Step |
Hyp |
Ref |
Expression |
1 |
|
cantnfs.s |
⊢ 𝑆 = dom ( 𝐴 CNF 𝐵 ) |
2 |
|
cantnfs.a |
⊢ ( 𝜑 → 𝐴 ∈ On ) |
3 |
|
cantnfs.b |
⊢ ( 𝜑 → 𝐵 ∈ On ) |
4 |
|
oemapval.t |
⊢ 𝑇 = { 〈 𝑥 , 𝑦 〉 ∣ ∃ 𝑧 ∈ 𝐵 ( ( 𝑥 ‘ 𝑧 ) ∈ ( 𝑦 ‘ 𝑧 ) ∧ ∀ 𝑤 ∈ 𝐵 ( 𝑧 ∈ 𝑤 → ( 𝑥 ‘ 𝑤 ) = ( 𝑦 ‘ 𝑤 ) ) ) } |
5 |
|
oemapval.f |
⊢ ( 𝜑 → 𝐹 ∈ 𝑆 ) |
6 |
|
oemapval.g |
⊢ ( 𝜑 → 𝐺 ∈ 𝑆 ) |
7 |
|
oemapvali.r |
⊢ ( 𝜑 → 𝐹 𝑇 𝐺 ) |
8 |
|
oemapvali.x |
⊢ 𝑋 = ∪ { 𝑐 ∈ 𝐵 ∣ ( 𝐹 ‘ 𝑐 ) ∈ ( 𝐺 ‘ 𝑐 ) } |
9 |
|
cantnflem1.o |
⊢ 𝑂 = OrdIso ( E , ( 𝐺 supp ∅ ) ) |
10 |
|
cantnflem1.h |
⊢ 𝐻 = seqω ( ( 𝑘 ∈ V , 𝑧 ∈ V ↦ ( ( ( 𝐴 ↑o ( 𝑂 ‘ 𝑘 ) ) ·o ( 𝐺 ‘ ( 𝑂 ‘ 𝑘 ) ) ) +o 𝑧 ) ) , ∅ ) |
11 |
|
ovex |
⊢ ( 𝐺 supp ∅ ) ∈ V |
12 |
9
|
oion |
⊢ ( ( 𝐺 supp ∅ ) ∈ V → dom 𝑂 ∈ On ) |
13 |
11 12
|
mp1i |
⊢ ( 𝜑 → dom 𝑂 ∈ On ) |
14 |
|
uniexg |
⊢ ( dom 𝑂 ∈ On → ∪ dom 𝑂 ∈ V ) |
15 |
|
sucidg |
⊢ ( ∪ dom 𝑂 ∈ V → ∪ dom 𝑂 ∈ suc ∪ dom 𝑂 ) |
16 |
13 14 15
|
3syl |
⊢ ( 𝜑 → ∪ dom 𝑂 ∈ suc ∪ dom 𝑂 ) |
17 |
1 2 3 4 5 6 7 8
|
cantnflem1a |
⊢ ( 𝜑 → 𝑋 ∈ ( 𝐺 supp ∅ ) ) |
18 |
|
n0i |
⊢ ( 𝑋 ∈ ( 𝐺 supp ∅ ) → ¬ ( 𝐺 supp ∅ ) = ∅ ) |
19 |
17 18
|
syl |
⊢ ( 𝜑 → ¬ ( 𝐺 supp ∅ ) = ∅ ) |
20 |
|
ovexd |
⊢ ( 𝜑 → ( 𝐺 supp ∅ ) ∈ V ) |
21 |
1 2 3 9 6
|
cantnfcl |
⊢ ( 𝜑 → ( E We ( 𝐺 supp ∅ ) ∧ dom 𝑂 ∈ ω ) ) |
22 |
21
|
simpld |
⊢ ( 𝜑 → E We ( 𝐺 supp ∅ ) ) |
23 |
9
|
oien |
⊢ ( ( ( 𝐺 supp ∅ ) ∈ V ∧ E We ( 𝐺 supp ∅ ) ) → dom 𝑂 ≈ ( 𝐺 supp ∅ ) ) |
24 |
20 22 23
|
syl2anc |
⊢ ( 𝜑 → dom 𝑂 ≈ ( 𝐺 supp ∅ ) ) |
25 |
|
breq1 |
⊢ ( dom 𝑂 = ∅ → ( dom 𝑂 ≈ ( 𝐺 supp ∅ ) ↔ ∅ ≈ ( 𝐺 supp ∅ ) ) ) |
26 |
|
ensymb |
⊢ ( ∅ ≈ ( 𝐺 supp ∅ ) ↔ ( 𝐺 supp ∅ ) ≈ ∅ ) |
27 |
|
en0 |
⊢ ( ( 𝐺 supp ∅ ) ≈ ∅ ↔ ( 𝐺 supp ∅ ) = ∅ ) |
28 |
26 27
|
bitri |
⊢ ( ∅ ≈ ( 𝐺 supp ∅ ) ↔ ( 𝐺 supp ∅ ) = ∅ ) |
29 |
25 28
|
bitrdi |
⊢ ( dom 𝑂 = ∅ → ( dom 𝑂 ≈ ( 𝐺 supp ∅ ) ↔ ( 𝐺 supp ∅ ) = ∅ ) ) |
30 |
24 29
|
syl5ibcom |
⊢ ( 𝜑 → ( dom 𝑂 = ∅ → ( 𝐺 supp ∅ ) = ∅ ) ) |
31 |
19 30
|
mtod |
⊢ ( 𝜑 → ¬ dom 𝑂 = ∅ ) |
32 |
21
|
simprd |
⊢ ( 𝜑 → dom 𝑂 ∈ ω ) |
33 |
|
nnlim |
⊢ ( dom 𝑂 ∈ ω → ¬ Lim dom 𝑂 ) |
34 |
32 33
|
syl |
⊢ ( 𝜑 → ¬ Lim dom 𝑂 ) |
35 |
|
ioran |
⊢ ( ¬ ( dom 𝑂 = ∅ ∨ Lim dom 𝑂 ) ↔ ( ¬ dom 𝑂 = ∅ ∧ ¬ Lim dom 𝑂 ) ) |
36 |
31 34 35
|
sylanbrc |
⊢ ( 𝜑 → ¬ ( dom 𝑂 = ∅ ∨ Lim dom 𝑂 ) ) |
37 |
9
|
oicl |
⊢ Ord dom 𝑂 |
38 |
|
unizlim |
⊢ ( Ord dom 𝑂 → ( dom 𝑂 = ∪ dom 𝑂 ↔ ( dom 𝑂 = ∅ ∨ Lim dom 𝑂 ) ) ) |
39 |
37 38
|
mp1i |
⊢ ( 𝜑 → ( dom 𝑂 = ∪ dom 𝑂 ↔ ( dom 𝑂 = ∅ ∨ Lim dom 𝑂 ) ) ) |
40 |
36 39
|
mtbird |
⊢ ( 𝜑 → ¬ dom 𝑂 = ∪ dom 𝑂 ) |
41 |
|
orduniorsuc |
⊢ ( Ord dom 𝑂 → ( dom 𝑂 = ∪ dom 𝑂 ∨ dom 𝑂 = suc ∪ dom 𝑂 ) ) |
42 |
37 41
|
mp1i |
⊢ ( 𝜑 → ( dom 𝑂 = ∪ dom 𝑂 ∨ dom 𝑂 = suc ∪ dom 𝑂 ) ) |
43 |
42
|
ord |
⊢ ( 𝜑 → ( ¬ dom 𝑂 = ∪ dom 𝑂 → dom 𝑂 = suc ∪ dom 𝑂 ) ) |
44 |
40 43
|
mpd |
⊢ ( 𝜑 → dom 𝑂 = suc ∪ dom 𝑂 ) |
45 |
16 44
|
eleqtrrd |
⊢ ( 𝜑 → ∪ dom 𝑂 ∈ dom 𝑂 ) |
46 |
9
|
oiiso |
⊢ ( ( ( 𝐺 supp ∅ ) ∈ V ∧ E We ( 𝐺 supp ∅ ) ) → 𝑂 Isom E , E ( dom 𝑂 , ( 𝐺 supp ∅ ) ) ) |
47 |
20 22 46
|
syl2anc |
⊢ ( 𝜑 → 𝑂 Isom E , E ( dom 𝑂 , ( 𝐺 supp ∅ ) ) ) |
48 |
|
isof1o |
⊢ ( 𝑂 Isom E , E ( dom 𝑂 , ( 𝐺 supp ∅ ) ) → 𝑂 : dom 𝑂 –1-1-onto→ ( 𝐺 supp ∅ ) ) |
49 |
47 48
|
syl |
⊢ ( 𝜑 → 𝑂 : dom 𝑂 –1-1-onto→ ( 𝐺 supp ∅ ) ) |
50 |
|
f1ocnv |
⊢ ( 𝑂 : dom 𝑂 –1-1-onto→ ( 𝐺 supp ∅ ) → ◡ 𝑂 : ( 𝐺 supp ∅ ) –1-1-onto→ dom 𝑂 ) |
51 |
|
f1of |
⊢ ( ◡ 𝑂 : ( 𝐺 supp ∅ ) –1-1-onto→ dom 𝑂 → ◡ 𝑂 : ( 𝐺 supp ∅ ) ⟶ dom 𝑂 ) |
52 |
49 50 51
|
3syl |
⊢ ( 𝜑 → ◡ 𝑂 : ( 𝐺 supp ∅ ) ⟶ dom 𝑂 ) |
53 |
52 17
|
ffvelrnd |
⊢ ( 𝜑 → ( ◡ 𝑂 ‘ 𝑋 ) ∈ dom 𝑂 ) |
54 |
|
elssuni |
⊢ ( ( ◡ 𝑂 ‘ 𝑋 ) ∈ dom 𝑂 → ( ◡ 𝑂 ‘ 𝑋 ) ⊆ ∪ dom 𝑂 ) |
55 |
53 54
|
syl |
⊢ ( 𝜑 → ( ◡ 𝑂 ‘ 𝑋 ) ⊆ ∪ dom 𝑂 ) |
56 |
44 32
|
eqeltrrd |
⊢ ( 𝜑 → suc ∪ dom 𝑂 ∈ ω ) |
57 |
|
peano2b |
⊢ ( ∪ dom 𝑂 ∈ ω ↔ suc ∪ dom 𝑂 ∈ ω ) |
58 |
56 57
|
sylibr |
⊢ ( 𝜑 → ∪ dom 𝑂 ∈ ω ) |
59 |
|
eleq1 |
⊢ ( 𝑦 = ∪ dom 𝑂 → ( 𝑦 ∈ dom 𝑂 ↔ ∪ dom 𝑂 ∈ dom 𝑂 ) ) |
60 |
|
sseq2 |
⊢ ( 𝑦 = ∪ dom 𝑂 → ( ( ◡ 𝑂 ‘ 𝑋 ) ⊆ 𝑦 ↔ ( ◡ 𝑂 ‘ 𝑋 ) ⊆ ∪ dom 𝑂 ) ) |
61 |
59 60
|
anbi12d |
⊢ ( 𝑦 = ∪ dom 𝑂 → ( ( 𝑦 ∈ dom 𝑂 ∧ ( ◡ 𝑂 ‘ 𝑋 ) ⊆ 𝑦 ) ↔ ( ∪ dom 𝑂 ∈ dom 𝑂 ∧ ( ◡ 𝑂 ‘ 𝑋 ) ⊆ ∪ dom 𝑂 ) ) ) |
62 |
|
fveq2 |
⊢ ( 𝑦 = ∪ dom 𝑂 → ( 𝑂 ‘ 𝑦 ) = ( 𝑂 ‘ ∪ dom 𝑂 ) ) |
63 |
62
|
sseq2d |
⊢ ( 𝑦 = ∪ dom 𝑂 → ( 𝑥 ⊆ ( 𝑂 ‘ 𝑦 ) ↔ 𝑥 ⊆ ( 𝑂 ‘ ∪ dom 𝑂 ) ) ) |
64 |
63
|
ifbid |
⊢ ( 𝑦 = ∪ dom 𝑂 → if ( 𝑥 ⊆ ( 𝑂 ‘ 𝑦 ) , ( 𝐹 ‘ 𝑥 ) , ∅ ) = if ( 𝑥 ⊆ ( 𝑂 ‘ ∪ dom 𝑂 ) , ( 𝐹 ‘ 𝑥 ) , ∅ ) ) |
65 |
64
|
mpteq2dv |
⊢ ( 𝑦 = ∪ dom 𝑂 → ( 𝑥 ∈ 𝐵 ↦ if ( 𝑥 ⊆ ( 𝑂 ‘ 𝑦 ) , ( 𝐹 ‘ 𝑥 ) , ∅ ) ) = ( 𝑥 ∈ 𝐵 ↦ if ( 𝑥 ⊆ ( 𝑂 ‘ ∪ dom 𝑂 ) , ( 𝐹 ‘ 𝑥 ) , ∅ ) ) ) |
66 |
65
|
fveq2d |
⊢ ( 𝑦 = ∪ dom 𝑂 → ( ( 𝐴 CNF 𝐵 ) ‘ ( 𝑥 ∈ 𝐵 ↦ if ( 𝑥 ⊆ ( 𝑂 ‘ 𝑦 ) , ( 𝐹 ‘ 𝑥 ) , ∅ ) ) ) = ( ( 𝐴 CNF 𝐵 ) ‘ ( 𝑥 ∈ 𝐵 ↦ if ( 𝑥 ⊆ ( 𝑂 ‘ ∪ dom 𝑂 ) , ( 𝐹 ‘ 𝑥 ) , ∅ ) ) ) ) |
67 |
|
suceq |
⊢ ( 𝑦 = ∪ dom 𝑂 → suc 𝑦 = suc ∪ dom 𝑂 ) |
68 |
67
|
fveq2d |
⊢ ( 𝑦 = ∪ dom 𝑂 → ( 𝐻 ‘ suc 𝑦 ) = ( 𝐻 ‘ suc ∪ dom 𝑂 ) ) |
69 |
66 68
|
eleq12d |
⊢ ( 𝑦 = ∪ dom 𝑂 → ( ( ( 𝐴 CNF 𝐵 ) ‘ ( 𝑥 ∈ 𝐵 ↦ if ( 𝑥 ⊆ ( 𝑂 ‘ 𝑦 ) , ( 𝐹 ‘ 𝑥 ) , ∅ ) ) ) ∈ ( 𝐻 ‘ suc 𝑦 ) ↔ ( ( 𝐴 CNF 𝐵 ) ‘ ( 𝑥 ∈ 𝐵 ↦ if ( 𝑥 ⊆ ( 𝑂 ‘ ∪ dom 𝑂 ) , ( 𝐹 ‘ 𝑥 ) , ∅ ) ) ) ∈ ( 𝐻 ‘ suc ∪ dom 𝑂 ) ) ) |
70 |
61 69
|
imbi12d |
⊢ ( 𝑦 = ∪ dom 𝑂 → ( ( ( 𝑦 ∈ dom 𝑂 ∧ ( ◡ 𝑂 ‘ 𝑋 ) ⊆ 𝑦 ) → ( ( 𝐴 CNF 𝐵 ) ‘ ( 𝑥 ∈ 𝐵 ↦ if ( 𝑥 ⊆ ( 𝑂 ‘ 𝑦 ) , ( 𝐹 ‘ 𝑥 ) , ∅ ) ) ) ∈ ( 𝐻 ‘ suc 𝑦 ) ) ↔ ( ( ∪ dom 𝑂 ∈ dom 𝑂 ∧ ( ◡ 𝑂 ‘ 𝑋 ) ⊆ ∪ dom 𝑂 ) → ( ( 𝐴 CNF 𝐵 ) ‘ ( 𝑥 ∈ 𝐵 ↦ if ( 𝑥 ⊆ ( 𝑂 ‘ ∪ dom 𝑂 ) , ( 𝐹 ‘ 𝑥 ) , ∅ ) ) ) ∈ ( 𝐻 ‘ suc ∪ dom 𝑂 ) ) ) ) |
71 |
70
|
imbi2d |
⊢ ( 𝑦 = ∪ dom 𝑂 → ( ( 𝜑 → ( ( 𝑦 ∈ dom 𝑂 ∧ ( ◡ 𝑂 ‘ 𝑋 ) ⊆ 𝑦 ) → ( ( 𝐴 CNF 𝐵 ) ‘ ( 𝑥 ∈ 𝐵 ↦ if ( 𝑥 ⊆ ( 𝑂 ‘ 𝑦 ) , ( 𝐹 ‘ 𝑥 ) , ∅ ) ) ) ∈ ( 𝐻 ‘ suc 𝑦 ) ) ) ↔ ( 𝜑 → ( ( ∪ dom 𝑂 ∈ dom 𝑂 ∧ ( ◡ 𝑂 ‘ 𝑋 ) ⊆ ∪ dom 𝑂 ) → ( ( 𝐴 CNF 𝐵 ) ‘ ( 𝑥 ∈ 𝐵 ↦ if ( 𝑥 ⊆ ( 𝑂 ‘ ∪ dom 𝑂 ) , ( 𝐹 ‘ 𝑥 ) , ∅ ) ) ) ∈ ( 𝐻 ‘ suc ∪ dom 𝑂 ) ) ) ) ) |
72 |
|
eleq1 |
⊢ ( 𝑦 = ∅ → ( 𝑦 ∈ dom 𝑂 ↔ ∅ ∈ dom 𝑂 ) ) |
73 |
|
sseq2 |
⊢ ( 𝑦 = ∅ → ( ( ◡ 𝑂 ‘ 𝑋 ) ⊆ 𝑦 ↔ ( ◡ 𝑂 ‘ 𝑋 ) ⊆ ∅ ) ) |
74 |
72 73
|
anbi12d |
⊢ ( 𝑦 = ∅ → ( ( 𝑦 ∈ dom 𝑂 ∧ ( ◡ 𝑂 ‘ 𝑋 ) ⊆ 𝑦 ) ↔ ( ∅ ∈ dom 𝑂 ∧ ( ◡ 𝑂 ‘ 𝑋 ) ⊆ ∅ ) ) ) |
75 |
|
fveq2 |
⊢ ( 𝑦 = ∅ → ( 𝑂 ‘ 𝑦 ) = ( 𝑂 ‘ ∅ ) ) |
76 |
75
|
sseq2d |
⊢ ( 𝑦 = ∅ → ( 𝑥 ⊆ ( 𝑂 ‘ 𝑦 ) ↔ 𝑥 ⊆ ( 𝑂 ‘ ∅ ) ) ) |
77 |
76
|
ifbid |
⊢ ( 𝑦 = ∅ → if ( 𝑥 ⊆ ( 𝑂 ‘ 𝑦 ) , ( 𝐹 ‘ 𝑥 ) , ∅ ) = if ( 𝑥 ⊆ ( 𝑂 ‘ ∅ ) , ( 𝐹 ‘ 𝑥 ) , ∅ ) ) |
78 |
77
|
mpteq2dv |
⊢ ( 𝑦 = ∅ → ( 𝑥 ∈ 𝐵 ↦ if ( 𝑥 ⊆ ( 𝑂 ‘ 𝑦 ) , ( 𝐹 ‘ 𝑥 ) , ∅ ) ) = ( 𝑥 ∈ 𝐵 ↦ if ( 𝑥 ⊆ ( 𝑂 ‘ ∅ ) , ( 𝐹 ‘ 𝑥 ) , ∅ ) ) ) |
79 |
78
|
fveq2d |
⊢ ( 𝑦 = ∅ → ( ( 𝐴 CNF 𝐵 ) ‘ ( 𝑥 ∈ 𝐵 ↦ if ( 𝑥 ⊆ ( 𝑂 ‘ 𝑦 ) , ( 𝐹 ‘ 𝑥 ) , ∅ ) ) ) = ( ( 𝐴 CNF 𝐵 ) ‘ ( 𝑥 ∈ 𝐵 ↦ if ( 𝑥 ⊆ ( 𝑂 ‘ ∅ ) , ( 𝐹 ‘ 𝑥 ) , ∅ ) ) ) ) |
80 |
|
suceq |
⊢ ( 𝑦 = ∅ → suc 𝑦 = suc ∅ ) |
81 |
80
|
fveq2d |
⊢ ( 𝑦 = ∅ → ( 𝐻 ‘ suc 𝑦 ) = ( 𝐻 ‘ suc ∅ ) ) |
82 |
79 81
|
eleq12d |
⊢ ( 𝑦 = ∅ → ( ( ( 𝐴 CNF 𝐵 ) ‘ ( 𝑥 ∈ 𝐵 ↦ if ( 𝑥 ⊆ ( 𝑂 ‘ 𝑦 ) , ( 𝐹 ‘ 𝑥 ) , ∅ ) ) ) ∈ ( 𝐻 ‘ suc 𝑦 ) ↔ ( ( 𝐴 CNF 𝐵 ) ‘ ( 𝑥 ∈ 𝐵 ↦ if ( 𝑥 ⊆ ( 𝑂 ‘ ∅ ) , ( 𝐹 ‘ 𝑥 ) , ∅ ) ) ) ∈ ( 𝐻 ‘ suc ∅ ) ) ) |
83 |
74 82
|
imbi12d |
⊢ ( 𝑦 = ∅ → ( ( ( 𝑦 ∈ dom 𝑂 ∧ ( ◡ 𝑂 ‘ 𝑋 ) ⊆ 𝑦 ) → ( ( 𝐴 CNF 𝐵 ) ‘ ( 𝑥 ∈ 𝐵 ↦ if ( 𝑥 ⊆ ( 𝑂 ‘ 𝑦 ) , ( 𝐹 ‘ 𝑥 ) , ∅ ) ) ) ∈ ( 𝐻 ‘ suc 𝑦 ) ) ↔ ( ( ∅ ∈ dom 𝑂 ∧ ( ◡ 𝑂 ‘ 𝑋 ) ⊆ ∅ ) → ( ( 𝐴 CNF 𝐵 ) ‘ ( 𝑥 ∈ 𝐵 ↦ if ( 𝑥 ⊆ ( 𝑂 ‘ ∅ ) , ( 𝐹 ‘ 𝑥 ) , ∅ ) ) ) ∈ ( 𝐻 ‘ suc ∅ ) ) ) ) |
84 |
|
eleq1 |
⊢ ( 𝑦 = 𝑢 → ( 𝑦 ∈ dom 𝑂 ↔ 𝑢 ∈ dom 𝑂 ) ) |
85 |
|
sseq2 |
⊢ ( 𝑦 = 𝑢 → ( ( ◡ 𝑂 ‘ 𝑋 ) ⊆ 𝑦 ↔ ( ◡ 𝑂 ‘ 𝑋 ) ⊆ 𝑢 ) ) |
86 |
84 85
|
anbi12d |
⊢ ( 𝑦 = 𝑢 → ( ( 𝑦 ∈ dom 𝑂 ∧ ( ◡ 𝑂 ‘ 𝑋 ) ⊆ 𝑦 ) ↔ ( 𝑢 ∈ dom 𝑂 ∧ ( ◡ 𝑂 ‘ 𝑋 ) ⊆ 𝑢 ) ) ) |
87 |
|
fveq2 |
⊢ ( 𝑦 = 𝑢 → ( 𝑂 ‘ 𝑦 ) = ( 𝑂 ‘ 𝑢 ) ) |
88 |
87
|
sseq2d |
⊢ ( 𝑦 = 𝑢 → ( 𝑥 ⊆ ( 𝑂 ‘ 𝑦 ) ↔ 𝑥 ⊆ ( 𝑂 ‘ 𝑢 ) ) ) |
89 |
88
|
ifbid |
⊢ ( 𝑦 = 𝑢 → if ( 𝑥 ⊆ ( 𝑂 ‘ 𝑦 ) , ( 𝐹 ‘ 𝑥 ) , ∅ ) = if ( 𝑥 ⊆ ( 𝑂 ‘ 𝑢 ) , ( 𝐹 ‘ 𝑥 ) , ∅ ) ) |
90 |
89
|
mpteq2dv |
⊢ ( 𝑦 = 𝑢 → ( 𝑥 ∈ 𝐵 ↦ if ( 𝑥 ⊆ ( 𝑂 ‘ 𝑦 ) , ( 𝐹 ‘ 𝑥 ) , ∅ ) ) = ( 𝑥 ∈ 𝐵 ↦ if ( 𝑥 ⊆ ( 𝑂 ‘ 𝑢 ) , ( 𝐹 ‘ 𝑥 ) , ∅ ) ) ) |
91 |
90
|
fveq2d |
⊢ ( 𝑦 = 𝑢 → ( ( 𝐴 CNF 𝐵 ) ‘ ( 𝑥 ∈ 𝐵 ↦ if ( 𝑥 ⊆ ( 𝑂 ‘ 𝑦 ) , ( 𝐹 ‘ 𝑥 ) , ∅ ) ) ) = ( ( 𝐴 CNF 𝐵 ) ‘ ( 𝑥 ∈ 𝐵 ↦ if ( 𝑥 ⊆ ( 𝑂 ‘ 𝑢 ) , ( 𝐹 ‘ 𝑥 ) , ∅ ) ) ) ) |
