| Step | Hyp | Ref | Expression | 
						
							| 1 |  | cantnfs.s | ⊢ 𝑆  =  dom  ( 𝐴  CNF  𝐵 ) | 
						
							| 2 |  | cantnfs.a | ⊢ ( 𝜑  →  𝐴  ∈  On ) | 
						
							| 3 |  | cantnfs.b | ⊢ ( 𝜑  →  𝐵  ∈  On ) | 
						
							| 4 |  | oemapval.t | ⊢ 𝑇  =  { 〈 𝑥 ,  𝑦 〉  ∣  ∃ 𝑧  ∈  𝐵 ( ( 𝑥 ‘ 𝑧 )  ∈  ( 𝑦 ‘ 𝑧 )  ∧  ∀ 𝑤  ∈  𝐵 ( 𝑧  ∈  𝑤  →  ( 𝑥 ‘ 𝑤 )  =  ( 𝑦 ‘ 𝑤 ) ) ) } | 
						
							| 5 |  | oemapval.f | ⊢ ( 𝜑  →  𝐹  ∈  𝑆 ) | 
						
							| 6 |  | oemapval.g | ⊢ ( 𝜑  →  𝐺  ∈  𝑆 ) | 
						
							| 7 |  | oemapvali.r | ⊢ ( 𝜑  →  𝐹 𝑇 𝐺 ) | 
						
							| 8 |  | oemapvali.x | ⊢ 𝑋  =  ∪  { 𝑐  ∈  𝐵  ∣  ( 𝐹 ‘ 𝑐 )  ∈  ( 𝐺 ‘ 𝑐 ) } | 
						
							| 9 |  | cantnflem1.o | ⊢ 𝑂  =  OrdIso (  E  ,  ( 𝐺  supp  ∅ ) ) | 
						
							| 10 |  | cantnflem1.h | ⊢ 𝐻  =  seqω ( ( 𝑘  ∈  V ,  𝑧  ∈  V  ↦  ( ( ( 𝐴  ↑o  ( 𝑂 ‘ 𝑘 ) )  ·o  ( 𝐺 ‘ ( 𝑂 ‘ 𝑘 ) ) )  +o  𝑧 ) ) ,  ∅ ) | 
						
							| 11 |  | ovex | ⊢ ( 𝐺  supp  ∅ )  ∈  V | 
						
							| 12 | 9 | oion | ⊢ ( ( 𝐺  supp  ∅ )  ∈  V  →  dom  𝑂  ∈  On ) | 
						
							| 13 | 11 12 | mp1i | ⊢ ( 𝜑  →  dom  𝑂  ∈  On ) | 
						
							| 14 |  | uniexg | ⊢ ( dom  𝑂  ∈  On  →  ∪  dom  𝑂  ∈  V ) | 
						
							| 15 |  | sucidg | ⊢ ( ∪  dom  𝑂  ∈  V  →  ∪  dom  𝑂  ∈  suc  ∪  dom  𝑂 ) | 
						
							| 16 | 13 14 15 | 3syl | ⊢ ( 𝜑  →  ∪  dom  𝑂  ∈  suc  ∪  dom  𝑂 ) | 
						
							| 17 | 1 2 3 4 5 6 7 8 | cantnflem1a | ⊢ ( 𝜑  →  𝑋  ∈  ( 𝐺  supp  ∅ ) ) | 
						
							| 18 |  | n0i | ⊢ ( 𝑋  ∈  ( 𝐺  supp  ∅ )  →  ¬  ( 𝐺  supp  ∅ )  =  ∅ ) | 
						
							| 19 | 17 18 | syl | ⊢ ( 𝜑  →  ¬  ( 𝐺  supp  ∅ )  =  ∅ ) | 
						
							| 20 |  | ovexd | ⊢ ( 𝜑  →  ( 𝐺  supp  ∅ )  ∈  V ) | 
						
							| 21 | 1 2 3 9 6 | cantnfcl | ⊢ ( 𝜑  →  (  E   We  ( 𝐺  supp  ∅ )  ∧  dom  𝑂  ∈  ω ) ) | 
						
							| 22 | 21 | simpld | ⊢ ( 𝜑  →   E   We  ( 𝐺  supp  ∅ ) ) | 
						
							| 23 | 9 | oien | ⊢ ( ( ( 𝐺  supp  ∅ )  ∈  V  ∧   E   We  ( 𝐺  supp  ∅ ) )  →  dom  𝑂  ≈  ( 𝐺  supp  ∅ ) ) | 
						
							| 24 | 20 22 23 | syl2anc | ⊢ ( 𝜑  →  dom  𝑂  ≈  ( 𝐺  supp  ∅ ) ) | 
						
							| 25 |  | breq1 | ⊢ ( dom  𝑂  =  ∅  →  ( dom  𝑂  ≈  ( 𝐺  supp  ∅ )  ↔  ∅  ≈  ( 𝐺  supp  ∅ ) ) ) | 
						
							| 26 |  | ensymb | ⊢ ( ∅  ≈  ( 𝐺  supp  ∅ )  ↔  ( 𝐺  supp  ∅ )  ≈  ∅ ) | 
						
							| 27 |  | en0 | ⊢ ( ( 𝐺  supp  ∅ )  ≈  ∅  ↔  ( 𝐺  supp  ∅ )  =  ∅ ) | 
						
							| 28 | 26 27 | bitri | ⊢ ( ∅  ≈  ( 𝐺  supp  ∅ )  ↔  ( 𝐺  supp  ∅ )  =  ∅ ) | 
						
							| 29 | 25 28 | bitrdi | ⊢ ( dom  𝑂  =  ∅  →  ( dom  𝑂  ≈  ( 𝐺  supp  ∅ )  ↔  ( 𝐺  supp  ∅ )  =  ∅ ) ) | 
						
