ( ( ( ( 𝜑 ∧ ( 𝐹 ‘ 𝐶 ) ≠ ∅ ) ∧ 𝑦 ∈ ω ) ∧ ( suc 𝑦 ⊆ dom 𝐺 ∧ ( ◡ 𝐺 ‘ 𝐶 ) = 𝑦 ) ) → ( 𝐺 ‘ ( ◡ 𝐺 ‘ 𝐶 ) ) = ( 𝐺 ‘ 𝑦 ) ) |
114 |
|
f1ocnvfv2 |
⊢ ( ( 𝐺 : dom 𝐺 –1-1-onto→ ( 𝐹 supp ∅ ) ∧ 𝐶 ∈ ( 𝐹 supp ∅ ) ) → ( 𝐺 ‘ ( ◡ 𝐺 ‘ 𝐶 ) ) = 𝐶 ) |
115 |
17 32 114
|
syl2anc |
⊢ ( ( 𝜑 ∧ ( 𝐹 ‘ 𝐶 ) ≠ ∅ ) → ( 𝐺 ‘ ( ◡ 𝐺 ‘ 𝐶 ) ) = 𝐶 ) |
116 |
115
|
ad2antrr |
⊢ ( ( ( ( 𝜑 ∧ ( 𝐹 ‘ 𝐶 ) ≠ ∅ ) ∧ 𝑦 ∈ ω ) ∧ ( suc 𝑦 ⊆ dom 𝐺 ∧ ( ◡ 𝐺 ‘ 𝐶 ) = 𝑦 ) ) → ( 𝐺 ‘ ( ◡ 𝐺 ‘ 𝐶 ) ) = 𝐶 ) |
117 |
113 116
|
eqtr3d |
⊢ ( ( ( ( 𝜑 ∧ ( 𝐹 ‘ 𝐶 ) ≠ ∅ ) ∧ 𝑦 ∈ ω ) ∧ ( suc 𝑦 ⊆ dom 𝐺 ∧ ( ◡ 𝐺 ‘ 𝐶 ) = 𝑦 ) ) → ( 𝐺 ‘ 𝑦 ) = 𝐶 ) |
118 |
117
|
oveq2d |
⊢ ( ( ( ( 𝜑 ∧ ( 𝐹 ‘ 𝐶 ) ≠ ∅ ) ∧ 𝑦 ∈ ω ) ∧ ( suc 𝑦 ⊆ dom 𝐺 ∧ ( ◡ 𝐺 ‘ 𝐶 ) = 𝑦 ) ) → ( 𝐴 ↑o ( 𝐺 ‘ 𝑦 ) ) = ( 𝐴 ↑o 𝐶 ) ) |
119 |
117
|
fveq2d |
⊢ ( ( ( ( 𝜑 ∧ ( 𝐹 ‘ 𝐶 ) ≠ ∅ ) ∧ 𝑦 ∈ ω ) ∧ ( suc 𝑦 ⊆ dom 𝐺 ∧ ( ◡ 𝐺 ‘ 𝐶 ) = 𝑦 ) ) → ( 𝐹 ‘ ( 𝐺 ‘ 𝑦 ) ) = ( 𝐹 ‘ 𝐶 ) ) |
120 |
118 119
|
oveq12d |
⊢ ( ( ( ( 𝜑 ∧ ( 𝐹 ‘ 𝐶 ) ≠ ∅ ) ∧ 𝑦 ∈ ω ) ∧ ( suc 𝑦 ⊆ dom 𝐺 ∧ ( ◡ 𝐺 ‘ 𝐶 ) = 𝑦 ) ) → ( ( 𝐴 ↑o ( 𝐺 ‘ 𝑦 ) ) ·o ( 𝐹 ‘ ( 𝐺 ‘ 𝑦 ) ) ) = ( ( 𝐴 ↑o 𝐶 ) ·o ( 𝐹 ‘ 𝐶 ) ) ) |
121 |
|
oaword1 |
⊢ ( ( ( ( 𝐴 ↑o ( 𝐺 ‘ 𝑦 ) ) ·o ( 𝐹 ‘ ( 𝐺 ‘ 𝑦 ) ) ) ∈ On ∧ ( 𝐻 ‘ 𝑦 ) ∈ On ) → ( ( 𝐴 ↑o ( 𝐺 ‘ 𝑦 ) ) ·o ( 𝐹 ‘ ( 𝐺 ‘ 𝑦 ) ) ) ⊆ ( ( ( 𝐴 ↑o ( 𝐺 ‘ 𝑦 ) ) ·o ( 𝐹 ‘ ( 𝐺 ‘ 𝑦 ) ) ) +o ( 𝐻 ‘ 𝑦 ) ) ) |
122 |
100 77 121
|
syl2anc |