92 |
|
suceq |
⊢ ( 𝑦 = 𝑢 → suc 𝑦 = suc 𝑢 ) |
93 |
92
|
fveq2d |
⊢ ( 𝑦 = 𝑢 → ( 𝐻 ‘ suc 𝑦 ) = ( 𝐻 ‘ suc 𝑢 ) ) |
94 |
91 93
|
eleq12d |
⊢ ( 𝑦 = 𝑢 → ( ( ( 𝐴 CNF 𝐵 ) ‘ ( 𝑥 ∈ 𝐵 ↦ if ( 𝑥 ⊆ ( 𝑂 ‘ 𝑦 ) , ( 𝐹 ‘ 𝑥 ) , ∅ ) ) ) ∈ ( 𝐻 ‘ suc 𝑦 ) ↔ ( ( 𝐴 CNF 𝐵 ) ‘ ( 𝑥 ∈ 𝐵 ↦ if ( 𝑥 ⊆ ( 𝑂 ‘ 𝑢 ) , ( 𝐹 ‘ 𝑥 ) , ∅ ) ) ) ∈ ( 𝐻 ‘ suc 𝑢 ) ) ) |
95 |
86 94
|
imbi12d |
⊢ ( 𝑦 = 𝑢 → ( ( ( 𝑦 ∈ dom 𝑂 ∧ ( ◡ 𝑂 ‘ 𝑋 ) ⊆ 𝑦 ) → ( ( 𝐴 CNF 𝐵 ) ‘ ( 𝑥 ∈ 𝐵 ↦ if ( 𝑥 ⊆ ( 𝑂 ‘ 𝑦 ) , ( 𝐹 ‘ 𝑥 ) , ∅ ) ) ) ∈ ( 𝐻 ‘ suc 𝑦 ) ) ↔ ( ( 𝑢 ∈ dom 𝑂 ∧ ( ◡ 𝑂 ‘ 𝑋 ) ⊆ 𝑢 ) → ( ( 𝐴 CNF 𝐵 ) ‘ ( 𝑥 ∈ 𝐵 ↦ if ( 𝑥 ⊆ ( 𝑂 ‘ 𝑢 ) , ( 𝐹 ‘ 𝑥 ) , ∅ ) ) ) ∈ ( 𝐻 ‘ suc 𝑢 ) ) ) ) |
96 |
|
eleq1 |
⊢ ( 𝑦 = suc 𝑢 → ( 𝑦 ∈ dom 𝑂 ↔ suc 𝑢 ∈ dom 𝑂 ) ) |
97 |
|
sseq2 |
⊢ ( 𝑦 = suc 𝑢 → ( ( ◡ 𝑂 ‘ 𝑋 ) ⊆ 𝑦 ↔ ( ◡ 𝑂 ‘ 𝑋 ) ⊆ suc 𝑢 ) ) |
98 |
96 97
|
anbi12d |
⊢ ( 𝑦 = suc 𝑢 → ( ( 𝑦 ∈ dom 𝑂 ∧ ( ◡ 𝑂 ‘ 𝑋 ) ⊆ 𝑦 ) ↔ ( suc 𝑢 ∈ dom 𝑂 ∧ ( ◡ 𝑂 ‘ 𝑋 ) ⊆ suc 𝑢 ) ) ) |
99 |
|
fveq2 |
⊢ ( 𝑦 = suc 𝑢 → ( 𝑂 ‘ 𝑦 ) = ( 𝑂 ‘ suc 𝑢 ) ) |
100 |
99
|
sseq2d |
⊢ ( 𝑦 = suc 𝑢 → ( 𝑥 ⊆ ( 𝑂 ‘ 𝑦 ) ↔ 𝑥 ⊆ ( 𝑂 ‘ suc 𝑢 ) ) ) |
101 |
100
|
ifbid |
⊢ ( 𝑦 = suc 𝑢 → if ( 𝑥 ⊆ ( 𝑂 ‘ 𝑦 ) , ( 𝐹 ‘ 𝑥 ) , ∅ ) = if ( 𝑥 ⊆ ( 𝑂 ‘ suc 𝑢 ) , ( 𝐹 ‘ 𝑥 ) , ∅ ) ) |
102 |
101
|
mpteq2dv |
⊢ ( 𝑦 = suc 𝑢 → ( 𝑥 ∈ 𝐵 ↦ if ( 𝑥 ⊆ ( 𝑂 ‘ 𝑦 ) , ( 𝐹 ‘ 𝑥 ) , ∅ ) ) = ( 𝑥 ∈ 𝐵 ↦ if ( 𝑥 ⊆ ( 𝑂 ‘ suc 𝑢 ) , ( 𝐹 ‘ 𝑥 ) , ∅ ) ) ) |
103 |
102
|
fveq2d |
⊢ ( 𝑦 = suc 𝑢 → ( ( 𝐴 CNF 𝐵 ) ‘ ( 𝑥 ∈ 𝐵 ↦ if ( 𝑥 ⊆ ( 𝑂 ‘ 𝑦 ) , ( 𝐹 ‘ 𝑥 ) , ∅ ) ) ) = ( ( 𝐴 CNF 𝐵 ) ‘ ( 𝑥 ∈ 𝐵 ↦ if ( 𝑥 ⊆ ( 𝑂 ‘ suc 𝑢 ) , ( 𝐹 ‘ 𝑥 ) , ∅ ) ) ) ) |
104 |
|
suceq |
⊢ ( 𝑦 = suc 𝑢 → suc 𝑦 = suc suc 𝑢 ) |
105 |
104
|
fveq2d |
⊢ ( 𝑦 = suc 𝑢 → ( 𝐻 ‘ suc 𝑦 ) = ( 𝐻 ‘ suc suc 𝑢 ) ) |
106 |
103 105
|
eleq12d |
⊢ ( 𝑦 = suc 𝑢 → ( ( ( 𝐴 CNF 𝐵 ) ‘ ( 𝑥 ∈ 𝐵 ↦ if ( 𝑥 ⊆ ( 𝑂 ‘ 𝑦 ) , ( 𝐹 ‘ 𝑥 ) , ∅ ) ) ) ∈ ( 𝐻 ‘ suc 𝑦 ) ↔ ( ( 𝐴 CNF 𝐵 ) ‘ ( 𝑥 ∈ 𝐵 ↦ if ( 𝑥 ⊆ ( 𝑂 ‘ suc 𝑢 ) , ( 𝐹 ‘ 𝑥 ) , ∅ ) ) ) ∈ ( 𝐻 ‘ suc suc 𝑢 ) ) ) |
107 |
98 106
|
imbi12d |
⊢ ( 𝑦 = suc 𝑢 → ( ( ( 𝑦 ∈ dom 𝑂 ∧ ( ◡ 𝑂 ‘ 𝑋 ) ⊆ 𝑦 ) → ( ( 𝐴 CNF 𝐵 ) ‘ ( 𝑥 ∈ 𝐵 ↦ if ( 𝑥 ⊆ ( 𝑂 ‘ 𝑦 ) , ( 𝐹 ‘ 𝑥 ) , ∅ ) ) ) ∈ ( 𝐻 ‘ suc 𝑦 ) ) ↔ ( ( suc 𝑢 ∈ dom 𝑂 ∧ ( ◡ 𝑂 ‘ 𝑋 ) ⊆ suc 𝑢 ) → ( ( 𝐴 CNF 𝐵 ) ‘ ( 𝑥 ∈ 𝐵 ↦ if ( 𝑥 ⊆ ( 𝑂 ‘ suc 𝑢 ) , ( 𝐹 ‘ 𝑥 ) , ∅ ) ) ) ∈ ( 𝐻 ‘ suc suc 𝑢 ) ) ) ) |
108 |
|
f1ocnvfv2 |
⊢ ( ( 𝑂 : dom 𝑂 –1-1-onto→ ( 𝐺 supp ∅ ) ∧ 𝑋 ∈ ( 𝐺 supp ∅ ) ) → ( 𝑂 ‘ ( ◡ 𝑂 ‘ 𝑋 ) ) = 𝑋 ) |
109 |
49 17 108
|
syl2anc |
⊢ ( 𝜑 → ( 𝑂 ‘ ( ◡ 𝑂 ‘ 𝑋 ) ) = 𝑋 ) |
110 |
109
|
sseq2d |
⊢ ( 𝜑 → ( 𝑥 ⊆ ( 𝑂 ‘ ( ◡ 𝑂 ‘ 𝑋 ) ) ↔ 𝑥 ⊆ 𝑋 ) ) |
111 |
110
|
ifbid |
⊢ ( 𝜑 → if ( 𝑥 ⊆ ( 𝑂 ‘ ( ◡ 𝑂 ‘ 𝑋 ) ) , ( 𝐹 ‘ 𝑥 ) , ∅ ) = if ( 𝑥 ⊆ 𝑋 , ( 𝐹 ‘ 𝑥 ) , ∅ ) ) |
112 |
111
|
mpteq2dv |
⊢ ( 𝜑 → ( 𝑥 ∈ 𝐵 ↦ if ( 𝑥 ⊆ ( 𝑂 ‘ ( ◡ 𝑂 ‘ 𝑋 ) ) , ( 𝐹 ‘ 𝑥 ) , ∅ ) ) = ( 𝑥 ∈ 𝐵 ↦ if ( 𝑥 ⊆ 𝑋 , ( 𝐹 ‘ 𝑥 ) , ∅ ) ) ) |
113 |
112
|
fveq2d |
⊢ ( 𝜑 → ( ( 𝐴 CNF 𝐵 ) ‘ ( 𝑥 ∈ 𝐵 ↦ if ( 𝑥 ⊆ ( 𝑂 ‘ ( ◡ 𝑂 ‘ 𝑋 ) ) , ( 𝐹 ‘ 𝑥 ) , ∅ ) ) ) = ( ( 𝐴 CNF 𝐵 ) ‘ ( 𝑥 ∈ 𝐵 ↦ if ( 𝑥 ⊆ 𝑋 , ( 𝐹 ‘ 𝑥 ) , ∅ ) ) ) ) |
114 |
1 2 3 4 5 6 7 8 9 10
|
cantnflem1d |
⊢ ( 𝜑 → ( ( 𝐴 CNF 𝐵 ) ‘ ( 𝑥 ∈ 𝐵 ↦ if ( 𝑥 ⊆ 𝑋 , ( 𝐹 ‘ 𝑥 ) , ∅ ) ) ) ∈ ( 𝐻 ‘ suc ( ◡ 𝑂 ‘ 𝑋 ) ) ) |
115 |
113 114
|
eqeltrd |
⊢ ( 𝜑 → ( ( 𝐴 CNF 𝐵 ) ‘ ( 𝑥 ∈ 𝐵 ↦ if ( 𝑥 ⊆ ( 𝑂 ‘ ( ◡ 𝑂 ‘ 𝑋 ) ) , ( 𝐹 ‘ 𝑥 ) , ∅ ) ) ) ∈ ( 𝐻 ‘ suc ( ◡ 𝑂 ‘ 𝑋 ) ) ) |
116 |
|
ss0 |
⊢ ( ( ◡ 𝑂 ‘ 𝑋 ) ⊆ ∅ → ( ◡ 𝑂 ‘ 𝑋 ) = ∅ ) |
117 |
116
|
fveq2d |
⊢ ( ( ◡ 𝑂 ‘ 𝑋 ) ⊆ ∅ → ( 𝑂 ‘ ( ◡ 𝑂 ‘ 𝑋 ) ) = ( 𝑂 ‘ ∅ ) ) |
118 |
117
|
sseq2d |
⊢ ( ( ◡ 𝑂 ‘ 𝑋 ) ⊆ ∅ → ( 𝑥 ⊆ ( 𝑂 ‘ ( ◡ 𝑂 ‘ 𝑋 ) ) ↔ 𝑥 ⊆ ( 𝑂 ‘ ∅ ) ) ) |
119 |
118
|
ifbid |
⊢ ( ( ◡ 𝑂 ‘ 𝑋 ) ⊆ ∅ → if ( 𝑥 ⊆ ( 𝑂 ‘ ( ◡ 𝑂 ‘ 𝑋 ) ) , ( 𝐹 ‘ 𝑥 ) , ∅ ) = if ( 𝑥 ⊆ ( 𝑂 ‘ ∅ ) , ( 𝐹 ‘ 𝑥 ) , ∅ ) ) |
120 |
119
|
mpteq2dv |
⊢ ( ( ◡ 𝑂 ‘ 𝑋 ) ⊆ ∅ → ( 𝑥 ∈ 𝐵 ↦ if ( 𝑥 ⊆ ( 𝑂 ‘ ( ◡ 𝑂 ‘ 𝑋 ) ) , ( 𝐹 ‘ 𝑥 ) , ∅ ) ) = ( 𝑥 ∈ 𝐵 ↦ if ( 𝑥 ⊆ ( 𝑂 ‘ ∅ ) , ( 𝐹 ‘ 𝑥 ) , ∅ ) ) ) |
121 |
120
|
fveq2d |
⊢ ( ( ◡ 𝑂 ‘ 𝑋 ) ⊆ ∅ → ( ( 𝐴 CNF 𝐵 ) ‘ ( 𝑥 ∈ 𝐵 ↦ if ( 𝑥 ⊆ ( 𝑂 ‘ ( ◡ 𝑂 ‘ 𝑋 ) ) , ( 𝐹 ‘ 𝑥 ) , ∅ ) ) ) = ( ( 𝐴 CNF 𝐵 ) ‘ ( 𝑥 ∈ 𝐵 ↦ if ( 𝑥 ⊆ ( 𝑂 ‘ ∅ ) , ( 𝐹 ‘ 𝑥 ) , ∅ ) ) ) ) |
122 |
|
suceq |
⊢ ( ( ◡ 𝑂 ‘ 𝑋 ) = ∅ → suc ( ◡ 𝑂 ‘ 𝑋 ) = suc ∅ ) |
123 |
116 122
|
syl |
⊢ ( ( ◡ 𝑂 ‘ 𝑋 ) ⊆ ∅ → suc ( ◡ 𝑂 ‘ 𝑋 ) = suc ∅ ) |
124 |
123
|
fveq2d |
⊢ ( ( ◡ 𝑂 ‘ 𝑋 ) ⊆ ∅ → ( 𝐻 ‘ suc ( ◡ 𝑂 ‘ 𝑋 ) ) = ( 𝐻 ‘ suc ∅ ) ) |
125 |
121 124
|
eleq12d |
⊢ ( ( ◡ 𝑂 ‘ 𝑋 ) ⊆ ∅ → ( ( ( 𝐴 CNF 𝐵 ) ‘ ( 𝑥 ∈ 𝐵 ↦ if ( 𝑥 ⊆ ( 𝑂 ‘ ( ◡ 𝑂 ‘ 𝑋 ) ) , ( 𝐹 ‘ 𝑥 ) , ∅ ) ) ) ∈ ( 𝐻 ‘ suc ( ◡ 𝑂 ‘ 𝑋 ) ) ↔ ( ( 𝐴 CNF 𝐵 ) ‘ ( 𝑥 ∈ 𝐵 ↦ if ( 𝑥 ⊆ ( 𝑂 ‘ ∅ ) , ( 𝐹 ‘ 𝑥 ) , ∅ ) ) ) ∈ ( 𝐻 ‘ suc ∅ ) ) ) |
126 |
125
|
adantl |
⊢ ( ( ∅ ∈ dom 𝑂 ∧ ( ◡ 𝑂 ‘ 𝑋 ) ⊆ ∅ ) → ( ( ( 𝐴 CNF 𝐵 ) ‘ ( 𝑥 ∈ 𝐵 ↦ if ( 𝑥 ⊆ ( 𝑂 ‘ ( ◡ 𝑂 ‘ 𝑋 ) ) , ( 𝐹 ‘ 𝑥 ) , ∅ ) ) ) ∈ ( 𝐻 ‘ suc ( ◡ 𝑂 ‘ 𝑋 ) ) ↔ ( ( 𝐴 CNF 𝐵 ) ‘ ( 𝑥 ∈ 𝐵 ↦ if ( 𝑥 ⊆ ( 𝑂 ‘ ∅ ) , ( 𝐹 ‘ 𝑥 ) , ∅ ) ) ) ∈ ( 𝐻 ‘ suc ∅ ) ) ) |
127 |
115 126
|
syl5ibcom |
⊢ ( 𝜑 → ( ( ∅ ∈ dom 𝑂 ∧ ( ◡ 𝑂 ‘ 𝑋 ) ⊆ ∅ ) → ( ( 𝐴 CNF 𝐵 ) ‘ ( 𝑥 ∈ 𝐵 ↦ if ( 𝑥 ⊆ ( 𝑂 ‘ ∅ ) , ( 𝐹 ‘ 𝑥 ) , ∅ ) ) ) ∈ ( 𝐻 ‘ suc ∅ ) ) ) |
128 |
|
ordelon |
⊢ ( ( Ord dom 𝑂 ∧ ( ◡ 𝑂 ‘ 𝑋 ) ∈ dom 𝑂 ) → ( ◡ 𝑂 ‘ 𝑋 ) ∈ On ) |
129 |
37 53 128
|
sylancr |
⊢ ( 𝜑 → ( ◡ 𝑂 ‘ 𝑋 ) ∈ On ) |
130 |
37
|
a1i |
⊢ ( 𝜑 → Ord dom 𝑂 ) |
131 |
|
ordelon |
⊢ ( ( Ord dom 𝑂 ∧ suc 𝑢 ∈ dom 𝑂 ) → suc 𝑢 ∈ On ) |
132 |
130 131
|
sylan |
⊢ ( ( 𝜑 ∧ suc 𝑢 ∈ dom 𝑂 ) → suc 𝑢 ∈ On ) |
133 |
|
onsseleq |
⊢ ( ( ( ◡ 𝑂 ‘ 𝑋 ) ∈ On ∧ suc 𝑢 ∈ On ) → ( ( ◡ 𝑂 ‘ 𝑋 ) ⊆ suc 𝑢 ↔ ( ( ◡ 𝑂 ‘ 𝑋 ) ∈ suc 𝑢 ∨ ( ◡ 𝑂 ‘ 𝑋 ) = suc 𝑢 ) ) ) |
134 |
129 132 133
|
syl2an2r |
⊢ ( ( 𝜑 ∧ suc 𝑢 ∈ dom 𝑂 ) → ( ( ◡ 𝑂 ‘ 𝑋 ) ⊆ suc 𝑢 ↔ ( ( ◡ 𝑂 ‘ 𝑋 ) ∈ suc 𝑢 ∨ ( ◡ 𝑂 ‘ 𝑋 ) = suc 𝑢 ) ) ) |
135 |
|
sucelon |
⊢ ( 𝑢 ∈ On ↔ suc 𝑢 ∈ On ) |
136 |
132 135
|
sylibr |
⊢ ( ( 𝜑 ∧ suc 𝑢 ∈ dom 𝑂 ) → 𝑢 ∈ On ) |
137 |
|
eloni |
⊢ ( 𝑢 ∈ On → Ord 𝑢 ) |
138 |
136 137
|
syl |
⊢ ( ( 𝜑 ∧ suc 𝑢 ∈ dom 𝑂 ) → Ord 𝑢 ) |
139 |
|
ordsssuc |
⊢ ( ( ( ◡ 𝑂 ‘ 𝑋 ) ∈ On ∧ Ord 𝑢 ) → ( ( ◡ 𝑂 ‘ 𝑋 ) ⊆ 𝑢 ↔ ( ◡ 𝑂 ‘ 𝑋 ) ∈ suc 𝑢 ) ) |
140 |
129 138 139
|
syl2an2r |
⊢ ( ( 𝜑 ∧ suc 𝑢 ∈ dom 𝑂 ) → ( ( ◡ 𝑂 ‘ 𝑋 ) ⊆ 𝑢 ↔ ( ◡ 𝑂 ‘ 𝑋 ) ∈ suc 𝑢 ) ) |
141 |
|
ordtr |
⊢ ( Ord dom 𝑂 → Tr dom 𝑂 ) |
142 |
37 141
|
mp1i |
⊢ ( ( 𝜑 ∧ ( suc 𝑢 ∈ dom 𝑂 ∧ ( ◡ 𝑂 ‘ 𝑋 ) ⊆ 𝑢 ) ) → Tr dom 𝑂 ) |
143 |
|
simprl |
⊢ ( ( 𝜑 ∧ ( suc 𝑢 ∈ dom 𝑂 ∧ ( ◡ 𝑂 ‘ 𝑋 ) ⊆ 𝑢 ) ) → suc 𝑢 ∈ dom 𝑂 ) |
144 |
|
trsuc |
⊢ ( ( Tr dom 𝑂 ∧ suc 𝑢 ∈ dom 𝑂 ) → 𝑢 ∈ dom 𝑂 ) |
145 |
142 143 144
|
syl2anc |
⊢ ( ( 𝜑 ∧ ( suc 𝑢 ∈ dom 𝑂 ∧ ( ◡ 𝑂 ‘ 𝑋 ) ⊆ 𝑢 ) ) → 𝑢 ∈ dom 𝑂 ) |
146 |
|
simprr |
⊢ ( ( 𝜑 ∧ ( suc 𝑢 ∈ dom 𝑂 ∧ ( ◡ 𝑂 ‘ 𝑋 ) ⊆ 𝑢 ) ) → ( ◡ 𝑂 ‘ 𝑋 ) ⊆ 𝑢 ) |
147 |
145 146
|
jca |
⊢ ( ( 𝜑 ∧ ( suc 𝑢 ∈ dom 𝑂 ∧ ( ◡ 𝑂 ‘ 𝑋 ) ⊆ 𝑢 ) ) → ( 𝑢 ∈ dom 𝑂 ∧ ( ◡ 𝑂 ‘ 𝑋 ) ⊆ 𝑢 ) ) |
148 |
3
|
adantr |
⊢ ( ( 𝜑 ∧ ( suc 𝑢 ∈ dom 𝑂 ∧ ( ◡ 𝑂 ‘ 𝑋 ) ⊆ 𝑢 ) ) → 𝐵 ∈ On ) |
149 |
|
oecl |
⊢ ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ) → ( 𝐴 ↑o 𝐵 ) ∈ On ) |
150 |
2 148 149
|
syl2an2r |
⊢ ( ( 𝜑 ∧ ( suc 𝑢 ∈ dom 𝑂 ∧ ( ◡ 𝑂 ‘ 𝑋 ) ⊆ 𝑢 ) ) → ( 𝐴 ↑o 𝐵 ) ∈ On ) |
151 |
2
|
adantr |
⊢ ( ( 𝜑 ∧ ( suc 𝑢 ∈ dom 𝑂 ∧ ( ◡ 𝑂 ‘ 𝑋 ) ⊆ 𝑢 ) ) → 𝐴 ∈ On ) |
152 |
1 151 148
|
cantnff |
⊢ ( ( 𝜑 ∧ ( suc 𝑢 ∈ dom 𝑂 ∧ ( ◡ 𝑂 ‘ 𝑋 ) ⊆ 𝑢 ) ) → ( 𝐴 CNF 𝐵 ) : 𝑆 ⟶ ( 𝐴 ↑o 𝐵 ) ) |
153 |
1 2 3
|
cantnfs |
⊢ ( 𝜑 → ( 𝐹 ∈ 𝑆 ↔ ( 𝐹 : 𝐵 ⟶ 𝐴 ∧ 𝐹 finSupp ∅ ) ) ) |
154 |
5 153
|
mpbid |
⊢ ( 𝜑 → ( 𝐹 : 𝐵 ⟶ 𝐴 ∧ 𝐹 finSupp ∅ ) ) |
155 |
154
|
simpld |
⊢ ( 𝜑 → 𝐹 : 𝐵 ⟶ 𝐴 ) |
156 |
155
|
ffvelrnda |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐵 ) → ( 𝐹 ‘ 𝑥 ) ∈ 𝐴 ) |
157 |
1 2 3
|
cantnfs |
⊢ ( 𝜑 → ( 𝐺 ∈ 𝑆 ↔ ( 𝐺 : 𝐵 ⟶ 𝐴 ∧ 𝐺 finSupp ∅ ) ) ) |
158 |
6 157
|
mpbid |
⊢ ( 𝜑 → ( 𝐺 : 𝐵 ⟶ 𝐴 ∧ 𝐺 finSupp ∅ ) ) |
159 |
158
|
simpld |
⊢ ( 𝜑 → 𝐺 : 𝐵 ⟶ 𝐴 ) |
160 |
1 2 3 4 5 6 7 8
|
oemapvali |
⊢ ( 𝜑 → ( 𝑋 ∈ 𝐵 ∧ ( 𝐹 ‘ 𝑋 ) ∈ ( 𝐺 ‘ 𝑋 ) ∧ ∀ 𝑤 ∈ 𝐵 ( 𝑋 ∈ 𝑤 → ( 𝐹 ‘ 𝑤 ) = ( 𝐺 ‘ 𝑤 ) ) ) ) |
161 |
160
|
simp1d |
⊢ ( 𝜑 → 𝑋 ∈ 𝐵 ) |
162 |
159 161
|
ffvelrnd |
⊢ ( 𝜑 → ( 𝐺 ‘ 𝑋 ) ∈ 𝐴 ) |
163 |
162
|
ne0d |
⊢ ( 𝜑 → 𝐴 ≠ ∅ ) |
164 |
|
on0eln0 |
⊢ ( 𝐴 ∈ On → ( ∅ ∈ 𝐴 ↔ 𝐴 ≠ ∅ ) ) |
165 |
2 164
|
syl |
⊢ ( 𝜑 → ( ∅ ∈ 𝐴 ↔ 𝐴 ≠ ∅ ) ) |
166 |
163 165
|
mpbird |
⊢ ( 𝜑 → ∅ ∈ 𝐴 ) |
167 |
166
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐵 ) → ∅ ∈ 𝐴 ) |
168 |
156 167
|