							| 30 | 24 29 | syl5ibcom | ⊢ ( 𝜑  →  ( dom  𝑂  =  ∅  →  ( 𝐺  supp  ∅ )  =  ∅ ) ) | 
						
							| 31 | 19 30 | mtod | ⊢ ( 𝜑  →  ¬  dom  𝑂  =  ∅ ) | 
						
							| 32 | 21 | simprd | ⊢ ( 𝜑  →  dom  𝑂  ∈  ω ) | 
						
							| 33 |  | nnlim | ⊢ ( dom  𝑂  ∈  ω  →  ¬  Lim  dom  𝑂 ) | 
						
							| 34 | 32 33 | syl | ⊢ ( 𝜑  →  ¬  Lim  dom  𝑂 ) | 
						
							| 35 |  | ioran | ⊢ ( ¬  ( dom  𝑂  =  ∅  ∨  Lim  dom  𝑂 )  ↔  ( ¬  dom  𝑂  =  ∅  ∧  ¬  Lim  dom  𝑂 ) ) | 
						
							| 36 | 31 34 35 | sylanbrc | ⊢ ( 𝜑  →  ¬  ( dom  𝑂  =  ∅  ∨  Lim  dom  𝑂 ) ) | 
						
							| 37 | 9 | oicl | ⊢ Ord  dom  𝑂 | 
						
							| 38 |  | unizlim | ⊢ ( Ord  dom  𝑂  →  ( dom  𝑂  =  ∪  dom  𝑂  ↔  ( dom  𝑂  =  ∅  ∨  Lim  dom  𝑂 ) ) ) | 
						
							| 39 | 37 38 | mp1i | ⊢ ( 𝜑  →  ( dom  𝑂  =  ∪  dom  𝑂  ↔  ( dom  𝑂  =  ∅  ∨  Lim  dom  𝑂 ) ) ) | 
						
							| 40 | 36 39 | mtbird | ⊢ ( 𝜑  →  ¬  dom  𝑂  =  ∪  dom  𝑂 ) | 
						
							| 41 |  | orduniorsuc | ⊢ ( Ord  dom  𝑂  →  ( dom  𝑂  =  ∪  dom  𝑂  ∨  dom  𝑂  =  suc  ∪  dom  𝑂 ) ) | 
						
							| 42 | 37 41 | mp1i | ⊢ ( 𝜑  →  ( dom  𝑂  =  ∪  dom  𝑂  ∨  dom  𝑂  =  suc  ∪  dom  𝑂 ) ) | 
						
							| 43 | 42 | ord | ⊢ ( 𝜑  →  ( ¬  dom  𝑂  =  ∪  dom  𝑂  →  dom  𝑂  =  suc  ∪  dom  𝑂 ) ) | 
						
							| 44 | 40 43 | mpd | ⊢ ( 𝜑  →  dom  𝑂  =  suc  ∪  dom  𝑂 ) | 
						
							| 45 | 16 44 | eleqtrrd | ⊢ ( 𝜑  →  ∪  dom  𝑂  ∈  dom  𝑂 ) | 
						
							| 46 | 9 | oiiso | ⊢ ( ( ( 𝐺  supp  ∅ )  ∈  V  ∧   E   We  ( 𝐺  supp  ∅ ) )  →  𝑂  Isom   E  ,   E  ( dom  𝑂 ,  ( 𝐺  supp  ∅ ) ) ) | 
						
							| 47 | 20 22 46 | syl2anc | ⊢ ( 𝜑  →  𝑂  Isom   E  ,   E  ( dom  𝑂 ,  ( 𝐺  supp  ∅ ) ) ) | 
						
							| 48 |  | isof1o | ⊢ ( 𝑂  Isom   E  ,   E  ( dom  𝑂 ,  ( 𝐺  supp  ∅ ) )  →  𝑂 : dom  𝑂 –1-1-onto→ ( 𝐺  supp  ∅ ) ) | 
						
							| 49 | 47 48 | syl | ⊢ ( 𝜑  →  𝑂 : dom  𝑂 –1-1-onto→ ( 𝐺  supp  ∅ ) ) | 
						
							| 50 |  | f1ocnv | ⊢ ( 𝑂 : dom  𝑂 –1-1-onto→ ( 𝐺  supp  ∅ )  →  ◡ 𝑂 : ( 𝐺  supp  ∅ ) –1-1-onto→ dom  𝑂 ) | 
						
							| 51 |  | f1of | ⊢ ( ◡ 𝑂 : ( 𝐺  supp  ∅ ) –1-1-onto→ dom  𝑂  →  ◡ 𝑂 : ( 𝐺  supp  ∅ ) ⟶ dom  𝑂 ) | 
						
							| 52 | 49 50 51 | 3syl | ⊢ ( 𝜑  →  ◡ 𝑂 : ( 𝐺  supp  ∅ ) ⟶ dom  𝑂 ) | 
						
							| 53 | 52 17 | ffvelcdmd | ⊢ ( 𝜑  →  ( ◡ 𝑂 ‘ 𝑋 )  ∈  dom  𝑂 ) | 
						
							| 54 |  | elssuni | ⊢ ( ( ◡ 𝑂 ‘ 𝑋 )  ∈  dom  𝑂  →  ( ◡ 𝑂 ‘ 𝑋 )  ⊆  ∪  dom  𝑂 ) | 
						
							| 55 | 53 54 | syl | ⊢ ( 𝜑  →  ( ◡ 𝑂 ‘ 𝑋 )  ⊆  ∪  dom  𝑂 ) | 
						
							| 56 | 44 32 | eqeltrrd | ⊢ ( 𝜑  →  suc  ∪  dom  𝑂  ∈  ω ) | 
						
							| 57 |  | peano2b | ⊢ ( ∪  dom  𝑂  ∈  ω  ↔  suc  ∪  dom  𝑂  ∈  ω ) | 
						
							| 58 | 56 57 | sylibr | ⊢ ( 𝜑  →  ∪  dom  𝑂  ∈  ω ) | 
						
							| 59 |  | eleq1 | ⊢ ( 𝑦  =  ∪  dom  𝑂  →  ( 𝑦  ∈  dom  𝑂  ↔  ∪  dom  𝑂  ∈  dom  𝑂 ) ) | 
						