⊢ ( ( ( ( 𝜑 ∧ ( 𝐹 ‘ 𝐶 ) ≠ ∅ ) ∧ 𝑦 ∈ ω ) ∧ suc 𝑦 ⊆ dom 𝐺 ) → ( ( 𝐴 ↑o ( 𝐺 ‘ 𝑦 ) ) ·o ( 𝐹 ‘ ( 𝐺 ‘ 𝑦 ) ) ) ⊆ ( ( ( 𝐴 ↑o ( 𝐺 ‘ 𝑦 ) ) ·o ( 𝐹 ‘ ( 𝐺 ‘ 𝑦 ) ) ) +o ( 𝐻 ‘ 𝑦 ) ) ) |
123 |
122
|
adantrr |
⊢ ( ( ( ( 𝜑 ∧ ( 𝐹 ‘ 𝐶 ) ≠ ∅ ) ∧ 𝑦 ∈ ω ) ∧ ( suc 𝑦 ⊆ dom 𝐺 ∧ ( ◡ 𝐺 ‘ 𝐶 ) = 𝑦 ) ) → ( ( 𝐴 ↑o ( 𝐺 ‘ 𝑦 ) ) ·o ( 𝐹 ‘ ( 𝐺 ‘ 𝑦 ) ) ) ⊆ ( ( ( 𝐴 ↑o ( 𝐺 ‘ 𝑦 ) ) ·o ( 𝐹 ‘ ( 𝐺 ‘ 𝑦 ) ) ) +o ( 𝐻 ‘ 𝑦 ) ) ) |
124 |
120 123
|
eqsstrrd |
⊢ ( ( ( ( 𝜑 ∧ ( 𝐹 ‘ 𝐶 ) ≠ ∅ ) ∧ 𝑦 ∈ ω ) ∧ ( suc 𝑦 ⊆ dom 𝐺 ∧ ( ◡ 𝐺 ‘ 𝐶 ) = 𝑦 ) ) → ( ( 𝐴 ↑o 𝐶 ) ·o ( 𝐹 ‘ 𝐶 ) ) ⊆ ( ( ( 𝐴 ↑o ( 𝐺 ‘ 𝑦 ) ) ·o ( 𝐹 ‘ ( 𝐺 ‘ 𝑦 ) ) ) +o ( 𝐻 ‘ 𝑦 ) ) ) |
125 |
103
|
ad4ant13 |
⊢ ( ( ( ( 𝜑 ∧ ( 𝐹 ‘ 𝐶 ) ≠ ∅ ) ∧ 𝑦 ∈ ω ) ∧ ( suc 𝑦 ⊆ dom 𝐺 ∧ ( ◡ 𝐺 ‘ 𝐶 ) = 𝑦 ) ) → ( 𝐻 ‘ suc 𝑦 ) = ( ( ( 𝐴 ↑o ( 𝐺 ‘ 𝑦 ) ) ·o ( 𝐹 ‘ ( 𝐺 ‘ 𝑦 ) ) ) +o ( 𝐻 ‘ 𝑦 ) ) ) |
126 |
124 125
|
sseqtrrd |
⊢ ( ( ( ( 𝜑 ∧ ( 𝐹 ‘ 𝐶 ) ≠ ∅ ) ∧ 𝑦 ∈ ω ) ∧ ( suc 𝑦 ⊆ dom 𝐺 ∧ ( ◡ 𝐺 ‘ 𝐶 ) = 𝑦 ) ) → ( ( 𝐴 ↑o 𝐶 ) ·o ( 𝐹 ‘ 𝐶 ) ) ⊆ ( 𝐻 ‘ suc 𝑦 ) ) |
127 |
126
|
expr |
⊢ ( ( ( ( 𝜑 ∧ ( 𝐹 ‘ 𝐶 ) ≠ ∅ ) ∧ 𝑦 ∈ ω ) ∧ suc 𝑦 ⊆ dom 𝐺 ) → ( ( ◡ 𝐺 ‘ 𝐶 ) = 𝑦 → ( ( 𝐴 ↑o 𝐶 ) ·o ( 𝐹 ‘ 𝐶 ) ) ⊆ ( 𝐻 ‘ suc 𝑦 ) ) ) |
128 |
127
|
a1dd |
⊢ ( ( ( ( 𝜑 ∧ ( 𝐹 ‘ 𝐶 ) ≠ ∅ ) ∧ 𝑦 ∈ ω ) ∧ suc 𝑦 ⊆ dom 𝐺 ) → ( ( ◡ 𝐺 ‘ 𝐶 ) = 𝑦 → ( ( ( 𝑦 ⊆ dom 𝐺 ∧ ( ◡ 𝐺 ‘ 𝐶 ) ∈ 𝑦 ) → ( ( 𝐴 ↑o 𝐶 ) ·o ( 𝐹 ‘ 𝐶 ) ) ⊆ ( 𝐻 ‘ 𝑦 ) ) → ( ( 𝐴 ↑o 𝐶 ) ·o ( 𝐹 ‘ 𝐶 ) ) ⊆ ( 𝐻 ‘ suc 𝑦 ) ) ) ) |
129 |