ifcld |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐵 ) → if ( 𝑥 ⊆ ( 𝑂 ‘ 𝑢 ) , ( 𝐹 ‘ 𝑥 ) , ∅ ) ∈ 𝐴 ) |
169 |
168
|
fmpttd |
⊢ ( 𝜑 → ( 𝑥 ∈ 𝐵 ↦ if ( 𝑥 ⊆ ( 𝑂 ‘ 𝑢 ) , ( 𝐹 ‘ 𝑥 ) , ∅ ) ) : 𝐵 ⟶ 𝐴 ) |
170 |
3
|
mptexd |
⊢ ( 𝜑 → ( 𝑥 ∈ 𝐵 ↦ if ( 𝑥 ⊆ ( 𝑂 ‘ 𝑢 ) , ( 𝐹 ‘ 𝑥 ) , ∅ ) ) ∈ V ) |
171 |
|
funmpt |
⊢ Fun ( 𝑥 ∈ 𝐵 ↦ if ( 𝑥 ⊆ ( 𝑂 ‘ 𝑢 ) , ( 𝐹 ‘ 𝑥 ) , ∅ ) ) |
172 |
171
|
a1i |
⊢ ( 𝜑 → Fun ( 𝑥 ∈ 𝐵 ↦ if ( 𝑥 ⊆ ( 𝑂 ‘ 𝑢 ) , ( 𝐹 ‘ 𝑥 ) , ∅ ) ) ) |
173 |
154
|
simprd |
⊢ ( 𝜑 → 𝐹 finSupp ∅ ) |
174 |
|
ssidd |
⊢ ( 𝜑 → ( 𝐹 supp ∅ ) ⊆ ( 𝐹 supp ∅ ) ) |
175 |
|
0ex |
⊢ ∅ ∈ V |
176 |
175
|
a1i |
⊢ ( 𝜑 → ∅ ∈ V ) |
177 |
155 174 3 176
|
suppssr |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐵 ∖ ( 𝐹 supp ∅ ) ) ) → ( 𝐹 ‘ 𝑥 ) = ∅ ) |
178 |
177
|
ifeq1d |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐵 ∖ ( 𝐹 supp ∅ ) ) ) → if ( 𝑥 ⊆ ( 𝑂 ‘ 𝑢 ) , ( 𝐹 ‘ 𝑥 ) , ∅ ) = if ( 𝑥 ⊆ ( 𝑂 ‘ 𝑢 ) , ∅ , ∅ ) ) |
179 |
|
ifid |
⊢ if ( 𝑥 ⊆ ( 𝑂 ‘ 𝑢 ) , ∅ , ∅ ) = ∅ |
180 |
178 179
|
eqtrdi |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐵 ∖ ( 𝐹 supp ∅ ) ) ) → if ( 𝑥 ⊆ ( 𝑂 ‘ 𝑢 ) , ( 𝐹 ‘ 𝑥 ) , ∅ ) = ∅ ) |
181 |
180 3
|
suppss2 |
⊢ ( 𝜑 → ( ( 𝑥 ∈ 𝐵 ↦ if ( 𝑥 ⊆ ( 𝑂 ‘ 𝑢 ) , ( 𝐹 ‘ 𝑥 ) , ∅ ) ) supp ∅ ) ⊆ ( 𝐹 supp ∅ ) ) |
182 |
|
fsuppsssupp |
⊢ ( ( ( ( 𝑥 ∈ 𝐵 ↦ if ( 𝑥 ⊆ ( 𝑂 ‘ 𝑢 ) , ( 𝐹 ‘ 𝑥 ) , ∅ ) ) ∈ V ∧ Fun ( 𝑥 ∈ 𝐵 ↦ if ( 𝑥 ⊆ ( 𝑂 ‘ 𝑢 ) , ( 𝐹 ‘ 𝑥 ) , ∅ ) ) ) ∧ ( 𝐹 finSupp ∅ ∧ ( ( 𝑥 ∈ 𝐵 ↦ if ( 𝑥 ⊆ ( 𝑂 ‘ 𝑢 ) , ( 𝐹 ‘ 𝑥 ) , ∅ ) ) supp ∅ ) ⊆ ( 𝐹 supp ∅ ) ) ) → ( 𝑥 ∈ 𝐵 ↦ if ( 𝑥 ⊆ ( 𝑂 ‘ 𝑢 ) , ( 𝐹 ‘ 𝑥 ) , ∅ ) ) finSupp ∅ ) |
183 |
170 172 173 181 182
|
syl22anc |
⊢ ( 𝜑 → ( 𝑥 ∈ 𝐵 ↦ if ( 𝑥 ⊆ ( 𝑂 ‘ 𝑢 ) , ( 𝐹 ‘ 𝑥 ) , ∅ ) ) finSupp ∅ ) |
184 |
1 2 3
|
cantnfs |
⊢ ( 𝜑 → ( ( 𝑥 ∈ 𝐵 ↦ if ( 𝑥 ⊆ ( 𝑂 ‘ 𝑢 ) , ( 𝐹 ‘ 𝑥 ) , ∅ ) ) ∈ 𝑆 ↔ ( ( 𝑥 ∈ 𝐵 ↦ if ( 𝑥 ⊆ ( 𝑂 ‘ 𝑢 ) , ( 𝐹 ‘ 𝑥 ) , ∅ ) ) : 𝐵 ⟶ 𝐴 ∧ ( 𝑥 ∈ 𝐵 ↦ if ( 𝑥 ⊆ ( 𝑂 ‘ 𝑢 ) , ( 𝐹 ‘ 𝑥 ) , ∅ ) ) finSupp ∅ ) ) ) |
185 |
169 183 184
|
mpbir2and |
⊢ ( 𝜑 → ( 𝑥 ∈ 𝐵 ↦ if ( 𝑥 ⊆ ( 𝑂 ‘ 𝑢 ) , ( 𝐹 ‘ 𝑥 ) , ∅ ) ) ∈ 𝑆 ) |
186 |
185
|
adantr |
⊢ ( ( 𝜑 ∧ ( suc 𝑢 ∈ dom 𝑂 ∧ ( ◡ 𝑂 ‘ 𝑋 ) ⊆ 𝑢 ) ) → ( 𝑥 ∈ 𝐵 ↦ if ( 𝑥 ⊆ ( 𝑂 ‘ 𝑢 ) , ( 𝐹 ‘ 𝑥 ) , ∅ ) ) ∈ 𝑆 ) |
187 |
152 186
|
ffvelrnd |
⊢ ( ( 𝜑 ∧ ( suc 𝑢 ∈ dom 𝑂 ∧ ( ◡ 𝑂 ‘ 𝑋 ) ⊆ 𝑢 ) ) → ( ( 𝐴 CNF 𝐵 ) ‘ ( 𝑥 ∈ 𝐵 ↦ if ( 𝑥 ⊆ ( 𝑂 ‘ 𝑢 ) , ( 𝐹 ‘ 𝑥 ) , ∅ ) ) ) ∈ ( 𝐴 ↑o 𝐵 ) ) |
188 |
|
onelon |
⊢ ( ( ( 𝐴 ↑o 𝐵 ) ∈ On ∧ ( ( 𝐴 CNF 𝐵 ) ‘ ( 𝑥 ∈ 𝐵 ↦ if ( 𝑥 ⊆ ( 𝑂 ‘ 𝑢 ) , ( 𝐹 ‘ 𝑥 ) , ∅ ) ) ) ∈ ( 𝐴 ↑o 𝐵 ) ) → ( ( 𝐴 CNF 𝐵 ) ‘ ( 𝑥 ∈ 𝐵 ↦ if ( 𝑥 ⊆ ( 𝑂 ‘ 𝑢 ) , ( 𝐹 ‘ 𝑥 ) , ∅ ) ) ) ∈ On ) |
189 |
150 187 188
|
syl2anc |
⊢ ( ( 𝜑 ∧ ( suc 𝑢 ∈ dom 𝑂 ∧ ( ◡ 𝑂 ‘ 𝑋 ) ⊆ 𝑢 ) ) → ( ( 𝐴 CNF 𝐵 ) ‘ ( 𝑥 ∈ 𝐵 ↦ if ( 𝑥 ⊆ ( 𝑂 ‘ 𝑢 ) , ( 𝐹 ‘ 𝑥 ) , ∅ ) ) ) ∈ On ) |
190 |
32
|
adantr |
⊢ ( ( 𝜑 ∧ ( suc 𝑢 ∈ dom 𝑂 ∧ ( ◡ 𝑂 ‘ 𝑋 ) ⊆ 𝑢 ) ) → dom 𝑂 ∈ ω ) |
191 |
|
elnn |
⊢ ( ( suc 𝑢 ∈ dom 𝑂 ∧ dom 𝑂 ∈ ω ) → suc 𝑢 ∈ ω ) |
192 |
143 190 191
|
syl2anc |
⊢ ( ( 𝜑 ∧ ( suc 𝑢 ∈ dom 𝑂 ∧ ( ◡ 𝑂 ‘ 𝑋 ) ⊆ 𝑢 ) ) → suc 𝑢 ∈ ω ) |
193 |
10
|
cantnfvalf |
⊢ 𝐻 : ω ⟶ On |
194 |
193
|
ffvelrni |
⊢ ( suc 𝑢 ∈ ω → ( 𝐻 ‘ suc 𝑢 ) ∈ On ) |
195 |
192 194
|
syl |
⊢ ( ( 𝜑 ∧ ( suc 𝑢 ∈ dom 𝑂 ∧ ( ◡ 𝑂 ‘ 𝑋 ) ⊆ 𝑢 ) ) → ( 𝐻 ‘ suc 𝑢 ) ∈ On ) |
196 |
|
suppssdm |
⊢ ( 𝐺 supp ∅ ) ⊆ dom 𝐺 |
197 |
196 159
|
fssdm |
⊢ ( 𝜑 → ( 𝐺 supp ∅ ) ⊆ 𝐵 ) |
198 |
197
|
adantr |
⊢ ( ( 𝜑 ∧ ( suc 𝑢 ∈ dom 𝑂 ∧ ( ◡ 𝑂 ‘ 𝑋 ) ⊆ 𝑢 ) ) → ( 𝐺 supp ∅ ) ⊆ 𝐵 ) |
199 |
9
|
oif |
⊢ 𝑂 : dom 𝑂 ⟶ ( 𝐺 supp ∅ ) |
200 |
199
|
ffvelrni |
⊢ ( suc 𝑢 ∈ dom 𝑂 → ( 𝑂 ‘ suc 𝑢 ) ∈ ( 𝐺 supp ∅ ) ) |
201 |
143 200
|
syl |
⊢ ( ( 𝜑 ∧ ( suc 𝑢 ∈ dom 𝑂 ∧ ( ◡ 𝑂 ‘ 𝑋 ) ⊆ 𝑢 ) ) → ( 𝑂 ‘ suc 𝑢 ) ∈ ( 𝐺 supp ∅ ) ) |
202 |
198 201
|
sseldd |
⊢ ( ( 𝜑 ∧ ( suc 𝑢 ∈ dom 𝑂 ∧ ( ◡ 𝑂 ‘ 𝑋 ) ⊆ 𝑢 ) ) → ( 𝑂 ‘ suc 𝑢 ) ∈ 𝐵 ) |
203 |
|
onelon |
⊢ ( ( 𝐵 ∈ On ∧ ( 𝑂 ‘ suc 𝑢 ) ∈ 𝐵 ) → ( 𝑂 ‘ suc 𝑢 ) ∈ On ) |
204 |
3 202 203
|
syl2an2r |
⊢ ( ( 𝜑 ∧ ( suc 𝑢 ∈ dom 𝑂 ∧ ( ◡ 𝑂 ‘ 𝑋 ) ⊆ 𝑢 ) ) → ( 𝑂 ‘ suc 𝑢 ) ∈ On ) |
205 |
|
oecl |
⊢ ( ( 𝐴 ∈ On ∧ ( 𝑂 ‘ suc 𝑢 ) ∈ On ) → ( 𝐴 ↑o ( 𝑂 ‘ suc 𝑢 ) ) ∈ On ) |
206 |
2 204 205
|
syl2an2r |
⊢ ( ( 𝜑 ∧ ( suc 𝑢 ∈ dom 𝑂 ∧ ( ◡ 𝑂 ‘ 𝑋 ) ⊆ 𝑢 ) ) → ( 𝐴 ↑o ( 𝑂 ‘ suc 𝑢 ) ) ∈ On ) |
207 |
155
|
adantr |
⊢ ( ( 𝜑 ∧ ( suc 𝑢 ∈ dom 𝑂 ∧ ( ◡ 𝑂 ‘ 𝑋 ) ⊆ 𝑢 ) ) → 𝐹 : 𝐵 ⟶ 𝐴 ) |
208 |
207 202
|
ffvelrnd |
⊢ ( ( 𝜑 ∧ ( suc 𝑢 ∈ dom 𝑂 ∧ ( ◡ 𝑂 ‘ 𝑋 ) ⊆ 𝑢 ) ) → ( 𝐹 ‘ ( 𝑂 ‘ suc 𝑢 ) ) ∈ 𝐴 ) |
209 |
|
onelon |
⊢ ( ( 𝐴 ∈ On ∧ ( 𝐹 ‘ ( 𝑂 ‘ suc 𝑢 ) ) ∈ 𝐴 ) → ( 𝐹 ‘ ( 𝑂 ‘ suc 𝑢 ) ) ∈ On ) |
210 |
2 208 209
|
syl2an2r |
⊢ ( ( 𝜑 ∧ ( suc 𝑢 ∈ dom 𝑂 ∧ ( ◡ 𝑂 ‘ 𝑋 ) ⊆ 𝑢 ) ) → ( 𝐹 ‘ ( 𝑂 ‘ suc 𝑢 ) ) ∈ On ) |
211 |
|
omcl |
⊢ ( ( ( 𝐴 ↑o ( 𝑂 ‘ suc 𝑢 ) ) ∈ On ∧ ( 𝐹 ‘ ( 𝑂 ‘ suc 𝑢 ) ) ∈ On ) → ( ( 𝐴 ↑o ( 𝑂 ‘ suc 𝑢 ) ) ·o ( 𝐹 ‘ ( 𝑂 ‘ suc 𝑢 ) ) ) ∈ On ) |
212 |
206 210 211
|
syl2anc |
⊢ ( ( 𝜑 ∧ ( suc 𝑢 ∈ dom 𝑂 ∧ ( ◡ 𝑂 ‘ 𝑋 ) ⊆ 𝑢 ) ) → ( ( 𝐴 ↑o ( 𝑂 ‘ suc 𝑢 ) ) ·o ( 𝐹 ‘ ( 𝑂 ‘ suc 𝑢 ) ) ) ∈ On ) |
213 |
|
oaord |
⊢ ( ( ( ( 𝐴 CNF 𝐵 ) ‘ ( 𝑥 ∈ 𝐵 ↦ if ( 𝑥 ⊆ ( 𝑂 ‘ 𝑢 ) , ( 𝐹 ‘ 𝑥 ) , ∅ ) ) ) ∈ On ∧ ( 𝐻 ‘ suc 𝑢 ) ∈ On ∧ ( ( 𝐴 ↑o ( 𝑂 ‘ suc 𝑢 ) ) ·o ( 𝐹 ‘ ( 𝑂 ‘ suc 𝑢 ) ) ) ∈ On ) → ( ( ( 𝐴 CNF 𝐵 ) ‘ ( 𝑥 ∈ 𝐵 ↦ if ( 𝑥 ⊆ ( 𝑂 ‘ 𝑢 ) , ( 𝐹 ‘ 𝑥 ) , ∅ ) ) ) ∈ ( 𝐻 ‘ suc 𝑢 ) ↔ ( ( ( 𝐴 ↑o ( 𝑂 ‘ suc 𝑢 ) ) ·o ( 𝐹 ‘ ( 𝑂 ‘ suc 𝑢 ) ) ) +o ( ( 𝐴 CNF 𝐵 ) ‘ ( 𝑥 ∈ 𝐵 ↦ if ( 𝑥 ⊆ ( 𝑂 ‘ 𝑢 ) , ( 𝐹 ‘ 𝑥 ) , ∅ ) ) ) ) ∈ ( ( ( 𝐴 ↑o ( 𝑂 ‘ suc 𝑢 ) ) ·o ( 𝐹 ‘ ( 𝑂 ‘ suc 𝑢 ) ) ) +o ( 𝐻 ‘ suc 𝑢 ) ) ) ) |
214 |
189 195 212 213
|
syl3anc |
⊢ ( ( 𝜑 ∧ ( suc 𝑢 ∈ dom 𝑂 ∧ ( ◡ 𝑂 ‘ 𝑋 ) ⊆ 𝑢 ) ) → ( ( ( 𝐴 CNF 𝐵 ) ‘ ( 𝑥 ∈ 𝐵 ↦ if ( 𝑥 ⊆ ( 𝑂 ‘ 𝑢 ) , ( 𝐹 ‘ 𝑥 ) , ∅ ) ) ) ∈ ( 𝐻 ‘ suc 𝑢 ) ↔ ( ( ( 𝐴 ↑o ( 𝑂 ‘ suc 𝑢 ) ) ·o ( 𝐹 ‘ ( 𝑂 ‘ suc 𝑢 ) ) ) +o ( ( 𝐴 CNF 𝐵 ) ‘ ( 𝑥 ∈ 𝐵 ↦ if ( 𝑥 ⊆ ( 𝑂 ‘ 𝑢 ) , ( 𝐹 ‘ 𝑥 ) , ∅ ) ) ) ) ∈ ( ( ( 𝐴 ↑o ( 𝑂 ‘ suc 𝑢 ) ) ·o ( 𝐹 ‘ ( 𝑂 ‘ suc 𝑢 ) ) ) +o ( 𝐻 ‘ suc 𝑢 ) ) ) ) |
215 |
|
ifeq1 |
⊢ ( ( 𝐹 ‘ 𝑥 ) = ∅ → if ( 𝑥 ⊆ ( 𝑂 ‘ suc 𝑢 ) , ( 𝐹 ‘ 𝑥 ) , ∅ ) = if ( 𝑥 ⊆ ( 𝑂 ‘ suc 𝑢 ) , ∅ , ∅ ) ) |
216 |
|
ifid |
⊢ if ( 𝑥 ⊆ ( 𝑂 ‘ suc 𝑢 ) , ∅ , ∅ ) = ∅ |
217 |
215 216
|
eqtrdi |
⊢ ( ( 𝐹 ‘ 𝑥 ) = ∅ → if ( 𝑥 ⊆ ( 𝑂 ‘ suc 𝑢 ) , ( 𝐹 ‘ 𝑥 ) , ∅ ) = ∅ ) |
218 |
|
ifeq1 |
⊢ ( ( 𝐹 ‘ 𝑥 ) = ∅ → if ( ( 𝑥 = ( 𝑂 ‘ suc 𝑢 ) ∨ 𝑥 ⊆ ( 𝑂 ‘ 𝑢 ) ) , ( 𝐹 ‘ 𝑥 ) , ∅ ) = if ( ( 𝑥 = ( 𝑂 ‘ suc 𝑢 ) ∨ 𝑥 ⊆ ( 𝑂 ‘ 𝑢 ) ) , ∅ , ∅ ) ) |
219 |
|
ifid |
⊢ if ( ( 𝑥 = ( 𝑂 ‘ suc 𝑢 ) ∨ 𝑥 ⊆ ( 𝑂 ‘ 𝑢 ) ) , ∅ , ∅ ) = ∅ |
220 |
218 219
|
eqtrdi |
⊢ ( ( 𝐹 ‘ 𝑥 ) = ∅ → if ( ( 𝑥 = ( 𝑂 ‘ suc 𝑢 ) ∨ 𝑥 ⊆ ( 𝑂 ‘ 𝑢 ) ) , ( 𝐹 ‘ 𝑥 ) , ∅ ) = ∅ ) |
221 |
217 220
|
eqeq12d |
⊢ ( ( 𝐹 ‘ 𝑥 ) = ∅ → ( if ( 𝑥 ⊆ ( 𝑂 ‘ suc 𝑢 ) , ( 𝐹 ‘ 𝑥 ) , ∅ ) = if ( ( 𝑥 = ( 𝑂 ‘ suc 𝑢 ) ∨ 𝑥 ⊆ ( 𝑂 ‘ 𝑢 ) ) , ( 𝐹 ‘ 𝑥 ) , ∅ ) ↔ ∅ = ∅ ) ) |
222 |
|
onss |
⊢ ( 𝐵 ∈ On → 𝐵 ⊆ On ) |
223 |
3 222
|
syl |
⊢ ( 𝜑 → 𝐵 ⊆ On ) |
224 |
223
|
sselda |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐵 ) → 𝑥 ∈ On ) |
225 |
224
|
adantlr |
⊢ ( ( ( 𝜑 ∧ ( suc 𝑢 ∈ dom 𝑂 ∧ ( ◡ 𝑂 ‘ 𝑋 ) ⊆ 𝑢 ) ) ∧ 𝑥 ∈ 𝐵 ) → 𝑥 ∈ On ) |
226 |
204
|
adantr |
⊢ ( ( ( 𝜑 ∧ ( suc 𝑢 ∈ dom 𝑂 ∧ ( ◡ 𝑂 ‘ 𝑋 ) ⊆ 𝑢 ) ) ∧ 𝑥 ∈ 𝐵 ) → ( 𝑂 ‘ suc 𝑢 ) ∈ On ) |
227 |
|
onsseleq |
⊢ ( ( 𝑥 ∈ On ∧ ( 𝑂 ‘ suc 𝑢 ) ∈ On ) → ( 𝑥 ⊆ ( 𝑂 ‘ suc 𝑢 ) ↔ ( 𝑥 ∈ ( 𝑂 ‘ suc 𝑢 ) ∨ 𝑥 = ( 𝑂 ‘ suc 𝑢 ) ) ) ) |
228 |
225 226 227
|
syl2anc |
⊢ ( ( ( 𝜑 ∧ ( suc 𝑢 ∈ dom 𝑂 ∧ ( ◡ 𝑂 ‘ 𝑋 ) ⊆ 𝑢 ) ) ∧ 𝑥 ∈ 𝐵 ) → ( 𝑥 ⊆ ( 𝑂 ‘ suc 𝑢 ) ↔ ( 𝑥 ∈ ( 𝑂 ‘ suc 𝑢 ) ∨ 𝑥 = ( 𝑂 ‘ suc 𝑢 ) ) ) ) |
229 |
228
|
adantr |
⊢ ( ( ( ( 𝜑 ∧ ( suc 𝑢 ∈ dom 𝑂 ∧ ( ◡ 𝑂 ‘ 𝑋 ) ⊆ 𝑢 ) ) ∧ 𝑥 ∈ 𝐵 ) ∧ ( 𝐹 ‘ 𝑥 ) ≠ ∅ ) → ( 𝑥 ⊆ ( 𝑂 ‘ suc 𝑢 ) ↔ ( 𝑥 ∈ ( 𝑂 ‘ suc 𝑢 ) ∨ 𝑥 = ( 𝑂 ‘ suc 𝑢 ) ) ) ) |
230 |
199
|
ffvelrni |
⊢ ( 𝑢 ∈ dom 𝑂 → ( 𝑂 ‘ 𝑢 ) ∈ ( 𝐺 supp ∅ ) ) |
231 |
145 230
|
syl |
⊢ ( ( 𝜑 ∧ ( suc 𝑢 ∈ dom 𝑂 ∧ ( ◡ 𝑂 ‘ 𝑋 ) ⊆ 𝑢 ) ) → ( 𝑂 ‘ 𝑢 ) ∈ ( 𝐺 supp ∅ ) ) |
232 |
198 231
|
sseldd |
⊢ ( ( 𝜑 ∧ ( suc 𝑢 ∈ dom 𝑂 ∧ ( ◡ 𝑂 ‘ 𝑋 ) ⊆ 𝑢 ) ) → ( 𝑂 ‘ 𝑢 ) ∈ 𝐵 ) |
233 |
|
onelon |
⊢ ( ( 𝐵 ∈ On ∧ ( 𝑂 ‘ 𝑢 ) ∈ 𝐵 ) → ( 𝑂 ‘ 𝑢 ) ∈ On ) |
234 |
3 232 233
|
syl2an2r |
⊢ ( ( 𝜑 ∧ ( suc 𝑢 ∈ dom 𝑂 ∧ ( ◡ 𝑂 ‘ 𝑋 ) ⊆ 𝑢 ) ) → ( 𝑂 ‘ 𝑢 ) ∈ On ) |
235 |
234
|
ad2antrr |
⊢ ( ( ( ( 𝜑 ∧ ( suc 𝑢 ∈ dom 𝑂 ∧ ( ◡ 𝑂 ‘ 𝑋 ) ⊆ 𝑢 ) ) ∧ 𝑥 ∈ 𝐵 ) ∧ ( 𝐹 ‘ 𝑥 ) ≠ ∅ ) → ( 𝑂 ‘ 𝑢 ) ∈ On ) |
236 |
|
onsssuc |
⊢ ( ( 𝑥 ∈ On ∧ ( 𝑂 ‘ 𝑢 ) ∈ On ) → ( 𝑥 ⊆ ( 𝑂 ‘ 𝑢 ) ↔ 𝑥 ∈ suc ( 𝑂 ‘ 𝑢 ) ) ) |