							| 60 |  | sseq2 | ⊢ ( 𝑦  =  ∪  dom  𝑂  →  ( ( ◡ 𝑂 ‘ 𝑋 )  ⊆  𝑦  ↔  ( ◡ 𝑂 ‘ 𝑋 )  ⊆  ∪  dom  𝑂 ) ) | 
						
							| 61 | 59 60 | anbi12d | ⊢ ( 𝑦  =  ∪  dom  𝑂  →  ( ( 𝑦  ∈  dom  𝑂  ∧  ( ◡ 𝑂 ‘ 𝑋 )  ⊆  𝑦 )  ↔  ( ∪  dom  𝑂  ∈  dom  𝑂  ∧  ( ◡ 𝑂 ‘ 𝑋 )  ⊆  ∪  dom  𝑂 ) ) ) | 
						
							| 62 |  | fveq2 | ⊢ ( 𝑦  =  ∪  dom  𝑂  →  ( 𝑂 ‘ 𝑦 )  =  ( 𝑂 ‘ ∪  dom  𝑂 ) ) | 
						
							| 63 | 62 | sseq2d | ⊢ ( 𝑦  =  ∪  dom  𝑂  →  ( 𝑥  ⊆  ( 𝑂 ‘ 𝑦 )  ↔  𝑥  ⊆  ( 𝑂 ‘ ∪  dom  𝑂 ) ) ) | 
						
							| 64 | 63 | ifbid | ⊢ ( 𝑦  =  ∪  dom  𝑂  →  if ( 𝑥  ⊆  ( 𝑂 ‘ 𝑦 ) ,  ( 𝐹 ‘ 𝑥 ) ,  ∅ )  =  if ( 𝑥  ⊆  ( 𝑂 ‘ ∪  dom  𝑂 ) ,  ( 𝐹 ‘ 𝑥 ) ,  ∅ ) ) | 
						
							| 65 | 64 | mpteq2dv | ⊢ ( 𝑦  =  ∪  dom  𝑂  →  ( 𝑥  ∈  𝐵  ↦  if ( 𝑥  ⊆  ( 𝑂 ‘ 𝑦 ) ,  ( 𝐹 ‘ 𝑥 ) ,  ∅ ) )  =  ( 𝑥  ∈  𝐵  ↦  if ( 𝑥  ⊆  ( 𝑂 ‘ ∪  dom  𝑂 ) ,  ( 𝐹 ‘ 𝑥 ) ,  ∅ ) ) ) | 
						
							| 66 | 65 | fveq2d | ⊢ ( 𝑦  =  ∪  dom  𝑂  →  ( ( 𝐴  CNF  𝐵 ) ‘ ( 𝑥  ∈  𝐵  ↦  if ( 𝑥  ⊆  ( 𝑂 ‘ 𝑦 ) ,  ( 𝐹 ‘ 𝑥 ) ,  ∅ ) ) )  =  ( ( 𝐴  CNF  𝐵 ) ‘ ( 𝑥  ∈  𝐵  ↦  if ( 𝑥  ⊆  ( 𝑂 ‘ ∪  dom  𝑂 ) ,  ( 𝐹 ‘ 𝑥 ) ,  ∅ ) ) ) ) | 
						
							| 67 |  | suceq | ⊢ ( 𝑦  =  ∪  dom  𝑂  →  suc  𝑦  =  suc  ∪  dom  𝑂 ) | 
						
							| 68 | 67 | fveq2d | ⊢ ( 𝑦  =  ∪  dom  𝑂  →  ( 𝐻 ‘ suc  𝑦 )  =  ( 𝐻 ‘ suc  ∪  dom  𝑂 ) ) | 
						
							| 69 | 66 68 | eleq12d | ⊢ ( 𝑦  =  ∪  dom  𝑂  →  ( ( ( 𝐴  CNF  𝐵 ) ‘ ( 𝑥  ∈  𝐵  ↦  if ( 𝑥  ⊆  ( 𝑂 ‘ 𝑦 ) ,  ( 𝐹 ‘ 𝑥 ) ,  ∅ ) ) )  ∈  ( 𝐻 ‘ suc  𝑦 )  ↔  ( ( 𝐴  CNF  𝐵 ) ‘ ( 𝑥  ∈  𝐵  ↦  if ( 𝑥  ⊆  ( 𝑂 ‘ ∪  dom  𝑂 ) ,  ( 𝐹 ‘ 𝑥 ) ,  ∅ ) ) )  ∈  ( 𝐻 ‘ suc  ∪  dom  𝑂 ) ) ) | 
						