111 128
|
jaod |
⊢ ( ( ( ( 𝜑 ∧ ( 𝐹 ‘ 𝐶 ) ≠ ∅ ) ∧ 𝑦 ∈ ω ) ∧ suc 𝑦 ⊆ dom 𝐺 ) → ( ( ( ◡ 𝐺 ‘ 𝐶 ) ∈ 𝑦 ∨ ( ◡ 𝐺 ‘ 𝐶 ) = 𝑦 ) → ( ( ( 𝑦 ⊆ dom 𝐺 ∧ ( ◡ 𝐺 ‘ 𝐶 ) ∈ 𝑦 ) → ( ( 𝐴 ↑o 𝐶 ) ·o ( 𝐹 ‘ 𝐶 ) ) ⊆ ( 𝐻 ‘ 𝑦 ) ) → ( ( 𝐴 ↑o 𝐶 ) ·o ( 𝐹 ‘ 𝐶 ) ) ⊆ ( 𝐻 ‘ suc 𝑦 ) ) ) ) |
130 |
67 129
|
syl5bi |
⊢ ( ( ( ( 𝜑 ∧ ( 𝐹 ‘ 𝐶 ) ≠ ∅ ) ∧ 𝑦 ∈ ω ) ∧ suc 𝑦 ⊆ dom 𝐺 ) → ( ( ◡ 𝐺 ‘ 𝐶 ) ∈ suc 𝑦 → ( ( ( 𝑦 ⊆ dom 𝐺 ∧ ( ◡ 𝐺 ‘ 𝐶 ) ∈ 𝑦 ) → ( ( 𝐴 ↑o 𝐶 ) ·o ( 𝐹 ‘ 𝐶 ) ) ⊆ ( 𝐻 ‘ 𝑦 ) ) → ( ( 𝐴 ↑o 𝐶 ) ·o ( 𝐹 ‘ 𝐶 ) ) ⊆ ( 𝐻 ‘ suc 𝑦 ) ) ) ) |
131 |
130
|
expimpd |
⊢ ( ( ( 𝜑 ∧ ( 𝐹 ‘ 𝐶 ) ≠ ∅ ) ∧ 𝑦 ∈ ω ) → ( ( suc 𝑦 ⊆ dom 𝐺 ∧ ( ◡ 𝐺 ‘ 𝐶 ) ∈ suc 𝑦 ) → ( ( ( 𝑦 ⊆ dom 𝐺 ∧ ( ◡ 𝐺 ‘ 𝐶 ) ∈ 𝑦 ) → ( ( 𝐴 ↑o 𝐶 ) ·o ( 𝐹 ‘ 𝐶 ) ) ⊆ ( 𝐻 ‘ 𝑦 ) ) → ( ( 𝐴 ↑o 𝐶 ) ·o ( 𝐹 ‘ 𝐶 ) ) ⊆ ( 𝐻 ‘ suc 𝑦 ) ) ) ) |
132 |
131
|
com23 |
⊢ ( ( ( 𝜑 ∧ ( 𝐹 ‘ 𝐶 ) ≠ ∅ ) ∧ 𝑦 ∈ ω ) → ( ( ( 𝑦 ⊆ dom 𝐺 ∧ ( ◡ 𝐺 ‘ 𝐶 ) ∈ 𝑦 ) → ( ( 𝐴 ↑o 𝐶 ) ·o ( 𝐹 ‘ 𝐶 ) ) ⊆ ( 𝐻 ‘ 𝑦 ) ) → ( ( suc 𝑦 ⊆ dom 𝐺 ∧ ( ◡ 𝐺 ‘ 𝐶 ) ∈ suc 𝑦 ) → ( ( 𝐴 ↑o 𝐶 ) ·o ( 𝐹 ‘ 𝐶 ) ) ⊆ ( 𝐻 ‘ suc 𝑦 ) ) ) ) |
133 |
132
|
expcom |
⊢ ( 𝑦 ∈ ω → ( ( 𝜑 ∧ ( 𝐹 ‘ 𝐶 ) ≠ ∅ ) → ( ( ( 𝑦 ⊆ dom 𝐺 ∧ ( ◡ 𝐺 ‘ 𝐶 ) ∈ 𝑦 ) → ( ( 𝐴 ↑o 𝐶 ) ·o ( 𝐹 ‘ 𝐶 ) ) ⊆ ( 𝐻 ‘ 𝑦 ) ) → ( ( suc 𝑦 ⊆ dom 𝐺 ∧ ( ◡ 𝐺 ‘ 𝐶 ) ∈ suc 𝑦 ) → ( ( 𝐴 ↑o 𝐶 ) ·o ( 𝐹 ‘ 𝐶 ) ) ⊆ ( 𝐻 ‘ suc 𝑦 ) ) ) ) ) |
134 |
49 55 61 65 133
|
finds2 |