237 |
225 235 236
|
syl2an2r |
⊢ ( ( ( ( 𝜑 ∧ ( suc 𝑢 ∈ dom 𝑂 ∧ ( ◡ 𝑂 ‘ 𝑋 ) ⊆ 𝑢 ) ) ∧ 𝑥 ∈ 𝐵 ) ∧ ( 𝐹 ‘ 𝑥 ) ≠ ∅ ) → ( 𝑥 ⊆ ( 𝑂 ‘ 𝑢 ) ↔ 𝑥 ∈ suc ( 𝑂 ‘ 𝑢 ) ) ) |
238 |
|
vex |
⊢ 𝑢 ∈ V |
239 |
238
|
sucid |
⊢ 𝑢 ∈ suc 𝑢 |
240 |
47
|
adantr |
⊢ ( ( 𝜑 ∧ ( suc 𝑢 ∈ dom 𝑂 ∧ ( ◡ 𝑂 ‘ 𝑋 ) ⊆ 𝑢 ) ) → 𝑂 Isom E , E ( dom 𝑂 , ( 𝐺 supp ∅ ) ) ) |
241 |
|
isorel |
⊢ ( ( 𝑂 Isom E , E ( dom 𝑂 , ( 𝐺 supp ∅ ) ) ∧ ( 𝑢 ∈ dom 𝑂 ∧ suc 𝑢 ∈ dom 𝑂 ) ) → ( 𝑢 E suc 𝑢 ↔ ( 𝑂 ‘ 𝑢 ) E ( 𝑂 ‘ suc 𝑢 ) ) ) |
242 |
240 145 143 241
|
syl12anc |
⊢ ( ( 𝜑 ∧ ( suc 𝑢 ∈ dom 𝑂 ∧ ( ◡ 𝑂 ‘ 𝑋 ) ⊆ 𝑢 ) ) → ( 𝑢 E suc 𝑢 ↔ ( 𝑂 ‘ 𝑢 ) E ( 𝑂 ‘ suc 𝑢 ) ) ) |
243 |
238
|
sucex |
⊢ suc 𝑢 ∈ V |
244 |
243
|
epeli |
⊢ ( 𝑢 E suc 𝑢 ↔ 𝑢 ∈ suc 𝑢 ) |
245 |
|
fvex |
⊢ ( 𝑂 ‘ suc 𝑢 ) ∈ V |
246 |
245
|
epeli |
⊢ ( ( 𝑂 ‘ 𝑢 ) E ( 𝑂 ‘ suc 𝑢 ) ↔ ( 𝑂 ‘ 𝑢 ) ∈ ( 𝑂 ‘ suc 𝑢 ) ) |
247 |
242 244 246
|
3bitr3g |
⊢ ( ( 𝜑 ∧ ( suc 𝑢 ∈ dom 𝑂 ∧ ( ◡ 𝑂 ‘ 𝑋 ) ⊆ 𝑢 ) ) → ( 𝑢 ∈ suc 𝑢 ↔ ( 𝑂 ‘ 𝑢 ) ∈ ( 𝑂 ‘ suc 𝑢 ) ) ) |
248 |
239 247
|
mpbii |
⊢ ( ( 𝜑 ∧ ( suc 𝑢 ∈ dom 𝑂 ∧ ( ◡ 𝑂 ‘ 𝑋 ) ⊆ 𝑢 ) ) → ( 𝑂 ‘ 𝑢 ) ∈ ( 𝑂 ‘ suc 𝑢 ) ) |
249 |
|
eloni |
⊢ ( ( 𝑂 ‘ suc 𝑢 ) ∈ On → Ord ( 𝑂 ‘ suc 𝑢 ) ) |
250 |
204 249
|
syl |
⊢ ( ( 𝜑 ∧ ( suc 𝑢 ∈ dom 𝑂 ∧ ( ◡ 𝑂 ‘ 𝑋 ) ⊆ 𝑢 ) ) → Ord ( 𝑂 ‘ suc 𝑢 ) ) |
251 |
|
ordelsuc |
⊢ ( ( ( 𝑂 ‘ 𝑢 ) ∈ On ∧ Ord ( 𝑂 ‘ suc 𝑢 ) ) → ( ( 𝑂 ‘ 𝑢 ) ∈ ( 𝑂 ‘ suc 𝑢 ) ↔ suc ( 𝑂 ‘ 𝑢 ) ⊆ ( 𝑂 ‘ suc 𝑢 ) ) ) |
252 |
234 250 251
|
syl2anc |
⊢ ( ( 𝜑 ∧ ( suc 𝑢 ∈ dom 𝑂 ∧ ( ◡ 𝑂 ‘ 𝑋 ) ⊆ 𝑢 ) ) → ( ( 𝑂 ‘ 𝑢 ) ∈ ( 𝑂 ‘ suc 𝑢 ) ↔ suc ( 𝑂 ‘ 𝑢 ) ⊆ ( 𝑂 ‘ suc 𝑢 ) ) ) |
253 |
248 252
|
mpbid |
⊢ ( ( 𝜑 ∧ ( suc 𝑢 ∈ dom 𝑂 ∧ ( ◡ 𝑂 ‘ 𝑋 ) ⊆ 𝑢 ) ) → suc ( 𝑂 ‘ 𝑢 ) ⊆ ( 𝑂 ‘ suc 𝑢 ) ) |
254 |
253
|
ad2antrr |
⊢ ( ( ( ( 𝜑 ∧ ( suc 𝑢 ∈ dom 𝑂 ∧ ( ◡ 𝑂 ‘ 𝑋 ) ⊆ 𝑢 ) ) ∧ 𝑥 ∈ 𝐵 ) ∧ ( 𝐹 ‘ 𝑥 ) ≠ ∅ ) → suc ( 𝑂 ‘ 𝑢 ) ⊆ ( 𝑂 ‘ suc 𝑢 ) ) |
255 |
254
|
sseld |
⊢ ( ( ( ( 𝜑 ∧ ( suc 𝑢 ∈ dom 𝑂 ∧ ( ◡ 𝑂 ‘ 𝑋 ) ⊆ 𝑢 ) ) ∧ 𝑥 ∈ 𝐵 ) ∧ ( 𝐹 ‘ 𝑥 ) ≠ ∅ ) → ( 𝑥 ∈ suc ( 𝑂 ‘ 𝑢 ) → 𝑥 ∈ ( 𝑂 ‘ suc 𝑢 ) ) ) |
256 |
237 255
|
sylbid |
⊢ ( ( ( ( 𝜑 ∧ ( suc 𝑢 ∈ dom 𝑂 ∧ ( ◡ 𝑂 ‘ 𝑋 ) ⊆ 𝑢 ) ) ∧ 𝑥 ∈ 𝐵 ) ∧ ( 𝐹 ‘ 𝑥 ) ≠ ∅ ) → ( 𝑥 ⊆ ( 𝑂 ‘ 𝑢 ) → 𝑥 ∈ ( 𝑂 ‘ suc 𝑢 ) ) ) |
257 |
|
simprr |
⊢ ( ( ( ( 𝜑 ∧ ( suc 𝑢 ∈ dom 𝑂 ∧ ( ◡ 𝑂 ‘ 𝑋 ) ⊆ 𝑢 ) ) ∧ 𝑥 ∈ 𝐵 ) ∧ ( ( 𝐹 ‘ 𝑥 ) ≠ ∅ ∧ ( 𝑂 ‘ 𝑢 ) ∈ 𝑥 ) ) → ( 𝑂 ‘ 𝑢 ) ∈ 𝑥 ) |
258 |
240
|
ad2antrr |
⊢ ( ( ( ( 𝜑 ∧ ( suc 𝑢 ∈ dom 𝑂 ∧ ( ◡ 𝑂 ‘ 𝑋 ) ⊆ 𝑢 ) ) ∧ 𝑥 ∈ 𝐵 ) ∧ ( ( 𝐹 ‘ 𝑥 ) ≠ ∅ ∧ ( 𝑂 ‘ 𝑢 ) ∈ 𝑥 ) ) → 𝑂 Isom E , E ( dom 𝑂 , ( 𝐺 supp ∅ ) ) ) |
259 |
258 48
|
syl |
⊢ ( ( ( ( 𝜑 ∧ ( suc 𝑢 ∈ dom 𝑂 ∧ ( ◡ 𝑂 ‘ 𝑋 ) ⊆ 𝑢 ) ) ∧ 𝑥 ∈ 𝐵 ) ∧ ( ( 𝐹 ‘ 𝑥 ) ≠ ∅ ∧ ( 𝑂 ‘ 𝑢 ) ∈ 𝑥 ) ) → 𝑂 : dom 𝑂 –1-1-onto→ ( 𝐺 supp ∅ ) ) |
260 |
1 2 3 4 5 6 7 8 9
|
cantnflem1c |
⊢ ( ( ( ( 𝜑 ∧ ( suc 𝑢 ∈ dom 𝑂 ∧ ( ◡ 𝑂 ‘ 𝑋 ) ⊆ 𝑢 ) ) ∧ 𝑥 ∈ 𝐵 ) ∧ ( ( 𝐹 ‘ 𝑥 ) ≠ ∅ ∧ ( 𝑂 ‘ 𝑢 ) ∈ 𝑥 ) ) → 𝑥 ∈ ( 𝐺 supp ∅ ) ) |
261 |
|
f1ocnvfv2 |
⊢ ( ( 𝑂 : dom 𝑂 –1-1-onto→ ( 𝐺 supp ∅ ) ∧ 𝑥 ∈ ( 𝐺 supp ∅ ) ) → ( 𝑂 ‘ ( ◡ 𝑂 ‘ 𝑥 ) ) = 𝑥 ) |
262 |
259 260 261
|
syl2anc |
⊢ ( ( ( ( 𝜑 ∧ ( suc 𝑢 ∈ dom 𝑂 ∧ ( ◡ 𝑂 ‘ 𝑋 ) ⊆ 𝑢 ) ) ∧ 𝑥 ∈ 𝐵 ) ∧ ( ( 𝐹 ‘ 𝑥 ) ≠ ∅ ∧ ( 𝑂 ‘ 𝑢 ) ∈ 𝑥 ) ) → ( 𝑂 ‘ ( ◡ 𝑂 ‘ 𝑥 ) ) = 𝑥 ) |
263 |
257 262
|
eleqtrrd |
⊢ ( ( ( ( 𝜑 ∧ ( suc 𝑢 ∈ dom 𝑂 ∧ ( ◡ 𝑂 ‘ 𝑋 ) ⊆ 𝑢 ) ) ∧ 𝑥 ∈ 𝐵 ) ∧ ( ( 𝐹 ‘ 𝑥 ) ≠ ∅ ∧ ( 𝑂 ‘ 𝑢 ) ∈ 𝑥 ) ) → ( 𝑂 ‘ 𝑢 ) ∈ ( 𝑂 ‘ ( ◡ 𝑂 ‘ 𝑥 ) ) ) |
264 |
145
|
ad2antrr |
⊢ ( ( ( ( 𝜑 ∧ ( suc 𝑢 ∈ dom 𝑂 ∧ ( ◡ 𝑂 ‘ 𝑋 ) ⊆ 𝑢 ) ) ∧ 𝑥 ∈ 𝐵 ) ∧ ( ( 𝐹 ‘ 𝑥 ) ≠ ∅ ∧ ( 𝑂 ‘ 𝑢 ) ∈ 𝑥 ) ) → 𝑢 ∈ dom 𝑂 ) |
265 |
259 50 51
|
3syl |
⊢ ( ( ( ( 𝜑 ∧ ( suc 𝑢 ∈ dom 𝑂 ∧ ( ◡ 𝑂 ‘ 𝑋 ) ⊆ 𝑢 ) ) ∧ 𝑥 ∈ 𝐵 ) ∧ ( ( 𝐹 ‘ 𝑥 ) ≠ ∅ ∧ ( 𝑂 ‘ 𝑢 ) ∈ 𝑥 ) ) → ◡ 𝑂 : ( 𝐺 supp ∅ ) ⟶ dom 𝑂 ) |
266 |
265 260
|
ffvelrnd |
⊢ ( ( ( ( 𝜑 ∧ ( suc 𝑢 ∈ dom 𝑂 ∧ ( ◡ 𝑂 ‘ 𝑋 ) ⊆ 𝑢 ) ) ∧ 𝑥 ∈ 𝐵 ) ∧ ( ( 𝐹 ‘ 𝑥 ) ≠ ∅ ∧ ( 𝑂 ‘ 𝑢 ) ∈ 𝑥 ) ) → ( ◡ 𝑂 ‘ 𝑥 ) ∈ dom 𝑂 ) |
267 |
|
isorel |
⊢ ( ( 𝑂 Isom E , E ( dom 𝑂 , ( 𝐺 supp ∅ ) ) ∧ ( 𝑢 ∈ dom 𝑂 ∧ ( ◡ 𝑂 ‘ 𝑥 ) ∈ dom 𝑂 ) ) → ( 𝑢 E ( ◡ 𝑂 ‘ 𝑥 ) ↔ ( 𝑂 ‘ 𝑢 ) E ( 𝑂 ‘ ( ◡ 𝑂 ‘ 𝑥 ) ) ) ) |
268 |
258 264 266 267
|
syl12anc |
⊢ ( ( ( ( 𝜑 ∧ ( suc 𝑢 ∈ dom 𝑂 ∧ ( ◡ 𝑂 ‘ 𝑋 ) ⊆ 𝑢 ) ) ∧ 𝑥 ∈ 𝐵 ) ∧ ( ( 𝐹 ‘ 𝑥 ) ≠ ∅ ∧ ( 𝑂 ‘ 𝑢 ) ∈ 𝑥 ) ) → ( 𝑢 E ( ◡ 𝑂 ‘ 𝑥 ) ↔ ( 𝑂 ‘ 𝑢 ) E ( 𝑂 ‘ ( ◡ 𝑂 ‘ 𝑥 ) ) ) ) |
269 |
|
fvex |
⊢ ( ◡ 𝑂 ‘ 𝑥 ) ∈ V |
270 |
269
|
epeli |
⊢ ( 𝑢 E ( ◡ 𝑂 ‘ 𝑥 ) ↔ 𝑢 ∈ ( ◡ 𝑂 ‘ 𝑥 ) ) |
271 |
|
fvex |
⊢ ( 𝑂 ‘ ( ◡ 𝑂 ‘ 𝑥 ) ) ∈ V |
272 |
271
|
epeli |
⊢ ( ( 𝑂 ‘ 𝑢 ) E ( 𝑂 ‘ ( ◡ 𝑂 ‘ 𝑥 ) ) ↔ ( 𝑂 ‘ 𝑢 ) ∈ ( 𝑂 ‘ ( ◡ 𝑂 ‘ 𝑥 ) ) ) |
273 |
268 270 272
|
3bitr3g |
⊢ ( ( ( ( 𝜑 ∧ ( suc 𝑢 ∈ dom 𝑂 ∧ ( ◡ 𝑂 ‘ 𝑋 ) ⊆ 𝑢 ) ) ∧ 𝑥 ∈ 𝐵 ) ∧ ( ( 𝐹 ‘ 𝑥 ) ≠ ∅ ∧ ( 𝑂 ‘ 𝑢 ) ∈ 𝑥 ) ) → ( 𝑢 ∈ ( ◡ 𝑂 ‘ 𝑥 ) ↔ ( 𝑂 ‘ 𝑢 ) ∈ ( 𝑂 ‘ ( ◡ 𝑂 ‘ 𝑥 ) ) ) ) |
274 |
263 273
|
mpbird |
⊢ ( ( ( ( 𝜑 ∧ ( suc 𝑢 ∈ dom 𝑂 ∧ ( ◡ 𝑂 ‘ 𝑋 ) ⊆ 𝑢 ) ) ∧ 𝑥 ∈ 𝐵 ) ∧ ( ( 𝐹 ‘ 𝑥 ) ≠ ∅ ∧ ( 𝑂 ‘ 𝑢 ) ∈ 𝑥 ) ) → 𝑢 ∈ ( ◡ 𝑂 ‘ 𝑥 ) ) |
275 |
|
ordelon |
⊢ ( ( Ord dom 𝑂 ∧ ( ◡ 𝑂 ‘ 𝑥 ) ∈ dom 𝑂 ) → ( ◡ 𝑂 ‘ 𝑥 ) ∈ On ) |
276 |
37 266 275
|
sylancr |
⊢ ( ( ( ( 𝜑 ∧ ( suc 𝑢 ∈ dom 𝑂 ∧ ( ◡ 𝑂 ‘ 𝑋 ) ⊆ 𝑢 ) ) ∧ 𝑥 ∈ 𝐵 ) ∧ ( ( 𝐹 ‘ 𝑥 ) ≠ ∅ ∧ ( 𝑂 ‘ 𝑢 ) ∈ 𝑥 ) ) → ( ◡ 𝑂 ‘ 𝑥 ) ∈ On ) |
277 |
|
eloni |
⊢ ( ( ◡ 𝑂 ‘ 𝑥 ) ∈ On → Ord ( ◡ 𝑂 ‘ 𝑥 ) ) |
278 |
276 277
|
syl |
⊢ ( ( ( ( 𝜑 ∧ ( suc 𝑢 ∈ dom 𝑂 ∧ ( ◡ 𝑂 ‘ 𝑋 ) ⊆ 𝑢 ) ) ∧ 𝑥 ∈ 𝐵 ) ∧ ( ( 𝐹 ‘ 𝑥 ) ≠ ∅ ∧ ( 𝑂 ‘ 𝑢 ) ∈ 𝑥 ) ) → Ord ( ◡ 𝑂 ‘ 𝑥 ) ) |
279 |
|
ordelsuc |
⊢ ( ( 𝑢 ∈ ( ◡ 𝑂 ‘ 𝑥 ) ∧ Ord ( ◡ 𝑂 ‘ 𝑥 ) ) → ( 𝑢 ∈ ( ◡ 𝑂 ‘ 𝑥 ) ↔ suc 𝑢 ⊆ ( ◡ 𝑂 ‘ 𝑥 ) ) ) |
280 |
274 278 279
|
syl2anc |
⊢ ( ( ( ( 𝜑 ∧ ( suc 𝑢 ∈ dom 𝑂 ∧ ( ◡ 𝑂 ‘ 𝑋 ) ⊆ 𝑢 ) ) ∧ 𝑥 ∈ 𝐵 ) ∧ ( ( 𝐹 ‘ 𝑥 ) ≠ ∅ ∧ ( 𝑂 ‘ 𝑢 ) ∈ 𝑥 ) ) → ( 𝑢 ∈ ( ◡ 𝑂 ‘ 𝑥 ) ↔ suc 𝑢 ⊆ ( ◡ 𝑂 ‘ 𝑥 ) ) ) |
281 |
274 280
|
mpbid |
⊢ ( ( ( ( 𝜑 ∧ ( suc 𝑢 ∈ dom 𝑂 ∧ ( ◡ 𝑂 ‘ 𝑋 ) ⊆ 𝑢 ) ) ∧ 𝑥 ∈ 𝐵 ) ∧ ( ( 𝐹 ‘ 𝑥 ) ≠ ∅ ∧ ( 𝑂 ‘ 𝑢 ) ∈ 𝑥 ) ) → suc 𝑢 ⊆ ( ◡ 𝑂 ‘ 𝑥 ) ) |
282 |
143
|
ad2antrr |
⊢ ( ( ( ( 𝜑 ∧ ( suc 𝑢 ∈ dom 𝑂 ∧ ( ◡ 𝑂 ‘ 𝑋 ) ⊆ 𝑢 ) ) ∧ 𝑥 ∈ 𝐵 ) ∧ ( ( 𝐹 ‘ 𝑥 ) ≠ ∅ ∧ ( 𝑂 ‘ 𝑢 ) ∈ 𝑥 ) ) → suc 𝑢 ∈ dom 𝑂 ) |
283 |
37 282 131
|
sylancr |
⊢ ( ( ( ( 𝜑 ∧ ( suc 𝑢 ∈ dom 𝑂 ∧ ( ◡ 𝑂 ‘ 𝑋 ) ⊆ 𝑢 ) ) ∧ 𝑥 ∈ 𝐵 ) ∧ ( ( 𝐹 ‘ 𝑥 ) ≠ ∅ ∧ ( 𝑂 ‘ 𝑢 ) ∈ 𝑥 ) ) → suc 𝑢 ∈ On ) |
284 |
|
ontri1 |
⊢ ( ( suc 𝑢 ∈ On ∧ ( ◡ 𝑂 ‘ 𝑥 ) ∈ On ) → ( suc 𝑢 ⊆ ( ◡ 𝑂 ‘ 𝑥 ) ↔ ¬ ( ◡ 𝑂 ‘ 𝑥 ) ∈ suc 𝑢 ) ) |
285 |
283 276 284
|
syl2anc |
⊢ ( ( ( ( 𝜑 ∧ ( suc 𝑢 ∈ dom 𝑂 ∧ ( ◡ 𝑂 ‘ 𝑋 ) ⊆ 𝑢 ) ) ∧ 𝑥 ∈ 𝐵 ) ∧ ( ( 𝐹 ‘ 𝑥 ) ≠ ∅ ∧ ( 𝑂 ‘ 𝑢 ) ∈ 𝑥 ) ) → ( suc 𝑢 ⊆ ( ◡ 𝑂 ‘ 𝑥 ) ↔ ¬ ( ◡ 𝑂 ‘ 𝑥 ) ∈ suc 𝑢 ) ) |
286 |
281 285
|
mpbid |
⊢ ( ( ( ( 𝜑 ∧ ( suc 𝑢 ∈ dom 𝑂 ∧ ( ◡ 𝑂 ‘ 𝑋 ) ⊆ 𝑢 ) ) ∧ 𝑥 ∈ 𝐵 ) ∧ ( ( 𝐹 ‘ 𝑥 ) ≠ ∅ ∧ ( 𝑂 ‘ 𝑢 ) ∈ 𝑥 ) ) → ¬ ( ◡ 𝑂 ‘ 𝑥 ) ∈ suc 𝑢 ) |
287 |
|
isorel |
⊢ ( ( 𝑂 Isom E , E ( dom 𝑂 , ( 𝐺 supp ∅ ) ) ∧ ( ( ◡ 𝑂 ‘ 𝑥 ) ∈ dom 𝑂 ∧ suc 𝑢 ∈ dom 𝑂 ) ) → ( ( ◡ 𝑂 ‘ 𝑥 ) E suc 𝑢 ↔ ( 𝑂 ‘ ( ◡ 𝑂 ‘ 𝑥 ) ) E ( 𝑂 ‘ suc 𝑢 ) ) ) |
288 |
258 266 282 287
|
syl12anc |
⊢ ( ( ( ( 𝜑 ∧ ( suc 𝑢 ∈ dom 𝑂 ∧ ( ◡ 𝑂 ‘ 𝑋 ) ⊆ 𝑢 ) ) ∧ 𝑥 ∈ 𝐵 ) ∧ ( ( 𝐹 ‘ 𝑥 ) ≠ ∅ ∧ ( 𝑂 ‘ 𝑢 ) ∈ 𝑥 ) ) → ( ( ◡ 𝑂 ‘ 𝑥 ) E suc 𝑢 ↔ ( 𝑂 ‘ ( ◡ 𝑂 ‘ 𝑥 ) ) E ( 𝑂 ‘ suc 𝑢 ) ) ) |
289 |
243
|
epeli |
⊢ ( ( ◡ 𝑂 ‘ 𝑥 ) E suc 𝑢 ↔ ( ◡ 𝑂 ‘ 𝑥 ) ∈ suc 𝑢 ) |
290 |
245
|
epeli |
⊢ ( ( 𝑂 ‘ ( ◡ 𝑂 ‘ 𝑥 ) ) E ( 𝑂 ‘ suc 𝑢 ) ↔ ( 𝑂 ‘ ( ◡ 𝑂 ‘ 𝑥 ) ) ∈ ( 𝑂 ‘ suc 𝑢 ) ) |
291 |
288 289 290
|
3bitr3g |
⊢ ( ( ( ( 𝜑 ∧ ( suc 𝑢 ∈ dom 𝑂 ∧ ( ◡ 𝑂 ‘ 𝑋 ) ⊆ 𝑢 ) ) ∧ 𝑥 ∈ 𝐵 ) ∧ ( ( 𝐹 ‘ 𝑥 ) ≠ ∅ ∧ ( 𝑂 ‘ 𝑢 ) ∈ 𝑥 ) ) → ( ( ◡ 𝑂 ‘ 𝑥 ) ∈ suc 𝑢 ↔ ( 𝑂 ‘ ( ◡ 𝑂 ‘ 𝑥 ) ) ∈ ( 𝑂 ‘ suc 𝑢 ) ) ) |
292 |
262
|
eleq1d |
⊢ ( ( ( ( 𝜑 ∧ ( suc 𝑢 ∈ dom 𝑂 ∧ ( ◡ 𝑂 ‘ 𝑋 ) ⊆ 𝑢 ) ) ∧ 𝑥 ∈ 𝐵 ) ∧ ( ( 𝐹 ‘ 𝑥 ) ≠ ∅ ∧ ( 𝑂 ‘ 𝑢 ) ∈ 𝑥 ) ) → ( ( 𝑂 ‘ ( ◡ 𝑂 ‘ 𝑥 ) ) ∈ ( 𝑂 ‘ suc 𝑢 ) ↔ 𝑥 ∈ ( 𝑂 ‘ suc 𝑢 ) ) ) |
293 |
291 292
|
bitrd |
⊢ ( ( ( ( 𝜑 ∧ ( suc 𝑢 ∈ dom 𝑂 ∧ ( ◡ 𝑂 ‘ 𝑋 ) ⊆ 𝑢 ) ) ∧ 𝑥 ∈ 𝐵 ) ∧ ( ( 𝐹 ‘ 𝑥 ) ≠ ∅ ∧ ( 𝑂 ‘ 𝑢 ) ∈ 𝑥 ) ) → ( ( ◡ 𝑂 ‘ 𝑥 ) ∈ suc 𝑢 ↔ 𝑥 ∈ ( 𝑂 ‘ suc 𝑢 ) ) ) |
294 |
286 293
|
mtbid |
⊢ ( ( ( ( 𝜑 ∧ ( suc 𝑢 ∈ dom 𝑂 ∧ ( ◡ 𝑂 ‘ 𝑋 ) ⊆ 𝑢 ) ) ∧ 𝑥 ∈ 𝐵 ) ∧ ( ( 𝐹 ‘ 𝑥 ) ≠ ∅ ∧ ( 𝑂 ‘ 𝑢 ) ∈ 𝑥 ) ) → ¬ 𝑥 ∈ ( 𝑂 ‘ suc 𝑢 ) ) |
295 |
294
|
expr |
⊢ ( ( ( ( 𝜑 ∧ ( suc 𝑢 ∈ dom 𝑂 ∧ ( ◡ 𝑂 ‘ 𝑋 ) ⊆ 𝑢 ) ) ∧ 𝑥 ∈ 𝐵 ) ∧ ( 𝐹 ‘ 𝑥 ) ≠ ∅ ) → ( ( 𝑂 ‘ 𝑢 ) ∈ 𝑥 → ¬ 𝑥 ∈ ( 𝑂 ‘ suc 𝑢 ) ) ) |
296 |
295
|
con2d |
⊢ ( ( ( ( 𝜑 ∧ ( suc 𝑢 ∈ dom 𝑂 ∧ ( ◡ 𝑂 ‘ 𝑋 ) ⊆ 𝑢 ) ) ∧ 𝑥 ∈ 𝐵 ) ∧ ( 𝐹 ‘ 𝑥 ) ≠ ∅ ) → ( 𝑥 ∈ ( 𝑂 ‘ suc 𝑢 ) → ¬ ( 𝑂 ‘ 𝑢 ) ∈ 𝑥 ) ) |
297 |
|
ontri1 |
⊢ ( ( 𝑥 ∈ On ∧ ( 𝑂 ‘ 𝑢 ) ∈ On ) → ( 𝑥 ⊆ ( 𝑂 ‘ 𝑢 ) ↔ ¬ ( 𝑂 ‘ 𝑢 ) ∈ 𝑥 ) ) |