							| 70 | 61 69 | imbi12d | ⊢ ( 𝑦  =  ∪  dom  𝑂  →  ( ( ( 𝑦  ∈  dom  𝑂  ∧  ( ◡ 𝑂 ‘ 𝑋 )  ⊆  𝑦 )  →  ( ( 𝐴  CNF  𝐵 ) ‘ ( 𝑥  ∈  𝐵  ↦  if ( 𝑥  ⊆  ( 𝑂 ‘ 𝑦 ) ,  ( 𝐹 ‘ 𝑥 ) ,  ∅ ) ) )  ∈  ( 𝐻 ‘ suc  𝑦 ) )  ↔  ( ( ∪  dom  𝑂  ∈  dom  𝑂  ∧  ( ◡ 𝑂 ‘ 𝑋 )  ⊆  ∪  dom  𝑂 )  →  ( ( 𝐴  CNF  𝐵 ) ‘ ( 𝑥  ∈  𝐵  ↦  if ( 𝑥  ⊆  ( 𝑂 ‘ ∪  dom  𝑂 ) ,  ( 𝐹 ‘ 𝑥 ) ,  ∅ ) ) )  ∈  ( 𝐻 ‘ suc  ∪  dom  𝑂 ) ) ) ) | 
						
							| 71 | 70 | imbi2d | ⊢ ( 𝑦  =  ∪  dom  𝑂  →  ( ( 𝜑  →  ( ( 𝑦  ∈  dom  𝑂  ∧  ( ◡ 𝑂 ‘ 𝑋 )  ⊆  𝑦 )  →  ( ( 𝐴  CNF  𝐵 ) ‘ ( 𝑥  ∈  𝐵  ↦  if ( 𝑥  ⊆  ( 𝑂 ‘ 𝑦 ) ,  ( 𝐹 ‘ 𝑥 ) ,  ∅ ) ) )  ∈  ( 𝐻 ‘ suc  𝑦 ) ) )  ↔  ( 𝜑  →  ( ( ∪  dom  𝑂  ∈  dom  𝑂  ∧  ( ◡ 𝑂 ‘ 𝑋 )  ⊆  ∪  dom  𝑂 )  →  ( ( 𝐴  CNF  𝐵 ) ‘ ( 𝑥  ∈  𝐵  ↦  if ( 𝑥  ⊆  ( 𝑂 ‘ ∪  dom  𝑂 ) ,  ( 𝐹 ‘ 𝑥 ) ,  ∅ ) ) )  ∈  ( 𝐻 ‘ suc  ∪  dom  𝑂 ) ) ) ) ) | 
						
							| 72 |  | eleq1 | ⊢ ( 𝑦  =  ∅  →  ( 𝑦  ∈  dom  𝑂  ↔  ∅  ∈  dom  𝑂 ) ) | 
						
							| 73 |  | sseq2 | ⊢ ( 𝑦  =  ∅  →  ( ( ◡ 𝑂 ‘ 𝑋 )  ⊆  𝑦  ↔  ( ◡ 𝑂 ‘ 𝑋 )  ⊆  ∅ ) ) | 
						
							| 74 | 72 73 | anbi12d | ⊢ ( 𝑦  =  ∅  →  ( ( 𝑦  ∈  dom  𝑂  ∧  ( ◡ 𝑂 ‘ 𝑋 )  ⊆  𝑦 )  ↔  ( ∅  ∈  dom  𝑂  ∧  ( ◡ 𝑂 ‘ 𝑋 )  ⊆  ∅ ) ) ) | 
						
							| 75 |  | fveq2 | ⊢ ( 𝑦  =  ∅  →  ( 𝑂 ‘ 𝑦 )  =  ( 𝑂 ‘ ∅ ) ) | 
						
							| 76 | 75 | sseq2d | ⊢ ( 𝑦  =  ∅  →  ( 𝑥  ⊆  ( 𝑂 ‘ 𝑦 )  ↔  𝑥  ⊆  ( 𝑂 ‘ ∅ ) ) ) | 
						
							| 77 | 76 | ifbid | ⊢ ( 𝑦  =  ∅  →  if ( 𝑥  ⊆  ( 𝑂 ‘ 𝑦 ) ,  ( 𝐹 ‘ 𝑥 ) ,  ∅ )  =  if ( 𝑥  ⊆  ( 𝑂 ‘ ∅ ) ,  ( 𝐹 ‘ 𝑥 ) ,  ∅ ) ) | 
						
							| 78 | 77 | mpteq2dv | ⊢ ( 𝑦  =  ∅  →  ( 𝑥  ∈  𝐵  ↦  if ( 𝑥  ⊆  ( 𝑂 ‘ 𝑦 ) ,  ( 𝐹 ‘ 𝑥 ) ,  ∅ ) )  =  ( 𝑥  ∈  𝐵  ↦  if ( 𝑥  ⊆  ( 𝑂 ‘ ∅ ) ,  ( 𝐹 ‘ 𝑥 ) ,  ∅ ) ) ) | 
						
							| 79 | 78 | fveq2d | ⊢ ( 𝑦  =  ∅  →  ( ( 𝐴  CNF  𝐵 ) ‘ ( 𝑥  ∈  𝐵  ↦  if ( 𝑥  ⊆  ( 𝑂 ‘ 𝑦 ) ,  ( 𝐹 ‘ 𝑥 ) ,  ∅ ) ) )  =  ( ( 𝐴  CNF  𝐵 ) ‘ ( 𝑥  ∈  𝐵  ↦  if ( 𝑥  ⊆  ( 𝑂 ‘ ∅ ) ,  ( 𝐹 ‘ 𝑥 ) ,  ∅ ) ) ) ) | 
						