⊢ ( 𝑥 ∈ ω → ( ( 𝜑 ∧ ( 𝐹 ‘ 𝐶 ) ≠ ∅ ) → ( ( 𝑥 ⊆ dom 𝐺 ∧ ( ◡ 𝐺 ‘ 𝐶 ) ∈ 𝑥 ) → ( ( 𝐴 ↑o 𝐶 ) ·o ( 𝐹 ‘ 𝐶 ) ) ⊆ ( 𝐻 ‘ 𝑥 ) ) ) ) |
135 |
43 134
|
vtoclga |
⊢ ( dom 𝐺 ∈ ω → ( ( 𝜑 ∧ ( 𝐹 ‘ 𝐶 ) ≠ ∅ ) → ( ( ◡ 𝐺 ‘ 𝐶 ) ∈ dom 𝐺 → ( ( 𝐴 ↑o 𝐶 ) ·o ( 𝐹 ‘ 𝐶 ) ) ⊆ ( 𝐻 ‘ dom 𝐺 ) ) ) ) |
136 |
35 135
|
mpcom |
⊢ ( ( 𝜑 ∧ ( 𝐹 ‘ 𝐶 ) ≠ ∅ ) → ( ( ◡ 𝐺 ‘ 𝐶 ) ∈ dom 𝐺 → ( ( 𝐴 ↑o 𝐶 ) ·o ( 𝐹 ‘ 𝐶 ) ) ⊆ ( 𝐻 ‘ dom 𝐺 ) ) ) |
137 |
33 136
|
mpd |
⊢ ( ( 𝜑 ∧ ( 𝐹 ‘ 𝐶 ) ≠ ∅ ) → ( ( 𝐴 ↑o 𝐶 ) ·o ( 𝐹 ‘ 𝐶 ) ) ⊆ ( 𝐻 ‘ dom 𝐺 ) ) |
138 |
1 2 3 4 5 6
|
cantnfval |
⊢ ( 𝜑 → ( ( 𝐴 CNF 𝐵 ) ‘ 𝐹 ) = ( 𝐻 ‘ dom 𝐺 ) ) |
139 |
138
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝐹 ‘ 𝐶 ) ≠ ∅ ) → ( ( 𝐴 CNF 𝐵 ) ‘ 𝐹 ) = ( 𝐻 ‘ dom 𝐺 ) ) |
140 |
137 139
|
sseqtrrd |
⊢ ( ( 𝜑 ∧ ( 𝐹 ‘ 𝐶 ) ≠ ∅ ) → ( ( 𝐴 ↑o 𝐶 ) ·o ( 𝐹 ‘ 𝐶 ) ) ⊆ ( ( 𝐴 CNF 𝐵 ) ‘ 𝐹 ) ) |
141 |
|
onelon |
⊢ ( ( 𝐵 ∈ On ∧ 𝐶 ∈ 𝐵 ) → 𝐶 ∈ On ) |
142 |
3 7 141
|
syl2anc |
⊢ ( 𝜑 → 𝐶 ∈ On ) |
143 |
|
oecl |
⊢ ( ( 𝐴 ∈ On ∧ 𝐶 ∈ On ) → ( 𝐴 ↑o 𝐶 ) ∈ On ) |
144 |
2 142 143
|
syl2anc |
⊢ ( 𝜑 → ( 𝐴 ↑o 𝐶 ) ∈ On ) |
145 |
|
om0 |
⊢ ( ( 𝐴 ↑o 𝐶 ) ∈ On → ( ( 𝐴 ↑o 𝐶 ) ·o ∅ ) = ∅ ) |
146 |
144 145
|
syl |
⊢ ( 𝜑 → ( ( 𝐴 ↑o 𝐶 ) ·o ∅ ) = ∅ ) |
147 |
|
0ss |
⊢ ∅ ⊆ ( ( 𝐴 CNF 𝐵 ) ‘ 𝐹 ) |
148 |
146 147
|
eqsstrdi |
⊢ ( 𝜑 → ( ( 𝐴 ↑o 𝐶 ) ·o ∅ ) ⊆ ( ( 𝐴 CNF 𝐵 ) ‘ 𝐹 ) ) |
149 |
9 140 148
|
pm2.61ne |
⊢ ( 𝜑 → ( ( 𝐴 ↑o 𝐶 ) ·o ( 𝐹 ‘ 𝐶 ) ) ⊆ ( ( 𝐴 CNF 𝐵 ) ‘ 𝐹 ) ) |