298 |
225 235 297
|
syl2an2r |
⊢ ( ( ( ( 𝜑 ∧ ( suc 𝑢 ∈ dom 𝑂 ∧ ( ◡ 𝑂 ‘ 𝑋 ) ⊆ 𝑢 ) ) ∧ 𝑥 ∈ 𝐵 ) ∧ ( 𝐹 ‘ 𝑥 ) ≠ ∅ ) → ( 𝑥 ⊆ ( 𝑂 ‘ 𝑢 ) ↔ ¬ ( 𝑂 ‘ 𝑢 ) ∈ 𝑥 ) ) |
299 |
296 298
|
sylibrd |
⊢ ( ( ( ( 𝜑 ∧ ( suc 𝑢 ∈ dom 𝑂 ∧ ( ◡ 𝑂 ‘ 𝑋 ) ⊆ 𝑢 ) ) ∧ 𝑥 ∈ 𝐵 ) ∧ ( 𝐹 ‘ 𝑥 ) ≠ ∅ ) → ( 𝑥 ∈ ( 𝑂 ‘ suc 𝑢 ) → 𝑥 ⊆ ( 𝑂 ‘ 𝑢 ) ) ) |
300 |
256 299
|
impbid |
⊢ ( ( ( ( 𝜑 ∧ ( suc 𝑢 ∈ dom 𝑂 ∧ ( ◡ 𝑂 ‘ 𝑋 ) ⊆ 𝑢 ) ) ∧ 𝑥 ∈ 𝐵 ) ∧ ( 𝐹 ‘ 𝑥 ) ≠ ∅ ) → ( 𝑥 ⊆ ( 𝑂 ‘ 𝑢 ) ↔ 𝑥 ∈ ( 𝑂 ‘ suc 𝑢 ) ) ) |
301 |
300
|
orbi1d |
⊢ ( ( ( ( 𝜑 ∧ ( suc 𝑢 ∈ dom 𝑂 ∧ ( ◡ 𝑂 ‘ 𝑋 ) ⊆ 𝑢 ) ) ∧ 𝑥 ∈ 𝐵 ) ∧ ( 𝐹 ‘ 𝑥 ) ≠ ∅ ) → ( ( 𝑥 ⊆ ( 𝑂 ‘ 𝑢 ) ∨ 𝑥 = ( 𝑂 ‘ suc 𝑢 ) ) ↔ ( 𝑥 ∈ ( 𝑂 ‘ suc 𝑢 ) ∨ 𝑥 = ( 𝑂 ‘ suc 𝑢 ) ) ) ) |
302 |
229 301
|
bitr4d |
⊢ ( ( ( ( 𝜑 ∧ ( suc 𝑢 ∈ dom 𝑂 ∧ ( ◡ 𝑂 ‘ 𝑋 ) ⊆ 𝑢 ) ) ∧ 𝑥 ∈ 𝐵 ) ∧ ( 𝐹 ‘ 𝑥 ) ≠ ∅ ) → ( 𝑥 ⊆ ( 𝑂 ‘ suc 𝑢 ) ↔ ( 𝑥 ⊆ ( 𝑂 ‘ 𝑢 ) ∨ 𝑥 = ( 𝑂 ‘ suc 𝑢 ) ) ) ) |
303 |
|
orcom |
⊢ ( ( 𝑥 ⊆ ( 𝑂 ‘ 𝑢 ) ∨ 𝑥 = ( 𝑂 ‘ suc 𝑢 ) ) ↔ ( 𝑥 = ( 𝑂 ‘ suc 𝑢 ) ∨ 𝑥 ⊆ ( 𝑂 ‘ 𝑢 ) ) ) |
304 |
302 303
|
bitrdi |
⊢ ( ( ( ( 𝜑 ∧ ( suc 𝑢 ∈ dom 𝑂 ∧ ( ◡ 𝑂 ‘ 𝑋 ) ⊆ 𝑢 ) ) ∧ 𝑥 ∈ 𝐵 ) ∧ ( 𝐹 ‘ 𝑥 ) ≠ ∅ ) → ( 𝑥 ⊆ ( 𝑂 ‘ suc 𝑢 ) ↔ ( 𝑥 = ( 𝑂 ‘ suc 𝑢 ) ∨ 𝑥 ⊆ ( 𝑂 ‘ 𝑢 ) ) ) ) |
305 |
304
|
ifbid |
⊢ ( ( ( ( 𝜑 ∧ ( suc 𝑢 ∈ dom 𝑂 ∧ ( ◡ 𝑂 ‘ 𝑋 ) ⊆ 𝑢 ) ) ∧ 𝑥 ∈ 𝐵 ) ∧ ( 𝐹 ‘ 𝑥 ) ≠ ∅ ) → if ( 𝑥 ⊆ ( 𝑂 ‘ suc 𝑢 ) , ( 𝐹 ‘ 𝑥 ) , ∅ ) = if ( ( 𝑥 = ( 𝑂 ‘ suc 𝑢 ) ∨ 𝑥 ⊆ ( 𝑂 ‘ 𝑢 ) ) , ( 𝐹 ‘ 𝑥 ) , ∅ ) ) |
306 |
|
eqidd |
⊢ ( ( ( 𝜑 ∧ ( suc 𝑢 ∈ dom 𝑂 ∧ ( ◡ 𝑂 ‘ 𝑋 ) ⊆ 𝑢 ) ) ∧ 𝑥 ∈ 𝐵 ) → ∅ = ∅ ) |
307 |
221 305 306
|
pm2.61ne |
⊢ ( ( ( 𝜑 ∧ ( suc 𝑢 ∈ dom 𝑂 ∧ ( ◡ 𝑂 ‘ 𝑋 ) ⊆ 𝑢 ) ) ∧ 𝑥 ∈ 𝐵 ) → if ( 𝑥 ⊆ ( 𝑂 ‘ suc 𝑢 ) , ( 𝐹 ‘ 𝑥 ) , ∅ ) = if ( ( 𝑥 = ( 𝑂 ‘ suc 𝑢 ) ∨ 𝑥 ⊆ ( 𝑂 ‘ 𝑢 ) ) , ( 𝐹 ‘ 𝑥 ) , ∅ ) ) |
308 |
307
|
mpteq2dva |
⊢ ( ( 𝜑 ∧ ( suc 𝑢 ∈ dom 𝑂 ∧ ( ◡ 𝑂 ‘ 𝑋 ) ⊆ 𝑢 ) ) → ( 𝑥 ∈ 𝐵 ↦ if ( 𝑥 ⊆ ( 𝑂 ‘ suc 𝑢 ) , ( 𝐹 ‘ 𝑥 ) , ∅ ) ) = ( 𝑥 ∈ 𝐵 ↦ if ( ( 𝑥 = ( 𝑂 ‘ suc 𝑢 ) ∨ 𝑥 ⊆ ( 𝑂 ‘ 𝑢 ) ) , ( 𝐹 ‘ 𝑥 ) , ∅ ) ) ) |
309 |
308
|
fveq2d |
⊢ ( ( 𝜑 ∧ ( suc 𝑢 ∈ dom 𝑂 ∧ ( ◡ 𝑂 ‘ 𝑋 ) ⊆ 𝑢 ) ) → ( ( 𝐴 CNF 𝐵 ) ‘ ( 𝑥 ∈ 𝐵 ↦ if ( 𝑥 ⊆ ( 𝑂 ‘ suc 𝑢 ) , ( 𝐹 ‘ 𝑥 ) , ∅ ) ) ) = ( ( 𝐴 CNF 𝐵 ) ‘ ( 𝑥 ∈ 𝐵 ↦ if ( ( 𝑥 = ( 𝑂 ‘ suc 𝑢 ) ∨ 𝑥 ⊆ ( 𝑂 ‘ 𝑢 ) ) , ( 𝐹 ‘ 𝑥 ) , ∅ ) ) ) ) |
310 |
|
fvex |
⊢ ( 𝐹 ‘ 𝑥 ) ∈ V |
311 |
310 175
|
ifex |
⊢ if ( 𝑥 ⊆ ( 𝑂 ‘ 𝑢 ) , ( 𝐹 ‘ 𝑥 ) , ∅ ) ∈ V |
312 |
311
|
a1i |
⊢ ( ( 𝜑 ∧ ( suc 𝑢 ∈ dom 𝑂 ∧ ( ◡ 𝑂 ‘ 𝑋 ) ⊆ 𝑢 ) ) → if ( 𝑥 ⊆ ( 𝑂 ‘ 𝑢 ) , ( 𝐹 ‘ 𝑥 ) , ∅ ) ∈ V ) |
313 |
312
|
ralrimivw |
⊢ ( ( 𝜑 ∧ ( suc 𝑢 ∈ dom 𝑂 ∧ ( ◡ 𝑂 ‘ 𝑋 ) ⊆ 𝑢 ) ) → ∀ 𝑥 ∈ 𝐵 if ( 𝑥 ⊆ ( 𝑂 ‘ 𝑢 ) , ( 𝐹 ‘ 𝑥 ) , ∅ ) ∈ V ) |
314 |
|
eqid |
⊢ ( 𝑥 ∈ 𝐵 ↦ if ( 𝑥 ⊆ ( 𝑂 ‘ 𝑢 ) , ( 𝐹 ‘ 𝑥 ) , ∅ ) ) = ( 𝑥 ∈ 𝐵 ↦ if ( 𝑥 ⊆ ( 𝑂 ‘ 𝑢 ) , ( 𝐹 ‘ 𝑥 ) , ∅ ) ) |
315 |
314
|
fnmpt |
⊢ ( ∀ 𝑥 ∈ 𝐵 if ( 𝑥 ⊆ ( 𝑂 ‘ 𝑢 ) , ( 𝐹 ‘ 𝑥 ) , ∅ ) ∈ V → ( 𝑥 ∈ 𝐵 ↦ if ( 𝑥 ⊆ ( 𝑂 ‘ 𝑢 ) , ( 𝐹 ‘ 𝑥 ) , ∅ ) ) Fn 𝐵 ) |
316 |
313 315
|
syl |
⊢ ( ( 𝜑 ∧ ( suc 𝑢 ∈ dom 𝑂 ∧ ( ◡ 𝑂 ‘ 𝑋 ) ⊆ 𝑢 ) ) → ( 𝑥 ∈ 𝐵 ↦ if ( 𝑥 ⊆ ( 𝑂 ‘ 𝑢 ) , ( 𝐹 ‘ 𝑥 ) , ∅ ) ) Fn 𝐵 ) |
317 |
175
|
a1i |
⊢ ( ( 𝜑 ∧ ( suc 𝑢 ∈ dom 𝑂 ∧ ( ◡ 𝑂 ‘ 𝑋 ) ⊆ 𝑢 ) ) → ∅ ∈ V ) |
318 |
|
suppvalfn |
⊢ ( ( ( 𝑥 ∈ 𝐵 ↦ if ( 𝑥 ⊆ ( 𝑂 ‘ 𝑢 ) , ( 𝐹 ‘ 𝑥 ) , ∅ ) ) Fn 𝐵 ∧ 𝐵 ∈ On ∧ ∅ ∈ V ) → ( ( 𝑥 ∈ 𝐵 ↦ if ( 𝑥 ⊆ ( 𝑂 ‘ 𝑢 ) , ( 𝐹 ‘ 𝑥 ) , ∅ ) ) supp ∅ ) = { 𝑦 ∈ 𝐵 ∣ ( ( 𝑥 ∈ 𝐵 ↦ if ( 𝑥 ⊆ ( 𝑂 ‘ 𝑢 ) , ( 𝐹 ‘ 𝑥 ) , ∅ ) ) ‘ 𝑦 ) ≠ ∅ } ) |
319 |
|
nfcv |
⊢ Ⅎ 𝑦 𝐵 |
320 |
|
nfcv |
⊢ Ⅎ 𝑥 𝐵 |
321 |
|
nffvmpt1 |
⊢ Ⅎ 𝑥 ( ( 𝑥 ∈ 𝐵 ↦ if ( 𝑥 ⊆ ( 𝑂 ‘ 𝑢 ) , ( 𝐹 ‘ 𝑥 ) , ∅ ) ) ‘ 𝑦 ) |
322 |
|
nfcv |
⊢ Ⅎ 𝑥 ∅ |
323 |
321 322
|
nfne |
⊢ Ⅎ 𝑥 ( ( 𝑥 ∈ 𝐵 ↦ if ( 𝑥 ⊆ ( 𝑂 ‘ 𝑢 ) , ( 𝐹 ‘ 𝑥 ) , ∅ ) ) ‘ 𝑦 ) ≠ ∅ |
324 |
|
nfv |
⊢ Ⅎ 𝑦 ( ( 𝑥 ∈ 𝐵 ↦ if ( 𝑥 ⊆ ( 𝑂 ‘ 𝑢 ) , ( 𝐹 ‘ 𝑥 ) , ∅ ) ) ‘ 𝑥 ) ≠ ∅ |
325 |
|
fveq2 |
⊢ ( 𝑦 = 𝑥 → ( ( 𝑥 ∈ 𝐵 ↦ if ( 𝑥 ⊆ ( 𝑂 ‘ 𝑢 ) , ( 𝐹 ‘ 𝑥 ) , ∅ ) ) ‘ 𝑦 ) = ( ( 𝑥 ∈ 𝐵 ↦ if ( 𝑥 ⊆ ( 𝑂 ‘ 𝑢 ) , ( 𝐹 ‘ 𝑥 ) , ∅ ) ) ‘ 𝑥 ) ) |
326 |
325
|
neeq1d |
⊢ ( 𝑦 = 𝑥 → ( ( ( 𝑥 ∈ 𝐵 ↦ if ( 𝑥 ⊆ ( 𝑂 ‘ 𝑢 ) , ( 𝐹 ‘ 𝑥 ) , ∅ ) ) ‘ 𝑦 ) ≠ ∅ ↔ ( ( 𝑥 ∈ 𝐵 ↦ if ( 𝑥 ⊆ ( 𝑂 ‘ 𝑢 ) , ( 𝐹 ‘ 𝑥 ) , ∅ ) ) ‘ 𝑥 ) ≠ ∅ ) ) |
327 |
319 320 323 324 326
|
cbvrabw |
⊢ { 𝑦 ∈ 𝐵 ∣ ( ( 𝑥 ∈ 𝐵 ↦ if ( 𝑥 ⊆ ( 𝑂 ‘ 𝑢 ) , ( 𝐹 ‘ 𝑥 ) , ∅ ) ) ‘ 𝑦 ) ≠ ∅ } = { 𝑥 ∈ 𝐵 ∣ ( ( 𝑥 ∈ 𝐵 ↦ if ( 𝑥 ⊆ ( 𝑂 ‘ 𝑢 ) , ( 𝐹 ‘ 𝑥 ) , ∅ ) ) ‘ 𝑥 ) ≠ ∅ } |
328 |
318 327
|
eqtrdi |
⊢ ( ( ( 𝑥 ∈ 𝐵 ↦ if ( 𝑥 ⊆ ( 𝑂 ‘ 𝑢 ) , ( 𝐹 ‘ 𝑥 ) , ∅ ) ) Fn 𝐵 ∧ 𝐵 ∈ On ∧ ∅ ∈ V ) → ( ( 𝑥 ∈ 𝐵 ↦ if ( 𝑥 ⊆ ( 𝑂 ‘ 𝑢 ) , ( 𝐹 ‘ 𝑥 ) , ∅ ) ) supp ∅ ) = { 𝑥 ∈ 𝐵 ∣ ( ( 𝑥 ∈ 𝐵 ↦ if ( 𝑥 ⊆ ( 𝑂 ‘ 𝑢 ) , ( 𝐹 ‘ 𝑥 ) , ∅ ) ) ‘ 𝑥 ) ≠ ∅ } ) |
329 |
316 148 317 328
|
syl3anc |
⊢ ( ( 𝜑 ∧ ( suc 𝑢 ∈ dom 𝑂 ∧ ( ◡ 𝑂 ‘ 𝑋 ) ⊆ 𝑢 ) ) → ( ( 𝑥 ∈ 𝐵 ↦ if ( 𝑥 ⊆ ( 𝑂 ‘ 𝑢 ) , ( 𝐹 ‘ 𝑥 ) , ∅ ) ) supp ∅ ) = { 𝑥 ∈ 𝐵 ∣ ( ( 𝑥 ∈ 𝐵 ↦ if ( 𝑥 ⊆ ( 𝑂 ‘ 𝑢 ) , ( 𝐹 ‘ 𝑥 ) , ∅ ) ) ‘ 𝑥 ) ≠ ∅ } ) |
330 |
|
eqidd |
⊢ ( ( 𝜑 ∧ ( suc 𝑢 ∈ dom 𝑂 ∧ ( ◡ 𝑂 ‘ 𝑋 ) ⊆ 𝑢 ) ) → ( 𝑥 ∈ 𝐵 ↦ if ( 𝑥 ⊆ ( 𝑂 ‘ 𝑢 ) , ( 𝐹 ‘ 𝑥 ) , ∅ ) ) = ( 𝑥 ∈ 𝐵 ↦ if ( 𝑥 ⊆ ( 𝑂 ‘ 𝑢 ) , ( 𝐹 ‘ 𝑥 ) , ∅ ) ) ) |
331 |
311
|
a1i |
⊢ ( ( ( 𝜑 ∧ ( suc 𝑢 ∈ dom 𝑂 ∧ ( ◡ 𝑂 ‘ 𝑋 ) ⊆ 𝑢 ) ) ∧ 𝑥 ∈ 𝐵 ) → if ( 𝑥 ⊆ ( 𝑂 ‘ 𝑢 ) , ( 𝐹 ‘ 𝑥 ) , ∅ ) ∈ V ) |
332 |
330 331
|
fvmpt2d |
⊢ ( ( ( 𝜑 ∧ ( suc 𝑢 ∈ dom 𝑂 ∧ ( ◡ 𝑂 ‘ 𝑋 ) ⊆ 𝑢 ) ) ∧ 𝑥 ∈ 𝐵 ) → ( ( 𝑥 ∈ 𝐵 ↦ if ( 𝑥 ⊆ ( 𝑂 ‘ 𝑢 ) , ( 𝐹 ‘ 𝑥 ) , ∅ ) ) ‘ 𝑥 ) = if ( 𝑥 ⊆ ( 𝑂 ‘ 𝑢 ) , ( 𝐹 ‘ 𝑥 ) , ∅ ) ) |
333 |
332
|
neeq1d |
⊢ ( ( ( 𝜑 ∧ ( suc 𝑢 ∈ dom 𝑂 ∧ ( ◡ 𝑂 ‘ 𝑋 ) ⊆ 𝑢 ) ) ∧ 𝑥 ∈ 𝐵 ) → ( ( ( 𝑥 ∈ 𝐵 ↦ if ( 𝑥 ⊆ ( 𝑂 ‘ 𝑢 ) , ( 𝐹 ‘ 𝑥 ) , ∅ ) ) ‘ 𝑥 ) ≠ ∅ ↔ if ( 𝑥 ⊆ ( 𝑂 ‘ 𝑢 ) , ( 𝐹 ‘ 𝑥 ) , ∅ ) ≠ ∅ ) ) |
334 |
331
|
biantrurd |
⊢ ( ( ( 𝜑 ∧ ( suc 𝑢 ∈ dom 𝑂 ∧ ( ◡ 𝑂 ‘ 𝑋 ) ⊆ 𝑢 ) ) ∧ 𝑥 ∈ 𝐵 ) → ( if ( 𝑥 ⊆ ( 𝑂 ‘ 𝑢 ) , ( 𝐹 ‘ 𝑥 ) , ∅ ) ≠ ∅ ↔ ( if ( 𝑥 ⊆ ( 𝑂 ‘ 𝑢 ) , ( 𝐹 ‘ 𝑥 ) , ∅ ) ∈ V ∧ if ( 𝑥 ⊆ ( 𝑂 ‘ 𝑢 ) , ( 𝐹 ‘ 𝑥 ) , ∅ ) ≠ ∅ ) ) ) |
335 |
|
dif1o |
⊢ ( if ( 𝑥 ⊆ ( 𝑂 ‘ 𝑢 ) , ( 𝐹 ‘ 𝑥 ) , ∅ ) ∈ ( V ∖ 1o ) ↔ ( if ( 𝑥 ⊆ ( 𝑂 ‘ 𝑢 ) , ( 𝐹 ‘ 𝑥 ) , ∅ ) ∈ V ∧ if ( 𝑥 ⊆ ( 𝑂 ‘ 𝑢 ) , ( 𝐹 ‘ 𝑥 ) , ∅ ) ≠ ∅ ) ) |
336 |
334 335
|
bitr4di |
⊢ ( ( ( 𝜑 ∧ ( suc 𝑢 ∈ dom 𝑂 ∧ ( ◡ 𝑂 ‘ 𝑋 ) ⊆ 𝑢 ) ) ∧ 𝑥 ∈ 𝐵 ) → ( if ( 𝑥 ⊆ ( 𝑂 ‘ 𝑢 ) , ( 𝐹 ‘ 𝑥 ) , ∅ ) ≠ ∅ ↔ if ( 𝑥 ⊆ ( 𝑂 ‘ 𝑢 ) , ( 𝐹 ‘ 𝑥 ) , ∅ ) ∈ ( V ∖ 1o ) ) ) |
337 |
333 336
|
bitrd |
⊢ ( ( ( 𝜑 ∧ ( suc 𝑢 ∈ dom 𝑂 ∧ ( ◡ 𝑂 ‘ 𝑋 ) ⊆ 𝑢 ) ) ∧ 𝑥 ∈ 𝐵 ) → ( ( ( 𝑥 ∈ 𝐵 ↦ if ( 𝑥 ⊆ ( 𝑂 ‘ 𝑢 ) , ( 𝐹 ‘ 𝑥 ) , ∅ ) ) ‘ 𝑥 ) ≠ ∅ ↔ if ( 𝑥 ⊆ ( 𝑂 ‘ 𝑢 ) , ( 𝐹 ‘ 𝑥 ) , ∅ ) ∈ ( V ∖ 1o ) ) ) |
338 |
337
|
rabbidva |
⊢ ( ( 𝜑 ∧ ( suc 𝑢 ∈ dom 𝑂 ∧ ( ◡ 𝑂 ‘ 𝑋 ) ⊆ 𝑢 ) ) → { 𝑥 ∈ 𝐵 ∣ ( ( 𝑥 ∈ 𝐵 ↦ if ( 𝑥 ⊆ ( 𝑂 ‘ 𝑢 ) , ( 𝐹 ‘ 𝑥 ) , ∅ ) ) ‘ 𝑥 ) ≠ ∅ } = { 𝑥 ∈ 𝐵 ∣ if ( 𝑥 ⊆ ( 𝑂 ‘ 𝑢 ) , ( 𝐹 ‘ 𝑥 ) , ∅ ) ∈ ( V ∖ 1o ) } ) |
339 |
329 338
|
eqtrd |
⊢ ( ( 𝜑 ∧ ( suc 𝑢 ∈ dom 𝑂 ∧ ( ◡ 𝑂 ‘ 𝑋 ) ⊆ 𝑢 ) ) → ( ( 𝑥 ∈ 𝐵 ↦ if ( 𝑥 ⊆ ( 𝑂 ‘ 𝑢 ) , ( 𝐹 ‘ 𝑥 ) , ∅ ) ) supp ∅ ) = { 𝑥 ∈ 𝐵 ∣ if ( 𝑥 ⊆ ( 𝑂 ‘ 𝑢 ) , ( 𝐹 ‘ 𝑥 ) , ∅ ) ∈ ( V ∖ 1o ) } ) |
340 |
311 335
|
mpbiran |
⊢ ( if ( 𝑥 ⊆ ( 𝑂 ‘ 𝑢 ) , ( 𝐹 ‘ 𝑥 ) , ∅ ) ∈ ( V ∖ 1o ) ↔ if ( 𝑥 ⊆ ( 𝑂 ‘ 𝑢 ) , ( 𝐹 ‘ 𝑥 ) , ∅ ) ≠ ∅ ) |
341 |
|
ifeq1 |
⊢ ( ( 𝐹 ‘ 𝑥 ) = ∅ → if ( 𝑥 ⊆ ( 𝑂 ‘ 𝑢 ) , ( 𝐹 ‘ 𝑥 ) , ∅ ) = if ( 𝑥 ⊆ ( 𝑂 ‘ 𝑢 ) , ∅ , ∅ ) ) |
342 |
341 179
|
eqtrdi |
⊢ ( ( 𝐹 ‘ 𝑥 ) = ∅ → if ( 𝑥 ⊆ ( 𝑂 ‘ 𝑢 ) , ( 𝐹 ‘ 𝑥 ) , ∅ ) = ∅ ) |
343 |
342
|
necon3i |
⊢ ( if ( 𝑥 ⊆ ( 𝑂 ‘ 𝑢 ) , ( 𝐹 ‘ 𝑥 ) , ∅ ) ≠ ∅ → ( 𝐹 ‘ 𝑥 ) ≠ ∅ ) |
344 |
|
iffalse |
⊢ ( ¬ 𝑥 ⊆ ( 𝑂 ‘ 𝑢 ) → if ( 𝑥 ⊆ ( 𝑂 ‘ 𝑢 ) , ( 𝐹 ‘ 𝑥 ) , ∅ ) = ∅ ) |
345 |
344
|
necon1ai |
⊢ ( if ( 𝑥 ⊆ ( 𝑂 ‘ 𝑢 ) , ( 𝐹 ‘ 𝑥 ) , ∅ ) ≠ ∅ → 𝑥 ⊆ ( 𝑂 ‘ 𝑢 ) ) |
346 |
343 345
|
jca |
⊢ ( if ( 𝑥 ⊆ ( 𝑂 ‘ 𝑢 ) , ( 𝐹 ‘ 𝑥 ) , ∅ ) ≠ ∅ → ( ( 𝐹 ‘ 𝑥 ) ≠ ∅ ∧ 𝑥 ⊆ ( 𝑂 ‘ 𝑢 ) ) ) |
347 |
256
|
expimpd |
⊢ ( ( ( 𝜑 ∧ ( suc 𝑢 ∈ dom 𝑂 ∧ ( ◡ 𝑂 ‘ 𝑋 ) ⊆ 𝑢 ) ) ∧ 𝑥 ∈ 𝐵 ) → ( ( ( 𝐹 ‘ 𝑥 ) ≠ ∅ ∧ 𝑥 ⊆ ( 𝑂 ‘ 𝑢 ) ) → 𝑥 ∈ ( 𝑂 ‘ suc 𝑢 ) ) ) |
348 |
346 347
|
syl5 |
⊢ ( ( ( 𝜑 ∧ ( suc 𝑢 ∈ dom 𝑂 ∧ ( ◡ 𝑂 ‘ 𝑋 ) ⊆ 𝑢 ) ) ∧ 𝑥 ∈ 𝐵 ) → ( if ( 𝑥 ⊆ ( 𝑂 ‘ 𝑢 ) , ( 𝐹 ‘ 𝑥 ) , ∅ ) ≠ ∅ → 𝑥 ∈ ( 𝑂 ‘ suc 𝑢 ) ) ) |
349 |
340 348
|
syl5bi |
⊢ ( ( ( 𝜑 ∧ ( suc 𝑢 ∈ dom 𝑂 ∧ ( ◡ 𝑂 ‘ 𝑋 ) ⊆ 𝑢 ) ) ∧ 𝑥 ∈ 𝐵 ) → ( if ( 𝑥 ⊆ ( 𝑂 ‘ 𝑢 ) , ( 𝐹 ‘ 𝑥 ) , ∅ ) ∈ ( V ∖ 1o ) → 𝑥 ∈ ( 𝑂 ‘ suc 𝑢 ) ) ) |
350 |
349
|
3impia |
⊢ ( ( ( 𝜑 ∧ ( suc 𝑢 ∈ dom 𝑂 ∧ ( ◡ 𝑂 ‘ 𝑋 ) ⊆ 𝑢 ) ) ∧ 𝑥 ∈ 𝐵 ∧ if ( 𝑥 ⊆ ( 𝑂 ‘ 𝑢 ) , ( 𝐹 ‘ 𝑥 ) , ∅ ) ∈ ( V ∖ 1o ) ) → 𝑥 ∈ ( 𝑂 ‘ suc 𝑢 ) ) |
351 |
350
|
rabssdv |