							| 80 |  | suceq | ⊢ ( 𝑦  =  ∅  →  suc  𝑦  =  suc  ∅ ) | 
						
							| 81 | 80 | fveq2d | ⊢ ( 𝑦  =  ∅  →  ( 𝐻 ‘ suc  𝑦 )  =  ( 𝐻 ‘ suc  ∅ ) ) | 
						
							| 82 | 79 81 | eleq12d | ⊢ ( 𝑦  =  ∅  →  ( ( ( 𝐴  CNF  𝐵 ) ‘ ( 𝑥  ∈  𝐵  ↦  if ( 𝑥  ⊆  ( 𝑂 ‘ 𝑦 ) ,  ( 𝐹 ‘ 𝑥 ) ,  ∅ ) ) )  ∈  ( 𝐻 ‘ suc  𝑦 )  ↔  ( ( 𝐴  CNF  𝐵 ) ‘ ( 𝑥  ∈  𝐵  ↦  if ( 𝑥  ⊆  ( 𝑂 ‘ ∅ ) ,  ( 𝐹 ‘ 𝑥 ) ,  ∅ ) ) )  ∈  ( 𝐻 ‘ suc  ∅ ) ) ) | 
						
							| 83 | 74 82 | imbi12d | ⊢ ( 𝑦  =  ∅  →  ( ( ( 𝑦  ∈  dom  𝑂  ∧  ( ◡ 𝑂 ‘ 𝑋 )  ⊆  𝑦 )  →  ( ( 𝐴  CNF  𝐵 ) ‘ ( 𝑥  ∈  𝐵  ↦  if ( 𝑥  ⊆  ( 𝑂 ‘ 𝑦 ) ,  ( 𝐹 ‘ 𝑥 ) ,  ∅ ) ) )  ∈  ( 𝐻 ‘ suc  𝑦 ) )  ↔  ( ( ∅  ∈  dom  𝑂  ∧  ( ◡ 𝑂 ‘ 𝑋 )  ⊆  ∅ )  →  ( ( 𝐴  CNF  𝐵 ) ‘ ( 𝑥  ∈  𝐵  ↦  if ( 𝑥  ⊆  ( 𝑂 ‘ ∅ ) ,  ( 𝐹 ‘ 𝑥 ) ,  ∅ ) ) )  ∈  ( 𝐻 ‘ suc  ∅ ) ) ) ) | 
						
							| 84 |  | eleq1 | ⊢ ( 𝑦  =  𝑢  →  ( 𝑦  ∈  dom  𝑂  ↔  𝑢  ∈  dom  𝑂 ) ) | 
						
							| 85 |  | sseq2 | ⊢ ( 𝑦  =  𝑢  →  ( ( ◡ 𝑂 ‘ 𝑋 )  ⊆  𝑦  ↔  ( ◡ 𝑂 ‘ 𝑋 )  ⊆  𝑢 ) ) | 
						
							| 86 | 84 85 | anbi12d | ⊢ ( 𝑦  =  𝑢  →  ( ( 𝑦  ∈  dom  𝑂  ∧  ( ◡ 𝑂 ‘ 𝑋 )  ⊆  𝑦 )  ↔  ( 𝑢  ∈  dom  𝑂  ∧  ( ◡ 𝑂 ‘ 𝑋 )  ⊆  𝑢 ) ) ) | 
						
							| 87 |  | fveq2 | ⊢ ( 𝑦  =  𝑢  →  ( 𝑂 ‘ 𝑦 )  =  ( 𝑂 ‘ 𝑢 ) ) | 
						
							| 88 | 87 | sseq2d | ⊢ ( 𝑦  =  𝑢  →  ( 𝑥  ⊆  ( 𝑂 ‘ 𝑦 )  ↔  𝑥  ⊆  ( 𝑂 ‘ 𝑢 ) ) ) | 
						
							| 89 | 88 | ifbid | ⊢ ( 𝑦  =  𝑢  →  if ( 𝑥  ⊆  ( 𝑂 ‘ 𝑦 ) ,  ( 𝐹 ‘ 𝑥 ) ,  ∅ )  =  if ( 𝑥  ⊆  ( 𝑂 ‘ 𝑢 ) ,  ( 𝐹 ‘ 𝑥 ) ,  ∅ ) ) | 
						
							| 90 | 89 | mpteq2dv | ⊢ ( 𝑦  =  𝑢  →  ( 𝑥  ∈  𝐵  ↦  if ( 𝑥  ⊆  ( 𝑂 ‘ 𝑦 ) ,  ( 𝐹 ‘ 𝑥 ) ,  ∅ ) )  =  ( 𝑥  ∈  𝐵  ↦  if ( 𝑥  ⊆  ( 𝑂 ‘ 𝑢 ) ,  ( 𝐹 ‘ 𝑥 ) ,  ∅ ) ) ) | 
						
							| 91 | 90 | fveq2d | ⊢ ( 𝑦  =  𝑢  →  ( ( 𝐴  CNF  𝐵 ) ‘ ( 𝑥  ∈  𝐵  ↦  if ( 𝑥  ⊆  ( 𝑂 ‘ 𝑦 ) ,  ( 𝐹 ‘ 𝑥 ) ,  ∅ ) ) )  =  ( ( 𝐴  CNF  𝐵 ) ‘ ( 𝑥  ∈  𝐵  ↦  if ( 𝑥  ⊆  ( 𝑂 ‘ 𝑢 ) ,  ( 𝐹 ‘ 𝑥 ) ,  ∅ ) ) ) ) | 
						
							| 92 |  | suceq | ⊢ ( 𝑦  =  𝑢  →  suc  𝑦  =  suc  𝑢 ) | 
						
							| 93 | 92 | fveq2d | ⊢ ( 𝑦  =  𝑢  →  ( 𝐻 ‘ suc  𝑦 )  =  ( 𝐻 ‘ suc  𝑢 ) ) | 
						
							| 94 | 91 93 | eleq12d | ⊢ ( 𝑦  =  𝑢  →  ( ( ( 𝐴  CNF  𝐵 ) ‘ ( 𝑥  ∈  𝐵  ↦  if ( 𝑥  ⊆  ( 𝑂 ‘ 𝑦 ) ,  ( 𝐹 ‘ 𝑥 ) ,  ∅ ) ) )  ∈  ( 𝐻 ‘ suc  𝑦 )  ↔  ( ( 𝐴  CNF  𝐵 ) ‘ ( 𝑥  ∈  𝐵  ↦  if ( 𝑥  ⊆  ( 𝑂 ‘ 𝑢 ) ,  ( 𝐹 ‘ 𝑥 ) ,  ∅ ) ) )  ∈  ( 𝐻 ‘ suc  𝑢 ) ) ) | 
						