⊢ ( ( 𝜑 ∧ ( suc 𝑢 ∈ dom 𝑂 ∧ ( ◡ 𝑂 ‘ 𝑋 ) ⊆ 𝑢 ) ) → { 𝑥 ∈ 𝐵 ∣ if ( 𝑥 ⊆ ( 𝑂 ‘ 𝑢 ) , ( 𝐹 ‘ 𝑥 ) , ∅ ) ∈ ( V ∖ 1o ) } ⊆ ( 𝑂 ‘ suc 𝑢 ) ) |
352 |
339 351
|
eqsstrd |
⊢ ( ( 𝜑 ∧ ( suc 𝑢 ∈ dom 𝑂 ∧ ( ◡ 𝑂 ‘ 𝑋 ) ⊆ 𝑢 ) ) → ( ( 𝑥 ∈ 𝐵 ↦ if ( 𝑥 ⊆ ( 𝑂 ‘ 𝑢 ) , ( 𝐹 ‘ 𝑥 ) , ∅ ) ) supp ∅ ) ⊆ ( 𝑂 ‘ suc 𝑢 ) ) |
353 |
|
eqeq1 |
⊢ ( 𝑥 = 𝑦 → ( 𝑥 = ( 𝑂 ‘ suc 𝑢 ) ↔ 𝑦 = ( 𝑂 ‘ suc 𝑢 ) ) ) |
354 |
|
sseq1 |
⊢ ( 𝑥 = 𝑦 → ( 𝑥 ⊆ ( 𝑂 ‘ 𝑢 ) ↔ 𝑦 ⊆ ( 𝑂 ‘ 𝑢 ) ) ) |
355 |
353 354
|
orbi12d |
⊢ ( 𝑥 = 𝑦 → ( ( 𝑥 = ( 𝑂 ‘ suc 𝑢 ) ∨ 𝑥 ⊆ ( 𝑂 ‘ 𝑢 ) ) ↔ ( 𝑦 = ( 𝑂 ‘ suc 𝑢 ) ∨ 𝑦 ⊆ ( 𝑂 ‘ 𝑢 ) ) ) ) |
356 |
|
fveq2 |
⊢ ( 𝑥 = 𝑦 → ( 𝐹 ‘ 𝑥 ) = ( 𝐹 ‘ 𝑦 ) ) |
357 |
355 356
|
ifbieq1d |
⊢ ( 𝑥 = 𝑦 → if ( ( 𝑥 = ( 𝑂 ‘ suc 𝑢 ) ∨ 𝑥 ⊆ ( 𝑂 ‘ 𝑢 ) ) , ( 𝐹 ‘ 𝑥 ) , ∅ ) = if ( ( 𝑦 = ( 𝑂 ‘ suc 𝑢 ) ∨ 𝑦 ⊆ ( 𝑂 ‘ 𝑢 ) ) , ( 𝐹 ‘ 𝑦 ) , ∅ ) ) |
358 |
357
|
cbvmptv |
⊢ ( 𝑥 ∈ 𝐵 ↦ if ( ( 𝑥 = ( 𝑂 ‘ suc 𝑢 ) ∨ 𝑥 ⊆ ( 𝑂 ‘ 𝑢 ) ) , ( 𝐹 ‘ 𝑥 ) , ∅ ) ) = ( 𝑦 ∈ 𝐵 ↦ if ( ( 𝑦 = ( 𝑂 ‘ suc 𝑢 ) ∨ 𝑦 ⊆ ( 𝑂 ‘ 𝑢 ) ) , ( 𝐹 ‘ 𝑦 ) , ∅ ) ) |
359 |
|
fveq2 |
⊢ ( 𝑦 = ( 𝑂 ‘ suc 𝑢 ) → ( 𝐹 ‘ 𝑦 ) = ( 𝐹 ‘ ( 𝑂 ‘ suc 𝑢 ) ) ) |
360 |
359
|
adantl |
⊢ ( ( 𝑦 ∈ 𝐵 ∧ 𝑦 = ( 𝑂 ‘ suc 𝑢 ) ) → ( 𝐹 ‘ 𝑦 ) = ( 𝐹 ‘ ( 𝑂 ‘ suc 𝑢 ) ) ) |
361 |
360
|
ifeq1da |
⊢ ( 𝑦 ∈ 𝐵 → if ( 𝑦 = ( 𝑂 ‘ suc 𝑢 ) , ( 𝐹 ‘ 𝑦 ) , ( ( 𝑥 ∈ 𝐵 ↦ if ( 𝑥 ⊆ ( 𝑂 ‘ 𝑢 ) , ( 𝐹 ‘ 𝑥 ) , ∅ ) ) ‘ 𝑦 ) ) = if ( 𝑦 = ( 𝑂 ‘ suc 𝑢 ) , ( 𝐹 ‘ ( 𝑂 ‘ suc 𝑢 ) ) , ( ( 𝑥 ∈ 𝐵 ↦ if ( 𝑥 ⊆ ( 𝑂 ‘ 𝑢 ) , ( 𝐹 ‘ 𝑥 ) , ∅ ) ) ‘ 𝑦 ) ) ) |
362 |
354 356
|
ifbieq1d |
⊢ ( 𝑥 = 𝑦 → if ( 𝑥 ⊆ ( 𝑂 ‘ 𝑢 ) , ( 𝐹 ‘ 𝑥 ) , ∅ ) = if ( 𝑦 ⊆ ( 𝑂 ‘ 𝑢 ) , ( 𝐹 ‘ 𝑦 ) , ∅ ) ) |
363 |
|
fvex |
⊢ ( 𝐹 ‘ 𝑦 ) ∈ V |
364 |
363 175
|
ifex |
⊢ if ( 𝑦 ⊆ ( 𝑂 ‘ 𝑢 ) , ( 𝐹 ‘ 𝑦 ) , ∅ ) ∈ V |
365 |
362 314 364
|
fvmpt |
⊢ ( 𝑦 ∈ 𝐵 → ( ( 𝑥 ∈ 𝐵 ↦ if ( 𝑥 ⊆ ( 𝑂 ‘ 𝑢 ) , ( 𝐹 ‘ 𝑥 ) , ∅ ) ) ‘ 𝑦 ) = if ( 𝑦 ⊆ ( 𝑂 ‘ 𝑢 ) , ( 𝐹 ‘ 𝑦 ) , ∅ ) ) |
366 |
365
|
ifeq2d |
⊢ ( 𝑦 ∈ 𝐵 → if ( 𝑦 = ( 𝑂 ‘ suc 𝑢 ) , ( 𝐹 ‘ 𝑦 ) , ( ( 𝑥 ∈ 𝐵 ↦ if ( 𝑥 ⊆ ( 𝑂 ‘ 𝑢 ) , ( 𝐹 ‘ 𝑥 ) , ∅ ) ) ‘ 𝑦 ) ) = if ( 𝑦 = ( 𝑂 ‘ suc 𝑢 ) , ( 𝐹 ‘ 𝑦 ) , if ( 𝑦 ⊆ ( 𝑂 ‘ 𝑢 ) , ( 𝐹 ‘ 𝑦 ) , ∅ ) ) ) |
367 |
|
ifor |
⊢ if ( ( 𝑦 = ( 𝑂 ‘ suc 𝑢 ) ∨ 𝑦 ⊆ ( 𝑂 ‘ 𝑢 ) ) , ( 𝐹 ‘ 𝑦 ) , ∅ ) = if ( 𝑦 = ( 𝑂 ‘ suc 𝑢 ) , ( 𝐹 ‘ 𝑦 ) , if ( 𝑦 ⊆ ( 𝑂 ‘ 𝑢 ) , ( 𝐹 ‘ 𝑦 ) , ∅ ) ) |
368 |
366 367
|
eqtr4di |
⊢ ( 𝑦 ∈ 𝐵 → if ( 𝑦 = ( 𝑂 ‘ suc 𝑢 ) , ( 𝐹 ‘ 𝑦 ) , ( ( 𝑥 ∈ 𝐵 ↦ if ( 𝑥 ⊆ ( 𝑂 ‘ 𝑢 ) , ( 𝐹 ‘ 𝑥 ) , ∅ ) ) ‘ 𝑦 ) ) = if ( ( 𝑦 = ( 𝑂 ‘ suc 𝑢 ) ∨ 𝑦 ⊆ ( 𝑂 ‘ 𝑢 ) ) , ( 𝐹 ‘ 𝑦 ) , ∅ ) ) |
369 |
361 368
|
eqtr3d |
⊢ ( 𝑦 ∈ 𝐵 → if ( 𝑦 = ( 𝑂 ‘ suc 𝑢 ) , ( 𝐹 ‘ ( 𝑂 ‘ suc 𝑢 ) ) , ( ( 𝑥 ∈ 𝐵 ↦ if ( 𝑥 ⊆ ( 𝑂 ‘ 𝑢 ) , ( 𝐹 ‘ 𝑥 ) , ∅ ) ) ‘ 𝑦 ) ) = if ( ( 𝑦 = ( 𝑂 ‘ suc 𝑢 ) ∨ 𝑦 ⊆ ( 𝑂 ‘ 𝑢 ) ) , ( 𝐹 ‘ 𝑦 ) , ∅ ) ) |
370 |
369
|
mpteq2ia |
⊢ ( 𝑦 ∈ 𝐵 ↦ if ( 𝑦 = ( 𝑂 ‘ suc 𝑢 ) , ( 𝐹 ‘ ( 𝑂 ‘ suc 𝑢 ) ) , ( ( 𝑥 ∈ 𝐵 ↦ if ( 𝑥 ⊆ ( 𝑂 ‘ 𝑢 ) , ( 𝐹 ‘ 𝑥 ) , ∅ ) ) ‘ 𝑦 ) ) ) = ( 𝑦 ∈ 𝐵 ↦ if ( ( 𝑦 = ( 𝑂 ‘ suc 𝑢 ) ∨ 𝑦 ⊆ ( 𝑂 ‘ 𝑢 ) ) , ( 𝐹 ‘ 𝑦 ) , ∅ ) ) |
371 |
358 370
|
eqtr4i |
⊢ ( 𝑥 ∈ 𝐵 ↦ if ( ( 𝑥 = ( 𝑂 ‘ suc 𝑢 ) ∨ 𝑥 ⊆ ( 𝑂 ‘ 𝑢 ) ) , ( 𝐹 ‘ 𝑥 ) , ∅ ) ) = ( 𝑦 ∈ 𝐵 ↦ if ( 𝑦 = ( 𝑂 ‘ suc 𝑢 ) , ( 𝐹 ‘ ( 𝑂 ‘ suc 𝑢 ) ) , ( ( 𝑥 ∈ 𝐵 ↦ if ( 𝑥 ⊆ ( 𝑂 ‘ 𝑢 ) , ( 𝐹 ‘ 𝑥 ) , ∅ ) ) ‘ 𝑦 ) ) ) |
372 |
1 151 148 186 202 208 352 371
|
cantnfp1 |
⊢ ( ( 𝜑 ∧ ( suc 𝑢 ∈ dom 𝑂 ∧ ( ◡ 𝑂 ‘ 𝑋 ) ⊆ 𝑢 ) ) → ( ( 𝑥 ∈ 𝐵 ↦ if ( ( 𝑥 = ( 𝑂 ‘ suc 𝑢 ) ∨ 𝑥 ⊆ ( 𝑂 ‘ 𝑢 ) ) , ( 𝐹 ‘ 𝑥 ) , ∅ ) ) ∈ 𝑆 ∧ ( ( 𝐴 CNF 𝐵 ) ‘ ( 𝑥 ∈ 𝐵 ↦ if ( ( 𝑥 = ( 𝑂 ‘ suc 𝑢 ) ∨ 𝑥 ⊆ ( 𝑂 ‘ 𝑢 ) ) , ( 𝐹 ‘ 𝑥 ) , ∅ ) ) ) = ( ( ( 𝐴 ↑o ( 𝑂 ‘ suc 𝑢 ) ) ·o ( 𝐹 ‘ ( 𝑂 ‘ suc 𝑢 ) ) ) +o ( ( 𝐴 CNF 𝐵 ) ‘ ( 𝑥 ∈ 𝐵 ↦ if ( 𝑥 ⊆ ( 𝑂 ‘ 𝑢 ) , ( 𝐹 ‘ 𝑥 ) , ∅ ) ) ) ) ) ) |
373 |
372
|
simprd |
⊢ ( ( 𝜑 ∧ ( suc 𝑢 ∈ dom 𝑂 ∧ ( ◡ 𝑂 ‘ 𝑋 ) ⊆ 𝑢 ) ) → ( ( 𝐴 CNF 𝐵 ) ‘ ( 𝑥 ∈ 𝐵 ↦ if ( ( 𝑥 = ( 𝑂 ‘ suc 𝑢 ) ∨ 𝑥 ⊆ ( 𝑂 ‘ 𝑢 ) ) , ( 𝐹 ‘ 𝑥 ) , ∅ ) ) ) = ( ( ( 𝐴 ↑o ( 𝑂 ‘ suc 𝑢 ) ) ·o ( 𝐹 ‘ ( 𝑂 ‘ suc 𝑢 ) ) ) +o ( ( 𝐴 CNF 𝐵 ) ‘ ( 𝑥 ∈ 𝐵 ↦ if ( 𝑥 ⊆ ( 𝑂 ‘ 𝑢 ) , ( 𝐹 ‘ 𝑥 ) , ∅ ) ) ) ) ) |
374 |
309 373
|
eqtrd |
⊢ ( ( 𝜑 ∧ ( suc 𝑢 ∈ dom 𝑂 ∧ ( ◡ 𝑂 ‘ 𝑋 ) ⊆ 𝑢 ) ) → ( ( 𝐴 CNF 𝐵 ) ‘ ( 𝑥 ∈ 𝐵 ↦ if ( 𝑥 ⊆ ( 𝑂 ‘ suc 𝑢 ) , ( 𝐹 ‘ 𝑥 ) , ∅ ) ) ) = ( ( ( 𝐴 ↑o ( 𝑂 ‘ suc 𝑢 ) ) ·o ( 𝐹 ‘ ( 𝑂 ‘ suc 𝑢 ) ) ) +o ( ( 𝐴 CNF 𝐵 ) ‘ ( 𝑥 ∈ 𝐵 ↦ if ( 𝑥 ⊆ ( 𝑂 ‘ 𝑢 ) , ( 𝐹 ‘ 𝑥 ) , ∅ ) ) ) ) ) |
375 |
1 2 3 9 6 10
|
cantnfsuc |
⊢ ( ( 𝜑 ∧ suc 𝑢 ∈ ω ) → ( 𝐻 ‘ suc suc 𝑢 ) = ( ( ( 𝐴 ↑o ( 𝑂 ‘ suc 𝑢 ) ) ·o ( 𝐺 ‘ ( 𝑂 ‘ suc 𝑢 ) ) ) +o ( 𝐻 ‘ suc 𝑢 ) ) ) |
376 |
192 375
|
syldan |
⊢ ( ( 𝜑 ∧ ( suc 𝑢 ∈ dom 𝑂 ∧ ( ◡ 𝑂 ‘ 𝑋 ) ⊆ 𝑢 ) ) → ( 𝐻 ‘ suc suc 𝑢 ) = ( ( ( 𝐴 ↑o ( 𝑂 ‘ suc 𝑢 ) ) ·o ( 𝐺 ‘ ( 𝑂 ‘ suc 𝑢 ) ) ) +o ( 𝐻 ‘ suc 𝑢 ) ) ) |
377 |
160
|
simp3d |
⊢ ( 𝜑 → ∀ 𝑤 ∈ 𝐵 ( 𝑋 ∈ 𝑤 → ( 𝐹 ‘ 𝑤 ) = ( 𝐺 ‘ 𝑤 ) ) ) |
378 |
377
|
adantr |
⊢ ( ( 𝜑 ∧ ( suc 𝑢 ∈ dom 𝑂 ∧ ( ◡ 𝑂 ‘ 𝑋 ) ⊆ 𝑢 ) ) → ∀ 𝑤 ∈ 𝐵 ( 𝑋 ∈ 𝑤 → ( 𝐹 ‘ 𝑤 ) = ( 𝐺 ‘ 𝑤 ) ) ) |
379 |
109
|
adantr |
⊢ ( ( 𝜑 ∧ ( suc 𝑢 ∈ dom 𝑂 ∧ ( ◡ 𝑂 ‘ 𝑋 ) ⊆ 𝑢 ) ) → ( 𝑂 ‘ ( ◡ 𝑂 ‘ 𝑋 ) ) = 𝑋 ) |
380 |
136
|
adantrr |
⊢ ( ( 𝜑 ∧ ( suc 𝑢 ∈ dom 𝑂 ∧ ( ◡ 𝑂 ‘ 𝑋 ) ⊆ 𝑢 ) ) → 𝑢 ∈ On ) |
381 |
|
onsssuc |
⊢ ( ( ( ◡ 𝑂 ‘ 𝑋 ) ∈ On ∧ 𝑢 ∈ On ) → ( ( ◡ 𝑂 ‘ 𝑋 ) ⊆ 𝑢 ↔ ( ◡ 𝑂 ‘ 𝑋 ) ∈ suc 𝑢 ) ) |
382 |
129 380 381
|
syl2an2r |
⊢ ( ( 𝜑 ∧ ( suc 𝑢 ∈ dom 𝑂 ∧ ( ◡ 𝑂 ‘ 𝑋 ) ⊆ 𝑢 ) ) → ( ( ◡ 𝑂 ‘ 𝑋 ) ⊆ 𝑢 ↔ ( ◡ 𝑂 ‘ 𝑋 ) ∈ suc 𝑢 ) ) |
383 |
146 382
|
mpbid |
⊢ ( ( 𝜑 ∧ ( suc 𝑢 ∈ dom 𝑂 ∧ ( ◡ 𝑂 ‘ 𝑋 ) ⊆ 𝑢 ) ) → ( ◡ 𝑂 ‘ 𝑋 ) ∈ suc 𝑢 ) |
384 |
53
|
adantr |
⊢ ( ( 𝜑 ∧ ( suc 𝑢 ∈ dom 𝑂 ∧ ( ◡ 𝑂 ‘ 𝑋 ) ⊆ 𝑢 ) ) → ( ◡ 𝑂 ‘ 𝑋 ) ∈ dom 𝑂 ) |
385 |
|
isorel |
⊢ ( ( 𝑂 Isom E , E ( dom 𝑂 , ( 𝐺 supp ∅ ) ) ∧ ( ( ◡ 𝑂 ‘ 𝑋 ) ∈ dom 𝑂 ∧ suc 𝑢 ∈ dom 𝑂 ) ) → ( ( ◡ 𝑂 ‘ 𝑋 ) E suc 𝑢 ↔ ( 𝑂 ‘ ( ◡ 𝑂 ‘ 𝑋 ) ) E ( 𝑂 ‘ suc 𝑢 ) ) ) |
386 |
240 384 143 385
|
syl12anc |
⊢ ( ( 𝜑 ∧ ( suc 𝑢 ∈ dom 𝑂 ∧ ( ◡ 𝑂 ‘ 𝑋 ) ⊆ 𝑢 ) ) → ( ( ◡ 𝑂 ‘ 𝑋 ) E suc 𝑢 ↔ ( 𝑂 ‘ ( ◡ 𝑂 ‘ 𝑋 ) ) E ( 𝑂 ‘ suc 𝑢 ) ) ) |
387 |
243
|
epeli |
⊢ ( ( ◡ 𝑂 ‘ 𝑋 ) E suc 𝑢 ↔ ( ◡ 𝑂 ‘ 𝑋 ) ∈ suc 𝑢 ) |
388 |
245
|
epeli |
⊢ ( ( 𝑂 ‘ ( ◡ 𝑂 ‘ 𝑋 ) ) E ( 𝑂 ‘ suc 𝑢 ) ↔ ( 𝑂 ‘ ( ◡ 𝑂 ‘ 𝑋 ) ) ∈ ( 𝑂 ‘ suc 𝑢 ) ) |
389 |
386 387 388
|
3bitr3g |
⊢ ( ( 𝜑 ∧ ( suc 𝑢 ∈ dom 𝑂 ∧ ( ◡ 𝑂 ‘ 𝑋 ) ⊆ 𝑢 ) ) → ( ( ◡ 𝑂 ‘ 𝑋 ) ∈ suc 𝑢 ↔ ( 𝑂 ‘ ( ◡ 𝑂 ‘ 𝑋 ) ) ∈ ( 𝑂 ‘ suc 𝑢 ) ) ) |
390 |
383 389
|
mpbid |
⊢ ( ( 𝜑 ∧ ( suc 𝑢 ∈ dom 𝑂 ∧ ( ◡ 𝑂 ‘ 𝑋 ) ⊆ 𝑢 ) ) → ( 𝑂 ‘ ( ◡ 𝑂 ‘ 𝑋 ) ) ∈ ( 𝑂 ‘ suc 𝑢 ) ) |
391 |
379 390
|
eqeltrrd |
⊢ ( ( 𝜑 ∧ ( suc 𝑢 ∈ dom 𝑂 ∧ ( ◡ 𝑂 ‘ 𝑋 ) ⊆ 𝑢 ) ) → 𝑋 ∈ ( 𝑂 ‘ suc 𝑢 ) ) |
392 |
|
eleq2 |
⊢ ( 𝑤 = ( 𝑂 ‘ suc 𝑢 ) → ( 𝑋 ∈ 𝑤 ↔ 𝑋 ∈ ( 𝑂 ‘ suc 𝑢 ) ) ) |
393 |
|
fveq2 |
⊢ ( 𝑤 = ( 𝑂 ‘ suc 𝑢 ) → ( 𝐹 ‘ 𝑤 ) = ( 𝐹 ‘ ( 𝑂 ‘ suc 𝑢 ) ) ) |
394 |
|
fveq2 |
⊢ ( 𝑤 = ( 𝑂 ‘ suc 𝑢 ) → ( 𝐺 ‘ 𝑤 ) = ( 𝐺 ‘ ( 𝑂 ‘ suc 𝑢 ) ) ) |
395 |
393 394
|
eqeq12d |
⊢ ( 𝑤 = ( 𝑂 ‘ suc 𝑢 ) → ( ( 𝐹 ‘ 𝑤 ) = ( 𝐺 ‘ 𝑤 ) ↔ ( 𝐹 ‘ ( 𝑂 ‘ suc 𝑢 ) ) = ( 𝐺 ‘ ( 𝑂 ‘ suc 𝑢 ) ) ) ) |
396 |
392 395
|
imbi12d |
⊢ ( 𝑤 = ( 𝑂 ‘ suc 𝑢 ) → ( ( 𝑋 ∈ 𝑤 → ( 𝐹 ‘ 𝑤 ) = ( 𝐺 ‘ 𝑤 ) ) ↔ ( 𝑋 ∈ ( 𝑂 ‘ suc 𝑢 ) → ( 𝐹 ‘ ( 𝑂 ‘ suc 𝑢 ) ) = ( 𝐺 ‘ ( 𝑂 ‘ suc 𝑢 ) ) ) ) ) |
397 |
396
|
rspcv |
⊢ ( ( 𝑂 ‘ suc 𝑢 ) ∈ 𝐵 → ( ∀ 𝑤 ∈ 𝐵 ( 𝑋 ∈ 𝑤 → ( 𝐹 ‘ 𝑤 ) = ( 𝐺 ‘ 𝑤 ) ) → ( 𝑋 ∈ ( 𝑂 ‘ suc 𝑢 ) → ( 𝐹 ‘ ( 𝑂 ‘ suc 𝑢 ) ) = ( 𝐺 ‘ ( 𝑂 ‘ suc 𝑢 ) ) ) ) ) |
398 |
202 378 391 397
|
syl3c |
⊢ ( ( 𝜑 ∧ ( suc 𝑢 ∈ dom 𝑂 ∧ ( ◡ 𝑂 ‘ 𝑋 ) ⊆ 𝑢 ) ) → ( 𝐹 ‘ ( 𝑂 ‘ suc 𝑢 ) ) = ( 𝐺 ‘ ( 𝑂 ‘ suc 𝑢 ) ) ) |
399 |
398
|
oveq2d |
⊢ ( ( 𝜑 ∧ ( suc 𝑢 ∈ dom 𝑂 ∧ ( ◡ 𝑂 ‘ 𝑋 ) ⊆ 𝑢 ) ) → ( ( 𝐴 ↑o ( 𝑂 ‘ suc 𝑢 ) ) ·o ( 𝐹 ‘ ( 𝑂 ‘ suc 𝑢 ) ) ) = ( ( 𝐴 ↑o ( 𝑂 ‘ suc 𝑢 ) ) ·o ( 𝐺 ‘ ( 𝑂 ‘ suc 𝑢 ) ) ) ) |
400 |
399
|
oveq1d |
⊢ ( ( 𝜑 ∧ ( suc 𝑢 ∈ dom 𝑂 ∧ ( ◡ 𝑂 ‘ 𝑋 ) ⊆ 𝑢 ) ) → ( ( ( 𝐴 ↑o ( 𝑂 ‘ suc 𝑢 ) ) ·o ( 𝐹 ‘ ( 𝑂 ‘ suc 𝑢 ) ) ) +o ( 𝐻 ‘ suc 𝑢 ) ) = ( ( ( 𝐴 ↑o ( 𝑂 ‘ suc 𝑢 ) ) ·o ( 𝐺 ‘ ( 𝑂 ‘ suc 𝑢 ) ) ) +o ( 𝐻 ‘ suc 𝑢 ) ) ) |
401 |
376 400
|
eqtr4d |
⊢ ( ( 𝜑 ∧ ( suc 𝑢 ∈ dom 𝑂 ∧ ( ◡ 𝑂 ‘ 𝑋 ) ⊆ 𝑢 ) ) → ( 𝐻 ‘ suc suc 𝑢 ) = ( ( ( 𝐴 ↑o ( 𝑂 ‘ suc 𝑢 ) ) ·o ( 𝐹 ‘ ( 𝑂 ‘ suc 𝑢 ) ) ) +o ( 𝐻 ‘ suc 𝑢 ) ) ) |
402 |
374 401
|
eleq12d |
⊢ ( ( 𝜑 ∧ ( suc 𝑢 ∈ dom 𝑂 ∧ ( ◡ 𝑂 ‘ 𝑋 ) ⊆ 𝑢 ) ) → ( ( ( 𝐴 CNF 𝐵 ) ‘ ( 𝑥 ∈ 𝐵 ↦ if ( 𝑥 ⊆ ( 𝑂 ‘ suc 𝑢 ) , ( 𝐹 ‘ 𝑥 ) , ∅ ) ) ) ∈ ( 𝐻 ‘ suc suc 𝑢 ) ↔ ( ( ( 𝐴 ↑o ( 𝑂 ‘ suc 𝑢 ) ) ·o ( 𝐹 ‘ ( 𝑂 ‘ suc 𝑢 ) ) ) +o ( ( 𝐴 CNF 𝐵 ) ‘ ( 𝑥 ∈ 𝐵 ↦ if ( 𝑥 ⊆ ( 𝑂 ‘ 𝑢 ) , ( 𝐹 ‘ 𝑥 ) , ∅ ) ) ) ) ∈ ( ( ( 𝐴 ↑o ( 𝑂 ‘ suc 𝑢 ) ) ·o ( 𝐹 ‘ ( 𝑂 ‘ suc 𝑢 ) ) ) +o ( 𝐻 ‘ suc 𝑢 ) ) ) ) |
403 |
214 402
|
bitr4d |
⊢ ( ( 𝜑 ∧ ( suc 𝑢 ∈ dom 𝑂 ∧ ( ◡ 𝑂 ‘ 𝑋 ) ⊆ 𝑢 ) ) → ( ( ( 𝐴 CNF 𝐵 ) ‘ ( 𝑥 ∈ 𝐵 ↦ if ( 𝑥 ⊆ ( 𝑂 ‘ 𝑢 ) , ( 𝐹 ‘ 𝑥 ) , ∅ ) ) ) ∈ ( 𝐻 ‘ suc 𝑢 ) ↔ ( ( 𝐴 CNF 𝐵 ) ‘ ( 𝑥 ∈ 𝐵 ↦ if ( 𝑥 ⊆ ( 𝑂 ‘ suc 𝑢 ) , ( 𝐹 ‘ 𝑥 ) , ∅ ) ) ) ∈ ( 𝐻 ‘ suc suc 𝑢 ) ) ) |
404 |
403
|
biimpd |
⊢ ( ( 𝜑 ∧ ( suc 𝑢 ∈ dom 𝑂 ∧ ( ◡ 𝑂 ‘ 𝑋 ) ⊆ 𝑢 ) ) → ( ( ( 𝐴 CNF 𝐵 ) ‘ ( 𝑥 ∈ 𝐵 ↦ if ( 𝑥 ⊆ ( 𝑂 ‘ 𝑢 ) , ( 𝐹 ‘ 𝑥 ) , ∅ ) ) ) ∈ ( 𝐻 ‘ suc 𝑢 ) → ( ( 𝐴 CNF 𝐵 ) ‘ ( 𝑥 ∈ 𝐵 ↦ if ( 𝑥 ⊆ ( 𝑂 ‘ suc 𝑢 ) , ( 𝐹 ‘ 𝑥 ) , ∅ ) ) ) ∈ ( 𝐻 ‘ suc suc 𝑢 ) ) ) |
405 |
147 404
|
embantd |
⊢ ( ( 𝜑 ∧ ( suc 𝑢 ∈ dom 𝑂 ∧ ( ◡ 𝑂 ‘ 𝑋 ) ⊆ 𝑢 ) ) → ( ( ( 𝑢 ∈ dom 𝑂 ∧ ( ◡ 𝑂 ‘ 𝑋 ) ⊆ 𝑢 ) → ( ( 𝐴 CNF 𝐵 ) ‘ ( 𝑥 ∈ 𝐵 ↦ if ( 𝑥 ⊆ ( 𝑂 ‘ 𝑢 ) , ( 𝐹 ‘ 𝑥 ) , ∅ ) ) ) ∈ ( 𝐻 ‘ suc 𝑢 ) ) → ( ( 𝐴 CNF 𝐵 ) ‘ ( 𝑥 ∈ 𝐵 ↦ if ( 𝑥 ⊆ ( 𝑂 ‘ suc 𝑢 ) , ( 𝐹 ‘ 𝑥 ) , ∅ ) ) ) ∈ ( 𝐻 ‘ suc suc 𝑢 ) ) ) |
406 |
405
|
expr |
⊢ ( ( 𝜑 ∧ suc 𝑢 ∈ dom 𝑂 ) → ( ( ◡ 𝑂 ‘ 𝑋 ) ⊆ 𝑢 → ( ( ( 𝑢 ∈ dom 𝑂 ∧ ( ◡ 𝑂 ‘ 𝑋 ) ⊆ 𝑢 ) → ( ( 𝐴 CNF 𝐵 ) ‘ ( 𝑥 ∈ 𝐵 ↦ if ( 𝑥 ⊆ ( 𝑂 ‘ 𝑢 ) , ( 𝐹 ‘ 𝑥 ) , ∅ ) ) ) ∈ ( 𝐻 ‘ suc 𝑢 ) ) → ( ( 𝐴 CNF 𝐵 ) ‘ ( 𝑥 ∈ 𝐵 ↦ if ( 𝑥 ⊆ ( 𝑂 ‘ suc 𝑢 ) , ( 𝐹 ‘ 𝑥 ) , ∅ ) ) ) ∈ ( 𝐻 ‘ suc suc 𝑢 ) ) ) ) |
407 |
140 406
|
sylbird |
⊢ ( ( 𝜑 ∧ suc 𝑢 ∈ dom 𝑂 ) → ( ( ◡ 𝑂 ‘ 𝑋 ) ∈ suc 𝑢 → ( ( ( 𝑢 ∈ dom 𝑂 ∧ ( ◡ 𝑂 ‘ 𝑋 ) ⊆ 𝑢 ) → ( ( 𝐴 CNF 𝐵 ) ‘ ( 𝑥 ∈ 𝐵 ↦ if ( 𝑥 ⊆ ( 𝑂 ‘ 𝑢 ) , ( 𝐹 ‘ 𝑥 ) , ∅ ) ) ) ∈ ( 𝐻 ‘ suc 𝑢 ) ) → ( ( 𝐴 CNF 𝐵 ) ‘ ( 𝑥 ∈ 𝐵 ↦ if ( 𝑥 ⊆ ( 𝑂 ‘ suc 𝑢 ) , ( 𝐹 ‘ 𝑥 ) , ∅ ) ) ) ∈ ( 𝐻 ‘ suc suc 𝑢 ) ) ) ) |
408 |
|
fveq2 |
⊢ ( ( ◡ 𝑂 ‘ 𝑋 ) = suc 𝑢 → ( 𝑂 ‘ ( ◡ 𝑂 ‘ 𝑋 ) ) = ( 𝑂 ‘ suc 𝑢 ) ) |
409 |
408
|
sseq2d |
⊢ ( ( ◡ 𝑂 ‘ 𝑋 ) = suc 𝑢 → ( 𝑥 ⊆ ( 𝑂 ‘ ( ◡ 𝑂 ‘ 𝑋 ) ) ↔ 𝑥 ⊆ ( 𝑂 ‘ suc 𝑢 ) ) ) |
410 |
409
|
ifbid |
⊢ ( ( ◡ 𝑂 ‘ 𝑋 ) = suc 𝑢 → if ( 𝑥 ⊆ ( 𝑂 ‘ ( ◡ 𝑂 ‘ 𝑋 ) ) , ( 𝐹 ‘ 𝑥 ) , ∅ ) = if ( 𝑥 ⊆ ( 𝑂 ‘ suc 𝑢 ) , ( 𝐹 ‘ 𝑥 ) , ∅ ) ) |
411 |
410
|
mpteq2dv |
⊢ ( ( ◡ 𝑂 ‘ 𝑋 ) = suc 𝑢 → ( 𝑥 ∈ 𝐵 ↦ if ( 𝑥 ⊆ ( 𝑂 ‘ ( ◡ 𝑂 ‘ 𝑋 ) ) , ( 𝐹 ‘ 𝑥 ) , ∅ ) ) = ( 𝑥 ∈ 𝐵 ↦ if ( 𝑥 ⊆ ( 𝑂 ‘ suc 𝑢 ) , ( 𝐹 ‘ 𝑥 ) , ∅ ) ) ) |
412 |
411
|
fveq2d |
⊢ ( ( ◡ 𝑂 ‘ 𝑋 ) = suc 𝑢 → ( ( 𝐴 CNF 𝐵 ) ‘ ( 𝑥 ∈ 𝐵 ↦ if ( 𝑥 ⊆ ( 𝑂 ‘ ( ◡ 𝑂 ‘ 𝑋 ) ) , ( 𝐹 ‘ 𝑥 ) , ∅ ) ) ) = ( ( 𝐴 CNF 𝐵 ) ‘ ( 𝑥 ∈ 𝐵 ↦ if ( 𝑥 ⊆ ( 𝑂 ‘ suc 𝑢 ) , ( 𝐹 ‘ 𝑥 ) , ∅ ) ) ) ) |
413 |
|
suceq |
⊢ ( ( ◡ 𝑂 ‘ 𝑋 ) = suc 𝑢 → suc ( ◡ 𝑂 ‘ 𝑋 ) = suc suc 𝑢 ) |
414 |
413
|
fveq2d |
⊢ ( ( ◡ 𝑂 ‘ 𝑋 ) = suc 𝑢 → ( 𝐻 ‘ suc ( ◡ 𝑂 ‘ 𝑋 ) ) = ( 𝐻 ‘ suc suc 𝑢 ) ) |
415 |
412 414
|
eleq12d |
⊢ ( ( ◡ 𝑂 ‘ 𝑋 ) = suc 𝑢 → ( ( ( 𝐴 CNF 𝐵 ) ‘ ( 𝑥 ∈ 𝐵 ↦ if ( 𝑥 ⊆ ( 𝑂 ‘ ( ◡ 𝑂 ‘ 𝑋 ) ) , ( 𝐹 ‘ 𝑥 ) , ∅ ) ) ) ∈ ( 𝐻 ‘ suc ( ◡ 𝑂 ‘ 𝑋 ) ) ↔ ( ( 𝐴 CNF 𝐵 ) ‘ ( 𝑥 ∈ 𝐵 ↦ if ( 𝑥 ⊆ ( 𝑂 ‘ suc 𝑢 ) , ( 𝐹 ‘ 𝑥 ) , ∅ ) ) ) ∈ ( 𝐻 ‘ suc suc 𝑢 ) ) ) |
416 |
115 415
|
syl5ibcom |
⊢ ( 𝜑 → ( ( ◡ 𝑂 ‘ 𝑋 ) = suc 𝑢 → ( ( 𝐴 CNF 𝐵 ) ‘ ( 𝑥 ∈ 𝐵 ↦ if ( 𝑥 ⊆ ( 𝑂 ‘ suc 𝑢 ) , ( 𝐹 ‘ 𝑥 ) , ∅ ) ) ) ∈ ( 𝐻 ‘ suc suc 𝑢 ) ) ) |
417 |
416
|
adantr |
⊢ ( ( 𝜑 ∧ suc 𝑢 ∈ dom 𝑂 ) → ( ( ◡ 𝑂 ‘ 𝑋 ) = suc 𝑢 → ( ( 𝐴 CNF 𝐵 ) ‘ ( 𝑥 ∈ 𝐵 ↦ if ( 𝑥 ⊆ ( 𝑂 ‘ suc 𝑢 ) , ( 𝐹 ‘ 𝑥 ) , ∅ ) ) ) ∈ ( 𝐻 ‘ suc suc 𝑢 ) ) ) |
418 |
417
|
a1dd |
⊢ ( ( 𝜑 ∧ suc 𝑢 ∈ dom 𝑂 ) → ( ( ◡ 𝑂 ‘ 𝑋 ) = suc 𝑢 → ( ( ( 𝑢 ∈ dom 𝑂 ∧ ( ◡ 𝑂 ‘ 𝑋 ) ⊆ 𝑢 ) → ( ( 𝐴 CNF 𝐵 ) ‘ ( 𝑥 ∈ 𝐵 ↦ if ( 𝑥 ⊆ ( 𝑂 ‘ 𝑢 ) , ( 𝐹 ‘ 𝑥 ) , ∅ ) ) ) ∈ ( 𝐻 ‘ suc 𝑢 ) ) → ( ( 𝐴 CNF 𝐵 ) ‘ ( 𝑥 ∈ 𝐵 ↦ if ( 𝑥 ⊆ ( 𝑂 ‘ suc 𝑢 ) , ( 𝐹 ‘ 𝑥 ) , ∅ ) ) ) ∈ ( 𝐻 ‘ suc suc 𝑢 ) ) ) ) |
419 |
407 418
|
jaod |
⊢ ( ( 𝜑 ∧ suc 𝑢 ∈ dom 𝑂 ) → ( ( ( ◡ 𝑂 ‘ 𝑋 ) ∈ suc 𝑢 ∨ ( ◡ 𝑂 ‘ 𝑋 ) = suc 𝑢 ) → ( ( ( 𝑢 ∈ dom 𝑂 ∧ ( ◡ 𝑂 ‘ 𝑋 ) ⊆ 𝑢 ) → ( ( 𝐴 CNF 𝐵 ) ‘ ( 𝑥 ∈ 𝐵 ↦ if ( 𝑥 ⊆ ( 𝑂 ‘ 𝑢 ) , ( 𝐹 ‘ 𝑥 ) , ∅ ) ) ) ∈ ( 𝐻 ‘ suc 𝑢 ) ) → ( ( 𝐴 CNF 𝐵 ) ‘ ( 𝑥 ∈ 𝐵 ↦ if ( 𝑥 ⊆ ( 𝑂 ‘ suc 𝑢 ) , ( 𝐹 ‘ 𝑥 ) , ∅ ) ) ) ∈ ( 𝐻 ‘ suc suc 𝑢 ) ) ) ) |
420 |
134 419
|
sylbid |
⊢ ( ( 𝜑 ∧ suc 𝑢 ∈ dom 𝑂 ) → ( ( ◡ 𝑂 ‘ 𝑋 ) ⊆ suc 𝑢 → ( ( ( 𝑢 ∈ dom 𝑂 ∧ ( ◡ 𝑂 ‘ 𝑋 ) ⊆ 𝑢 ) → ( ( 𝐴 CNF 𝐵 ) ‘ ( 𝑥 ∈ 𝐵 ↦ if ( 𝑥 ⊆ ( 𝑂 ‘ 𝑢 ) , ( 𝐹 ‘ 𝑥 ) , ∅ ) ) ) ∈ ( 𝐻 ‘ suc 𝑢 ) ) → ( ( 𝐴 CNF 𝐵 ) ‘ ( 𝑥 ∈ 𝐵 ↦ if ( 𝑥 ⊆ ( 𝑂 ‘ suc 𝑢 ) , ( 𝐹 ‘ 𝑥 ) , ∅ ) ) ) ∈ ( 𝐻 ‘ suc suc 𝑢 ) ) ) ) |
421 |
420
|
expimpd |
⊢ ( 𝜑 → ( ( suc 𝑢 ∈ dom 𝑂 ∧ ( ◡ 𝑂 ‘ 𝑋 ) ⊆ suc 𝑢 ) → ( ( ( 𝑢 ∈ dom 𝑂 ∧ ( ◡ 𝑂 ‘ 𝑋 ) ⊆ 𝑢 ) → ( ( 𝐴 CNF 𝐵 ) ‘ ( 𝑥 ∈ 𝐵 ↦ if ( 𝑥 ⊆ ( 𝑂 ‘ 𝑢 ) , ( 𝐹 ‘ 𝑥 ) , ∅ ) ) ) ∈ ( 𝐻 ‘ suc 𝑢 ) ) → ( ( 𝐴 CNF 𝐵 ) ‘ ( 𝑥 ∈ 𝐵 ↦ if ( 𝑥 ⊆ ( 𝑂 ‘ suc 𝑢 ) , ( 𝐹 ‘ 𝑥 ) , ∅ ) ) ) ∈ ( 𝐻 ‘ suc suc 𝑢 ) ) ) ) |
422 |
421
|
com23 |
⊢ ( 𝜑 → ( ( ( 𝑢 ∈ dom 𝑂 ∧ ( ◡ 𝑂 ‘ 𝑋 ) ⊆ 𝑢 ) → ( ( 𝐴 CNF 𝐵 ) ‘ ( 𝑥 ∈ 𝐵 ↦ if ( 𝑥 ⊆ ( 𝑂 ‘ 𝑢 ) , ( 𝐹 ‘ 𝑥 ) , ∅ ) ) ) ∈ ( 𝐻 ‘ suc 𝑢 ) ) → ( ( suc 𝑢 ∈ dom 𝑂 ∧ ( ◡ 𝑂 ‘ 𝑋 ) ⊆ suc 𝑢 ) → ( ( 𝐴 CNF 𝐵 ) ‘ ( 𝑥 ∈ 𝐵 ↦ if ( 𝑥 ⊆ ( 𝑂 ‘ suc 𝑢 ) , ( 𝐹 ‘ 𝑥 ) , ∅ ) ) ) ∈ ( 𝐻 ‘ suc suc 𝑢 ) ) ) ) |
423 |
422
|
a1i |
⊢ ( 𝑢 ∈ ω → ( 𝜑 → ( ( ( 𝑢 ∈ dom 𝑂 ∧ ( ◡ 𝑂 ‘ 𝑋 ) ⊆ 𝑢 ) → ( ( 𝐴 CNF 𝐵 ) ‘ ( 𝑥 ∈ 𝐵 ↦ if ( 𝑥 ⊆ ( 𝑂 ‘ 𝑢 ) , ( 𝐹 ‘ 𝑥 ) , ∅ ) ) ) ∈ ( 𝐻 ‘ suc 𝑢 ) ) → ( ( suc 𝑢 ∈ dom 𝑂 ∧ ( ◡ 𝑂 ‘ 𝑋 ) ⊆ suc 𝑢 ) → ( ( 𝐴 CNF 𝐵 ) ‘ ( 𝑥 ∈ 𝐵 ↦ if ( 𝑥 ⊆ ( 𝑂 ‘ suc 𝑢 ) , ( 𝐹 ‘ 𝑥 ) , ∅ ) ) ) ∈ ( 𝐻 ‘ suc suc 𝑢 ) ) ) ) ) |
424 |
83 95 107 127 423
|
finds2 |
⊢ ( 𝑦 ∈ ω → ( 𝜑 → ( ( 𝑦 ∈ dom 𝑂 ∧ ( ◡ 𝑂 ‘ 𝑋 ) ⊆ 𝑦 ) → ( ( 𝐴 CNF 𝐵 ) ‘ ( 𝑥 ∈ 𝐵 ↦ if ( 𝑥 ⊆ ( 𝑂 ‘ 𝑦 ) , ( 𝐹 ‘ 𝑥 ) , ∅ ) ) ) ∈ ( 𝐻 ‘ suc 𝑦 ) ) ) ) |
425 |
71 424
|
vtoclga |
⊢ ( ∪ dom 𝑂 ∈ ω → ( 𝜑 → ( ( ∪ dom 𝑂 ∈ dom 𝑂 ∧ ( ◡ 𝑂 ‘ 𝑋 ) ⊆ ∪ dom 𝑂 ) → ( ( 𝐴 CNF 𝐵 ) ‘ ( 𝑥 ∈ 𝐵 ↦ if ( 𝑥 ⊆ ( 𝑂 ‘ ∪ dom 𝑂 ) , ( 𝐹 ‘ 𝑥 ) , ∅ ) ) ) ∈ ( 𝐻 ‘ suc ∪ dom 𝑂 ) ) ) ) |
426 |
58 425
|
mpcom |
⊢ ( 𝜑 → ( ( ∪ dom 𝑂 ∈ dom 𝑂 ∧ ( ◡ 𝑂 ‘ 𝑋 ) ⊆ ∪ dom 𝑂 ) → ( ( 𝐴 CNF 𝐵 ) ‘ ( 𝑥 ∈ 𝐵 ↦ if ( 𝑥 ⊆ ( 𝑂 ‘ ∪ dom 𝑂 ) , ( 𝐹 ‘ 𝑥 ) , ∅ ) ) ) ∈ ( 𝐻 ‘ suc ∪ dom 𝑂 ) ) ) |
427 |
45 55 426
|
mp2and |
⊢ ( 𝜑 → ( ( 𝐴 CNF 𝐵 ) ‘ ( 𝑥 ∈ 𝐵 ↦ if ( 𝑥 ⊆ ( 𝑂 ‘ ∪ dom 𝑂 ) , ( 𝐹 ‘ 𝑥 ) , ∅ ) ) ) ∈ ( 𝐻 ‘ suc ∪ dom 𝑂 ) ) |
428 |
155
|
feqmptd |
⊢ ( 𝜑 → 𝐹 = ( 𝑥 ∈ 𝐵 ↦ ( 𝐹 ‘ 𝑥 ) ) ) |
429 |
|
eqeq2 |
⊢ ( ( 𝐹 ‘ 𝑥 ) = if ( 𝑥 ⊆ ( 𝑂 ‘ ∪ dom 𝑂 ) , ( 𝐹 ‘ 𝑥 ) , ∅ ) → ( ( 𝐹 ‘ 𝑥 ) = ( 𝐹 ‘ 𝑥 ) ↔ ( 𝐹 ‘ 𝑥 ) = if ( 𝑥 ⊆ ( 𝑂 ‘ ∪ dom 𝑂 ) , ( 𝐹 ‘ 𝑥 ) , ∅ ) ) ) |
430 |
|
eqeq2 |
⊢ ( ∅ = if ( 𝑥 ⊆ ( 𝑂 ‘ ∪ dom 𝑂 ) , ( 𝐹 ‘ 𝑥 ) , ∅ ) → ( ( 𝐹 ‘ 𝑥 ) = ∅ ↔ ( 𝐹 ‘ 𝑥 ) = if ( 𝑥 ⊆ ( 𝑂 ‘ ∪ dom 𝑂 ) , ( 𝐹 ‘ 𝑥 ) , ∅ ) ) ) |
431 |
|
eqidd |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ 𝐵 ) ∧ 𝑥 ⊆ ( 𝑂 ‘ ∪ dom 𝑂 ) ) → ( 𝐹 ‘ 𝑥 ) = ( 𝐹 ‘ 𝑥 ) ) |
432 |
199
|
ffvelrni |
⊢ ( ∪ dom 𝑂 ∈ dom 𝑂 → ( 𝑂 ‘ ∪ dom 𝑂 ) ∈ ( 𝐺 supp ∅ ) ) |
433 |
45 432
|
syl |
⊢ ( 𝜑 → ( 𝑂 ‘ ∪ dom 𝑂 ) ∈ ( 𝐺 supp ∅ ) ) |
434 |
197 433
|
sseldd |
⊢ ( 𝜑 → ( 𝑂 ‘ ∪ dom 𝑂 ) ∈ 𝐵 ) |
435 |
|
onelon |
⊢ ( ( 𝐵 ∈ On ∧ ( 𝑂 ‘ ∪ dom 𝑂 ) ∈ 𝐵 ) → ( 𝑂 ‘ ∪ dom 𝑂 ) ∈ On ) |
436 |
3 434 435
|
syl2anc |
⊢ ( 𝜑 → ( 𝑂 ‘ ∪ dom 𝑂 ) ∈ On ) |
437 |
436
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐵 ) → ( 𝑂 ‘ ∪ dom 𝑂 ) ∈ On ) |
438 |
|
ontri1 |
⊢ ( ( 𝑥 ∈ On ∧ ( 𝑂 ‘ ∪ dom 𝑂 ) ∈ On ) → ( 𝑥 ⊆ ( 𝑂 ‘ ∪ dom 𝑂 ) ↔ ¬ ( 𝑂 ‘ ∪ dom 𝑂 ) ∈ 𝑥 ) ) |
439 |
224 437 438
|
syl2anc |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐵 ) → ( 𝑥 ⊆ ( 𝑂 ‘ ∪ dom 𝑂 ) ↔ ¬ ( 𝑂 ‘ ∪ dom 𝑂 ) ∈ 𝑥 ) ) |
440 |
439
|
con2bid |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐵 ) → ( ( 𝑂 ‘ ∪ dom 𝑂 ) ∈ 𝑥 ↔ ¬ 𝑥 ⊆ ( 𝑂 ‘ ∪ dom 𝑂 ) ) ) |
441 |
|
simprl |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐵 ∧ ( 𝑂 ‘ ∪ dom 𝑂 ) ∈ 𝑥 ) ) → 𝑥 ∈ 𝐵 ) |
442 |
377
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐵 ∧ ( 𝑂 ‘ ∪ dom 𝑂 ) ∈ 𝑥 ) ) → ∀ 𝑤 ∈ 𝐵 ( 𝑋 ∈ 𝑤 → ( 𝐹 ‘ 𝑤 ) = ( 𝐺 ‘ 𝑤 ) ) ) |
443 |
|
eloni |
⊢ ( ( ◡ 𝑂 ‘ 𝑋 ) ∈ On → Ord ( ◡ 𝑂 ‘ 𝑋 ) ) |
444 |
129 443
|
syl |
⊢ ( 𝜑 → Ord ( ◡ 𝑂 ‘ 𝑋 ) ) |
445 |
|
orduni |
⊢ ( Ord dom 𝑂 → Ord ∪ dom 𝑂 ) |
446 |
37 445
|
ax-mp |
⊢ Ord ∪ dom 𝑂 |
447 |
|
ordtri1 |
⊢ ( ( Ord ( ◡ 𝑂 ‘ 𝑋 ) ∧ Ord ∪ dom 𝑂 ) → ( ( ◡ 𝑂 ‘ 𝑋 ) ⊆ ∪ dom 𝑂 ↔ ¬ ∪ dom 𝑂 ∈ ( ◡ 𝑂 ‘ 𝑋 ) ) ) |
448 |
444 446 447
|
sylancl |
⊢ ( 𝜑 → ( ( ◡ 𝑂 ‘ 𝑋 ) ⊆ ∪ dom 𝑂 ↔ ¬ ∪ dom 𝑂 ∈ ( ◡ 𝑂 ‘ 𝑋 ) ) ) |
449 |
55 448
|
mpbid |
⊢ ( 𝜑 → ¬ ∪ dom 𝑂 ∈ ( ◡ 𝑂 ‘ 𝑋 ) ) |
450 |
|
isorel |
⊢ ( ( 𝑂 Isom E , E ( dom 𝑂 , ( 𝐺 supp ∅ ) ) ∧ ( ∪ dom 𝑂 ∈ dom 𝑂 ∧ ( ◡ 𝑂 ‘ 𝑋 ) ∈ dom 𝑂 ) ) → ( ∪ dom 𝑂 E ( ◡ 𝑂 ‘ 𝑋 ) ↔ ( 𝑂 ‘ ∪ dom 𝑂 ) E ( 𝑂 ‘ ( ◡ 𝑂 ‘ 𝑋 ) ) ) ) |
451 |
47 45 53 450
|
syl12anc |
⊢ ( 𝜑 → ( ∪ dom 𝑂 E ( ◡ 𝑂 ‘ 𝑋 ) ↔ ( 𝑂 ‘ ∪ dom 𝑂 ) E ( 𝑂 ‘ ( ◡ 𝑂 ‘ 𝑋 ) ) ) ) |
452 |
|
fvex |
⊢ ( ◡ 𝑂 ‘ 𝑋 ) ∈ V |
453 |
452