							| 95 | 86 94 | imbi12d | ⊢ ( 𝑦  =  𝑢  →  ( ( ( 𝑦  ∈  dom  𝑂  ∧  ( ◡ 𝑂 ‘ 𝑋 )  ⊆  𝑦 )  →  ( ( 𝐴  CNF  𝐵 ) ‘ ( 𝑥  ∈  𝐵  ↦  if ( 𝑥  ⊆  ( 𝑂 ‘ 𝑦 ) ,  ( 𝐹 ‘ 𝑥 ) ,  ∅ ) ) )  ∈  ( 𝐻 ‘ suc  𝑦 ) )  ↔  ( ( 𝑢  ∈  dom  𝑂  ∧  ( ◡ 𝑂 ‘ 𝑋 )  ⊆  𝑢 )  →  ( ( 𝐴  CNF  𝐵 ) ‘ ( 𝑥  ∈  𝐵  ↦  if ( 𝑥  ⊆  ( 𝑂 ‘ 𝑢 ) ,  ( 𝐹 ‘ 𝑥 ) ,  ∅ ) ) )  ∈  ( 𝐻 ‘ suc  𝑢 ) ) ) ) | 
						
							| 96 |  | eleq1 | ⊢ ( 𝑦  =  suc  𝑢  →  ( 𝑦  ∈  dom  𝑂  ↔  suc  𝑢  ∈  dom  𝑂 ) ) | 
						
							| 97 |  | sseq2 | ⊢ ( 𝑦  =  suc  𝑢  →  ( ( ◡ 𝑂 ‘ 𝑋 )  ⊆  𝑦  ↔  ( ◡ 𝑂 ‘ 𝑋 )  ⊆  suc  𝑢 ) ) | 
						
							| 98 | 96 97 | anbi12d | ⊢ ( 𝑦  =  suc  𝑢  →  ( ( 𝑦  ∈  dom  𝑂  ∧  ( ◡ 𝑂 ‘ 𝑋 )  ⊆  𝑦 )  ↔  ( suc  𝑢  ∈  dom  𝑂  ∧  ( ◡ 𝑂 ‘ 𝑋 )  ⊆  suc  𝑢 ) ) ) | 
						
							| 99 |  | fveq2 | ⊢ ( 𝑦  =  suc  𝑢  →  ( 𝑂 ‘ 𝑦 )  =  ( 𝑂 ‘ suc  𝑢 ) ) | 
						
							| 100 | 99 | sseq2d | ⊢ ( 𝑦  =  suc  𝑢  →  ( 𝑥  ⊆  ( 𝑂 ‘ 𝑦 )  ↔  𝑥  ⊆  ( 𝑂 ‘ suc  𝑢 ) ) ) | 
						
							| 101 | 100 | ifbid | ⊢ ( 𝑦  =  suc  𝑢  →  if ( 𝑥  ⊆  ( 𝑂 ‘ 𝑦 ) ,  ( 𝐹 ‘ 𝑥 ) ,  ∅ )  =  if ( 𝑥  ⊆  ( 𝑂 ‘ suc  𝑢 ) ,  ( 𝐹 ‘ 𝑥 ) ,  ∅ ) ) | 
						
							| 102 | 101 | mpteq2dv | ⊢ ( 𝑦  =  suc  𝑢  →  ( 𝑥  ∈  𝐵  ↦  if ( 𝑥  ⊆  ( 𝑂 ‘ 𝑦 ) ,  ( 𝐹 ‘ 𝑥 ) ,  ∅ ) )  =  ( 𝑥  ∈  𝐵  ↦  if ( 𝑥  ⊆  ( 𝑂 ‘ suc  𝑢 ) ,  ( 𝐹 ‘ 𝑥 ) ,  ∅ ) ) ) | 
						
							| 103 | 102 | fveq2d | ⊢ ( 𝑦  =  suc  𝑢  →  ( ( 𝐴  CNF  𝐵 ) ‘ ( 𝑥  ∈  𝐵  ↦  if ( 𝑥  ⊆  ( 𝑂 ‘ 𝑦 ) ,  ( 𝐹 ‘ 𝑥 ) ,  ∅ ) ) )  =  ( ( 𝐴  CNF  𝐵 ) ‘ ( 𝑥  ∈  𝐵  ↦  if ( 𝑥  ⊆  ( 𝑂 ‘ suc  𝑢 ) ,  ( 𝐹 ‘ 𝑥 ) ,  ∅ ) ) ) ) | 
						
							| 104 |  | suceq | ⊢ ( 𝑦  =  suc  𝑢  →  suc  𝑦  =  suc  suc  𝑢 ) | 
						
							| 105 | 104 | fveq2d | ⊢ ( 𝑦  =  suc  𝑢  →  ( 𝐻 ‘ suc  𝑦 )  =  ( 𝐻 ‘ suc  suc  𝑢 ) ) | 
						
							| 106 | 103 105 | eleq12d | ⊢ ( 𝑦  =  suc  𝑢  →  ( ( ( 𝐴  CNF  𝐵 ) ‘ ( 𝑥  ∈  𝐵  ↦  if ( 𝑥  ⊆  ( 𝑂 ‘ 𝑦 ) ,  ( 𝐹 ‘ 𝑥 ) ,  ∅ ) ) )  ∈  ( 𝐻 ‘ suc  𝑦 )  ↔  ( ( 𝐴  CNF  𝐵 ) ‘ ( 𝑥  ∈  𝐵  ↦  if ( 𝑥  ⊆  ( 𝑂 ‘ suc  𝑢 ) ,  ( 𝐹 ‘ 𝑥 ) ,  ∅ ) ) )  ∈  ( 𝐻 ‘ suc  suc  𝑢 ) ) ) | 
						
							| 107 | 98 106 | imbi12d | ⊢ ( 𝑦  =  suc  𝑢  →  ( ( ( 𝑦  ∈  dom  𝑂  ∧  ( ◡ 𝑂 ‘ 𝑋 )  ⊆  𝑦 )  →  ( ( 𝐴  CNF  𝐵 ) ‘ ( 𝑥  ∈  𝐵  ↦  if ( 𝑥  ⊆  ( 𝑂 ‘ 𝑦 ) ,  ( 𝐹 ‘ 𝑥 ) ,  ∅ ) ) )  ∈  ( 𝐻 ‘ suc  𝑦 ) )  ↔  ( ( suc  𝑢  ∈  dom  𝑂  ∧  ( ◡ 𝑂 ‘ 𝑋 )  ⊆  suc  𝑢 )  →  ( ( 𝐴  CNF  𝐵 ) ‘ ( 𝑥  ∈  𝐵  ↦  if ( 𝑥  ⊆  ( 𝑂 ‘ suc  𝑢 ) ,  ( 𝐹 ‘ 𝑥 ) ,  ∅ ) ) )  ∈  ( 𝐻 ‘ suc  suc  𝑢 ) ) ) ) | 
						
							| 108 |  | f1ocnvfv2 | ⊢ ( ( 𝑂 : dom  𝑂 –1-1-onto→ ( 𝐺  supp  ∅ )  ∧  𝑋  ∈  ( 𝐺  supp  ∅ ) )  →  ( 𝑂 ‘ ( ◡ 𝑂 ‘ 𝑋 ) )  =  𝑋 ) | 
						
							| 109 | 49 17 108 | syl2anc | ⊢ ( 𝜑  →  ( 𝑂 ‘ ( ◡ 𝑂 ‘ 𝑋 ) )  =  𝑋 ) | 
						
							| 110 | 109 | sseq2d | ⊢ ( 𝜑  →  ( 𝑥  ⊆  ( 𝑂 ‘ ( ◡ 𝑂 ‘ 𝑋 ) )  ↔  𝑥  ⊆  𝑋 ) ) | 
						
							| 111 | 110 | ifbid | ⊢ ( 𝜑  →  if ( 𝑥  ⊆  ( 𝑂 ‘ ( ◡ 𝑂 ‘ 𝑋 ) ) ,  ( 𝐹 ‘ 𝑥 ) ,  ∅ )  =  if ( 𝑥  ⊆  𝑋 ,  ( 𝐹 ‘ 𝑥 ) ,  ∅ ) ) | 
						
							| 112 | 111 | mpteq2dv | ⊢ ( 𝜑  →  ( 𝑥  ∈  𝐵  ↦  if ( 𝑥  ⊆  ( 𝑂 ‘ ( ◡ 𝑂 ‘ 𝑋 ) ) ,  ( 𝐹 ‘ 𝑥 ) ,  ∅ ) )  =  ( 𝑥  ∈  𝐵  ↦  if ( 𝑥  ⊆  𝑋 ,  ( 𝐹 ‘ 𝑥 ) ,  ∅ ) ) ) | 
						
							| 113 | 112 | fveq2d | ⊢ ( 𝜑  →  ( ( 𝐴  CNF  𝐵 ) ‘ ( 𝑥  ∈  𝐵  ↦  if ( 𝑥  ⊆  ( 𝑂 ‘ ( ◡ 𝑂 ‘ 𝑋 ) ) ,  ( 𝐹 ‘ 𝑥 ) ,  ∅ ) ) )  =  ( ( 𝐴  CNF  𝐵 ) ‘ ( 𝑥  ∈  𝐵  ↦  if ( 𝑥  ⊆  𝑋 ,  ( 𝐹 ‘ 𝑥 ) ,  ∅ ) ) ) ) | 
						
							| 114 | 1 2 3 4 5 6 7 8 9 10 | cantnflem1d | ⊢ ( 𝜑  →  ( ( 𝐴  CNF  𝐵 ) ‘ ( 𝑥  ∈  𝐵  ↦  if ( 𝑥  ⊆  𝑋 ,  ( 𝐹 ‘ 𝑥 ) ,  ∅ ) ) )  ∈  ( 𝐻 ‘ suc  ( ◡ 𝑂 ‘ 𝑋 ) ) ) | 
						
							| 115 | 113 114 | eqeltrd | ⊢ ( 𝜑  →  ( ( 𝐴  CNF  𝐵 ) ‘ ( 𝑥  ∈  𝐵  ↦  if ( 𝑥  ⊆  ( 𝑂 ‘ ( ◡ 𝑂 ‘ 𝑋 ) ) ,  ( 𝐹 ‘ 𝑥 ) ,  ∅ ) ) )  ∈  ( 𝐻 ‘ suc  ( ◡ 𝑂 ‘ 𝑋 ) ) ) | 
						
							| 116 |  | ss0 | ⊢ ( ( ◡ 𝑂 ‘ 𝑋 )  ⊆  ∅  →  ( ◡ 𝑂 ‘ 𝑋 )  =  ∅ ) | 
						
							| 117 | 116 | fveq2d | ⊢ ( ( ◡ 𝑂 ‘ 𝑋 )  ⊆  ∅  →  ( 𝑂 ‘ ( ◡ 𝑂 ‘ 𝑋 ) )  =  ( 𝑂 ‘ ∅ ) ) | 
						