|
epeli |
⊢ ( ∪ dom 𝑂 E ( ◡ 𝑂 ‘ 𝑋 ) ↔ ∪ dom 𝑂 ∈ ( ◡ 𝑂 ‘ 𝑋 ) ) |
454 |
|
fvex |
⊢ ( 𝑂 ‘ ( ◡ 𝑂 ‘ 𝑋 ) ) ∈ V |
455 |
454
|
epeli |
⊢ ( ( 𝑂 ‘ ∪ dom 𝑂 ) E ( 𝑂 ‘ ( ◡ 𝑂 ‘ 𝑋 ) ) ↔ ( 𝑂 ‘ ∪ dom 𝑂 ) ∈ ( 𝑂 ‘ ( ◡ 𝑂 ‘ 𝑋 ) ) ) |
456 |
451 453 455
|
3bitr3g |
⊢ ( 𝜑 → ( ∪ dom 𝑂 ∈ ( ◡ 𝑂 ‘ 𝑋 ) ↔ ( 𝑂 ‘ ∪ dom 𝑂 ) ∈ ( 𝑂 ‘ ( ◡ 𝑂 ‘ 𝑋 ) ) ) ) |
457 |
109
|
eleq2d |
⊢ ( 𝜑 → ( ( 𝑂 ‘ ∪ dom 𝑂 ) ∈ ( 𝑂 ‘ ( ◡ 𝑂 ‘ 𝑋 ) ) ↔ ( 𝑂 ‘ ∪ dom 𝑂 ) ∈ 𝑋 ) ) |
458 |
456 457
|
bitrd |
⊢ ( 𝜑 → ( ∪ dom 𝑂 ∈ ( ◡ 𝑂 ‘ 𝑋 ) ↔ ( 𝑂 ‘ ∪ dom 𝑂 ) ∈ 𝑋 ) ) |
459 |
449 458
|
mtbid |
⊢ ( 𝜑 → ¬ ( 𝑂 ‘ ∪ dom 𝑂 ) ∈ 𝑋 ) |
460 |
|
onelon |
⊢ ( ( 𝐵 ∈ On ∧ 𝑋 ∈ 𝐵 ) → 𝑋 ∈ On ) |
461 |
3 161 460
|
syl2anc |
⊢ ( 𝜑 → 𝑋 ∈ On ) |
462 |
|
ontri1 |
⊢ ( ( 𝑋 ∈ On ∧ ( 𝑂 ‘ ∪ dom 𝑂 ) ∈ On ) → ( 𝑋 ⊆ ( 𝑂 ‘ ∪ dom 𝑂 ) ↔ ¬ ( 𝑂 ‘ ∪ dom 𝑂 ) ∈ 𝑋 ) ) |
463 |
461 436 462
|
syl2anc |
⊢ ( 𝜑 → ( 𝑋 ⊆ ( 𝑂 ‘ ∪ dom 𝑂 ) ↔ ¬ ( 𝑂 ‘ ∪ dom 𝑂 ) ∈ 𝑋 ) ) |
464 |
459 463
|
mpbird |
⊢ ( 𝜑 → 𝑋 ⊆ ( 𝑂 ‘ ∪ dom 𝑂 ) ) |
465 |
464
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐵 ∧ ( 𝑂 ‘ ∪ dom 𝑂 ) ∈ 𝑥 ) ) → 𝑋 ⊆ ( 𝑂 ‘ ∪ dom 𝑂 ) ) |
466 |
|
simprr |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐵 ∧ ( 𝑂 ‘ ∪ dom 𝑂 ) ∈ 𝑥 ) ) → ( 𝑂 ‘ ∪ dom 𝑂 ) ∈ 𝑥 ) |
467 |
224
|
adantrr |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐵 ∧ ( 𝑂 ‘ ∪ dom 𝑂 ) ∈ 𝑥 ) ) → 𝑥 ∈ On ) |
468 |
|
ontr2 |
⊢ ( ( 𝑋 ∈ On ∧ 𝑥 ∈ On ) → ( ( 𝑋 ⊆ ( 𝑂 ‘ ∪ dom 𝑂 ) ∧ ( 𝑂 ‘ ∪ dom 𝑂 ) ∈ 𝑥 ) → 𝑋 ∈ 𝑥 ) ) |
469 |
461 467 468
|
syl2an2r |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐵 ∧ ( 𝑂 ‘ ∪ dom 𝑂 ) ∈ 𝑥 ) ) → ( ( 𝑋 ⊆ ( 𝑂 ‘ ∪ dom 𝑂 ) ∧ ( 𝑂 ‘ ∪ dom 𝑂 ) ∈ 𝑥 ) → 𝑋 ∈ 𝑥 ) ) |
470 |
465 466 469
|
mp2and |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐵 ∧ ( 𝑂 ‘ ∪ dom 𝑂 ) ∈ 𝑥 ) ) → 𝑋 ∈ 𝑥 ) |
471 |
|
eleq2 |
⊢ ( 𝑤 = 𝑥 → ( 𝑋 ∈ 𝑤 ↔ 𝑋 ∈ 𝑥 ) ) |
472 |
|
fveq2 |
⊢ ( 𝑤 = 𝑥 → ( 𝐹 ‘ 𝑤 ) = ( 𝐹 ‘ 𝑥 ) ) |
473 |
|
fveq2 |
⊢ ( 𝑤 = 𝑥 → ( 𝐺 ‘ 𝑤 ) = ( 𝐺 ‘ 𝑥 ) ) |
474 |
472 473
|
eqeq12d |
⊢ ( 𝑤 = 𝑥 → ( ( 𝐹 ‘ 𝑤 ) = ( 𝐺 ‘ 𝑤 ) ↔ ( 𝐹 ‘ 𝑥 ) = ( 𝐺 ‘ 𝑥 ) ) ) |
475 |
471 474
|
imbi12d |
⊢ ( 𝑤 = 𝑥 → ( ( 𝑋 ∈ 𝑤 → ( 𝐹 ‘ 𝑤 ) = ( 𝐺 ‘ 𝑤 ) ) ↔ ( 𝑋 ∈ 𝑥 → ( 𝐹 ‘ 𝑥 ) = ( 𝐺 ‘ 𝑥 ) ) ) ) |
476 |
475
|
rspcv |
⊢ ( 𝑥 ∈ 𝐵 → ( ∀ 𝑤 ∈ 𝐵 ( 𝑋 ∈ 𝑤 → ( 𝐹 ‘ 𝑤 ) = ( 𝐺 ‘ 𝑤 ) ) → ( 𝑋 ∈ 𝑥 → ( 𝐹 ‘ 𝑥 ) = ( 𝐺 ‘ 𝑥 ) ) ) ) |
477 |
441 442 470 476
|
syl3c |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐵 ∧ ( 𝑂 ‘ ∪ dom 𝑂 ) ∈ 𝑥 ) ) → ( 𝐹 ‘ 𝑥 ) = ( 𝐺 ‘ 𝑥 ) ) |
478 |
466
|
adantr |
⊢ ( ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐵 ∧ ( 𝑂 ‘ ∪ dom 𝑂 ) ∈ 𝑥 ) ) ∧ 𝑥 ∈ ( 𝐺 supp ∅ ) ) → ( 𝑂 ‘ ∪ dom 𝑂 ) ∈ 𝑥 ) |
479 |
47
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐵 ∧ ( 𝑂 ‘ ∪ dom 𝑂 ) ∈ 𝑥 ) ) ∧ 𝑥 ∈ ( 𝐺 supp ∅ ) ) → 𝑂 Isom E , E ( dom 𝑂 , ( 𝐺 supp ∅ ) ) ) |
480 |
45
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐵 ∧ ( 𝑂 ‘ ∪ dom 𝑂 ) ∈ 𝑥 ) ) ∧ 𝑥 ∈ ( 𝐺 supp ∅ ) ) → ∪ dom 𝑂 ∈ dom 𝑂 ) |
481 |
52
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐵 ∧ ( 𝑂 ‘ ∪ dom 𝑂 ) ∈ 𝑥 ) ) ∧ 𝑥 ∈ ( 𝐺 supp ∅ ) ) → ◡ 𝑂 : ( 𝐺 supp ∅ ) ⟶ dom 𝑂 ) |
482 |
|
ffvelrn |
⊢ ( ( ◡ 𝑂 : ( 𝐺 supp ∅ ) ⟶ dom 𝑂 ∧ 𝑥 ∈ ( 𝐺 supp ∅ ) ) → ( ◡ 𝑂 ‘ 𝑥 ) ∈ dom 𝑂 ) |
483 |
481 482
|
sylancom |
⊢ ( ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐵 ∧ ( 𝑂 ‘ ∪ dom 𝑂 ) ∈ 𝑥 ) ) ∧ 𝑥 ∈ ( 𝐺 supp ∅ ) ) → ( ◡ 𝑂 ‘ 𝑥 ) ∈ dom 𝑂 ) |
484 |
|
isorel |
⊢ ( ( 𝑂 Isom E , E ( dom 𝑂 , ( 𝐺 supp ∅ ) ) ∧ ( ∪ dom 𝑂 ∈ dom 𝑂 ∧ ( ◡ 𝑂 ‘ 𝑥 ) ∈ dom 𝑂 ) ) → ( ∪ dom 𝑂 E ( ◡ 𝑂 ‘ 𝑥 ) ↔ ( 𝑂 ‘ ∪ dom 𝑂 ) E ( 𝑂 ‘ ( ◡ 𝑂 ‘ 𝑥 ) ) ) ) |
485 |
479 480 483 484
|
syl12anc |
⊢ ( ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐵 ∧ ( 𝑂 ‘ ∪ dom 𝑂 ) ∈ 𝑥 ) ) ∧ 𝑥 ∈ ( 𝐺 supp ∅ ) ) → ( ∪ dom 𝑂 E ( ◡ 𝑂 ‘ 𝑥 ) ↔ ( 𝑂 ‘ ∪ dom 𝑂 ) E ( 𝑂 ‘ ( ◡ 𝑂 ‘ 𝑥 ) ) ) ) |
486 |
269
|
epeli |
⊢ ( ∪ dom 𝑂 E ( ◡ 𝑂 ‘ 𝑥 ) ↔ ∪ dom 𝑂 ∈ ( ◡ 𝑂 ‘ 𝑥 ) ) |
487 |
271
|
epeli |
⊢ ( ( 𝑂 ‘ ∪ dom 𝑂 ) E ( 𝑂 ‘ ( ◡ 𝑂 ‘ 𝑥 ) ) ↔ ( 𝑂 ‘ ∪ dom 𝑂 ) ∈ ( 𝑂 ‘ ( ◡ 𝑂 ‘ 𝑥 ) ) ) |
488 |
485 486 487
|
3bitr3g |
⊢ ( ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐵 ∧ ( 𝑂 ‘ ∪ dom 𝑂 ) ∈ 𝑥 ) ) ∧ 𝑥 ∈ ( 𝐺 supp ∅ ) ) → ( ∪ dom 𝑂 ∈ ( ◡ 𝑂 ‘ 𝑥 ) ↔ ( 𝑂 ‘ ∪ dom 𝑂 ) ∈ ( 𝑂 ‘ ( ◡ 𝑂 ‘ 𝑥 ) ) ) ) |
489 |
49
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐵 ∧ ( 𝑂 ‘ ∪ dom 𝑂 ) ∈ 𝑥 ) ) ∧ 𝑥 ∈ ( 𝐺 supp ∅ ) ) → 𝑂 : dom 𝑂 –1-1-onto→ ( 𝐺 supp ∅ ) ) |
490 |
489 261
|
sylancom |
⊢ ( ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐵 ∧ ( 𝑂 ‘ ∪ dom 𝑂 ) ∈ 𝑥 ) ) ∧ 𝑥 ∈ ( 𝐺 supp ∅ ) ) → ( 𝑂 ‘ ( ◡ 𝑂 ‘ 𝑥 ) ) = 𝑥 ) |
491 |
490
|
eleq2d |
⊢ ( ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐵 ∧ ( 𝑂 ‘ ∪ dom 𝑂 ) ∈ 𝑥 ) ) ∧ 𝑥 ∈ ( 𝐺 supp ∅ ) ) → ( ( 𝑂 ‘ ∪ dom 𝑂 ) ∈ ( 𝑂 ‘ ( ◡ 𝑂 ‘ 𝑥 ) ) ↔ ( 𝑂 ‘ ∪ dom 𝑂 ) ∈ 𝑥 ) ) |
492 |
488 491
|
bitrd |
⊢ ( ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐵 ∧ ( 𝑂 ‘ ∪ dom 𝑂 ) ∈ 𝑥 ) ) ∧ 𝑥 ∈ ( 𝐺 supp ∅ ) ) → ( ∪ dom 𝑂 ∈ ( ◡ 𝑂 ‘ 𝑥 ) ↔ ( 𝑂 ‘ ∪ dom 𝑂 ) ∈ 𝑥 ) ) |
493 |
478 492
|
mpbird |
⊢ ( ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐵 ∧ ( 𝑂 ‘ ∪ dom 𝑂 ) ∈ 𝑥 ) ) ∧ 𝑥 ∈ ( 𝐺 supp ∅ ) ) → ∪ dom 𝑂 ∈ ( ◡ 𝑂 ‘ 𝑥 ) ) |
494 |
|
elssuni |
⊢ ( ( ◡ 𝑂 ‘ 𝑥 ) ∈ dom 𝑂 → ( ◡ 𝑂 ‘ 𝑥 ) ⊆ ∪ dom 𝑂 ) |
495 |
483 494
|
syl |
⊢ ( ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐵 ∧ ( 𝑂 ‘ ∪ dom 𝑂 ) ∈ 𝑥 ) ) ∧ 𝑥 ∈ ( 𝐺 supp ∅ ) ) → ( ◡ 𝑂 ‘ 𝑥 ) ⊆ ∪ dom 𝑂 ) |
496 |
37 483 275
|
sylancr |
⊢ ( ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐵 ∧ ( 𝑂 ‘ ∪ dom 𝑂 ) ∈ 𝑥 ) ) ∧ 𝑥 ∈ ( 𝐺 supp ∅ ) ) → ( ◡ 𝑂 ‘ 𝑥 ) ∈ On ) |
497 |
496 277
|
syl |
⊢ ( ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐵 ∧ ( 𝑂 ‘ ∪ dom 𝑂 ) ∈ 𝑥 ) ) ∧ 𝑥 ∈ ( 𝐺 supp ∅ ) ) → Ord ( ◡ 𝑂 ‘ 𝑥 ) ) |
498 |
|
ordtri1 |
⊢ ( ( Ord ( ◡ 𝑂 ‘ 𝑥 ) ∧ Ord ∪ dom 𝑂 ) → ( ( ◡ 𝑂 ‘ 𝑥 ) ⊆ ∪ dom 𝑂 ↔ ¬ ∪ dom 𝑂 ∈ ( ◡ 𝑂 ‘ 𝑥 ) ) ) |
499 |
497 446 498
|
sylancl |
⊢ ( ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐵 ∧ ( 𝑂 ‘ ∪ dom 𝑂 ) ∈ 𝑥 ) ) ∧ 𝑥 ∈ ( 𝐺 supp ∅ ) ) → ( ( ◡ 𝑂 ‘ 𝑥 ) ⊆ ∪ dom 𝑂 ↔ ¬ ∪ dom 𝑂 ∈ ( ◡ 𝑂 ‘ 𝑥 ) ) ) |
500 |
495 499
|
mpbid |
⊢ ( ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐵 ∧ ( 𝑂 ‘ ∪ dom 𝑂 ) ∈ 𝑥 ) ) ∧ 𝑥 ∈ ( 𝐺 supp ∅ ) ) → ¬ ∪ dom 𝑂 ∈ ( ◡ 𝑂 ‘ 𝑥 ) ) |
501 |
493 500
|
pm2.65da |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐵 ∧ ( 𝑂 ‘ ∪ dom 𝑂 ) ∈ 𝑥 ) ) → ¬ 𝑥 ∈ ( 𝐺 supp ∅ ) ) |
502 |
441 501
|
eldifd |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐵 ∧ ( 𝑂 ‘ ∪ dom 𝑂 ) ∈ 𝑥 ) ) → 𝑥 ∈ ( 𝐵 ∖ ( 𝐺 supp ∅ ) ) ) |
503 |
|
ssidd |
⊢ ( 𝜑 → ( 𝐺 supp ∅ ) ⊆ ( 𝐺 supp ∅ ) ) |
504 |
159 503 3 176
|
suppssr |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐵 ∖ ( 𝐺 supp ∅ ) ) ) → ( 𝐺 ‘ 𝑥 ) = ∅ ) |
505 |
502 504
|
syldan |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐵 ∧ ( 𝑂 ‘ ∪ dom 𝑂 ) ∈ 𝑥 ) ) → ( 𝐺 ‘ 𝑥 ) = ∅ ) |
506 |
477 505
|
eqtrd |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐵 ∧ ( 𝑂 ‘ ∪ dom 𝑂 ) ∈ 𝑥 ) ) → ( 𝐹 ‘ 𝑥 ) = ∅ ) |
507 |
506
|
expr |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐵 ) → ( ( 𝑂 ‘ ∪ dom 𝑂 ) ∈ 𝑥 → ( 𝐹 ‘ 𝑥 ) = ∅ ) ) |
508 |
440 507
|
sylbird |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐵 ) → ( ¬ 𝑥 ⊆ ( 𝑂 ‘ ∪ dom 𝑂 ) → ( 𝐹 ‘ 𝑥 ) = ∅ ) ) |
509 |
508
|
imp |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ 𝐵 ) ∧ ¬ 𝑥 ⊆ ( 𝑂 ‘ ∪ dom 𝑂 ) ) → ( 𝐹 ‘ 𝑥 ) = ∅ ) |
510 |
429 430 431 509
|
ifbothda |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐵 ) → ( 𝐹 ‘ 𝑥 ) = if ( 𝑥 ⊆ ( 𝑂 ‘ ∪ dom 𝑂 ) , ( 𝐹 ‘ 𝑥 ) , ∅ ) ) |
511 |
510
|
mpteq2dva |
⊢ ( 𝜑 → ( 𝑥 ∈ 𝐵 ↦ ( 𝐹 ‘ 𝑥 ) ) = ( 𝑥 ∈ 𝐵 ↦ if ( 𝑥 ⊆ ( 𝑂 ‘ ∪ dom 𝑂 ) , ( 𝐹 ‘ 𝑥 ) , ∅ ) ) ) |
512 |
428 511
|
eqtrd |
⊢ ( 𝜑 → 𝐹 = ( 𝑥 ∈ 𝐵 ↦ if ( 𝑥 ⊆ ( 𝑂 ‘ ∪ dom 𝑂 ) , ( 𝐹 ‘ 𝑥 ) , ∅ ) ) ) |
513 |
512
|
fveq2d |
⊢ ( 𝜑 → ( ( 𝐴 CNF 𝐵 ) ‘ 𝐹 ) = ( ( 𝐴 CNF 𝐵 ) ‘ ( 𝑥 ∈ 𝐵 ↦ if ( 𝑥 ⊆ ( 𝑂 ‘ ∪ dom 𝑂 ) , ( 𝐹 ‘ 𝑥 ) , ∅ ) ) ) ) |
514 |
1 2 3 9 6 10
|
cantnfval |
⊢ ( 𝜑 → ( ( 𝐴 CNF 𝐵 ) ‘ 𝐺 ) = ( 𝐻 ‘ dom 𝑂 ) ) |
515 |
44
|
fveq2d |
⊢ ( 𝜑 → ( 𝐻 ‘ dom 𝑂 ) = ( 𝐻 ‘ suc ∪ dom 𝑂 ) ) |
516 |
514 515
|
eqtrd |
⊢ ( 𝜑 → ( ( 𝐴 CNF 𝐵 ) ‘ 𝐺 ) = ( 𝐻 ‘ suc ∪ dom 𝑂 ) ) |
517 |
427 513 516
|
3eltr4d |
⊢ ( 𝜑 → ( ( 𝐴 CNF 𝐵 ) ‘ 𝐹 ) ∈ ( ( 𝐴 CNF 𝐵 ) ‘ 𝐺 ) ) |