							| 118 | 117 | sseq2d | ⊢ ( ( ◡ 𝑂 ‘ 𝑋 )  ⊆  ∅  →  ( 𝑥  ⊆  ( 𝑂 ‘ ( ◡ 𝑂 ‘ 𝑋 ) )  ↔  𝑥  ⊆  ( 𝑂 ‘ ∅ ) ) ) | 
						
							| 119 | 118 | ifbid | ⊢ ( ( ◡ 𝑂 ‘ 𝑋 )  ⊆  ∅  →  if ( 𝑥  ⊆  ( 𝑂 ‘ ( ◡ 𝑂 ‘ 𝑋 ) ) ,  ( 𝐹 ‘ 𝑥 ) ,  ∅ )  =  if ( 𝑥  ⊆  ( 𝑂 ‘ ∅ ) ,  ( 𝐹 ‘ 𝑥 ) ,  ∅ ) ) | 
						
							| 120 | 119 | mpteq2dv | ⊢ ( ( ◡ 𝑂 ‘ 𝑋 )  ⊆  ∅  →  ( 𝑥  ∈  𝐵  ↦  if ( 𝑥  ⊆  ( 𝑂 ‘ ( ◡ 𝑂 ‘ 𝑋 ) ) ,  ( 𝐹 ‘ 𝑥 ) ,  ∅ ) )  =  ( 𝑥  ∈  𝐵  ↦  if ( 𝑥  ⊆  ( 𝑂 ‘ ∅ ) ,  ( 𝐹 ‘ 𝑥 ) ,  ∅ ) ) ) | 
						
							| 121 | 120 | fveq2d | ⊢ ( ( ◡ 𝑂 ‘ 𝑋 )  ⊆  ∅  →  ( ( 𝐴  CNF  𝐵 ) ‘ ( 𝑥  ∈  𝐵  ↦  if ( 𝑥  ⊆  ( 𝑂 ‘ ( ◡ 𝑂 ‘ 𝑋 ) ) ,  ( 𝐹 ‘ 𝑥 ) ,  ∅ ) ) )  =  ( ( 𝐴  CNF  𝐵 ) ‘ ( 𝑥  ∈  𝐵  ↦  if ( 𝑥  ⊆  ( 𝑂 ‘ ∅ ) ,  ( 𝐹 ‘ 𝑥 ) ,  ∅ ) ) ) ) | 
						
							| 122 |  | suceq | ⊢ ( ( ◡ 𝑂 ‘ 𝑋 )  =  ∅  →  suc  ( ◡ 𝑂 ‘ 𝑋 )  =  suc  ∅ ) | 
						
							| 123 | 116 122 | syl | ⊢ ( ( ◡ 𝑂 ‘ 𝑋 )  ⊆  ∅  →  suc  ( ◡ 𝑂 ‘ 𝑋 )  =  suc  ∅ ) | 
						
							| 124 | 123 | fveq2d | ⊢ ( ( ◡ 𝑂 ‘ 𝑋 )  ⊆  ∅  →  ( 𝐻 ‘ suc  ( ◡ 𝑂 ‘ 𝑋 ) )  =  ( 𝐻 ‘ suc  ∅ ) ) | 
						
							| 125 | 121 124 | eleq12d | ⊢ ( ( ◡ 𝑂 ‘ 𝑋 )  ⊆  ∅  →  ( ( ( 𝐴  CNF  𝐵 ) ‘ ( 𝑥  ∈  𝐵  ↦  if ( 𝑥  ⊆  ( 𝑂 ‘ ( ◡ 𝑂 ‘ 𝑋 ) ) ,  ( 𝐹 ‘ 𝑥 ) ,  ∅ ) ) )  ∈  ( 𝐻 ‘ suc  ( ◡ 𝑂 ‘ 𝑋 ) )  ↔  ( ( 𝐴  CNF  𝐵 ) ‘ ( 𝑥  ∈  𝐵  ↦  if ( 𝑥  ⊆  ( 𝑂 ‘ ∅ ) ,  ( 𝐹 ‘ 𝑥 ) ,  ∅ ) ) )  ∈  ( 𝐻 ‘ suc  ∅ ) ) ) | 
						
							| 126 | 125 | adantl | ⊢ ( ( ∅  ∈  dom  𝑂  ∧  ( ◡ 𝑂 ‘ 𝑋 )  ⊆  ∅ )  →  ( ( ( 𝐴  CNF  𝐵 ) ‘ ( 𝑥  ∈  𝐵  ↦  if ( 𝑥  ⊆  ( 𝑂 ‘ ( ◡ 𝑂 ‘ 𝑋 ) ) ,  ( 𝐹 ‘ 𝑥 ) ,  ∅ ) ) )  ∈  ( 𝐻 ‘ suc  ( ◡ 𝑂 ‘ 𝑋 ) )  ↔  ( ( 𝐴  CNF  𝐵 ) ‘ ( 𝑥  ∈  𝐵  ↦  if ( 𝑥  ⊆  ( 𝑂 ‘ ∅ ) ,  ( 𝐹 ‘ 𝑥 ) ,  ∅ ) ) )  ∈  ( 𝐻 ‘ suc  ∅ ) ) ) | 
						
							| 127 | 115 126 | syl5ibcom | ⊢ ( 𝜑  →  ( ( ∅  ∈  dom  𝑂  ∧  ( ◡ 𝑂 ‘ 𝑋 )  ⊆  ∅ )  →  ( ( 𝐴  CNF  𝐵 ) ‘ ( 𝑥  ∈  𝐵  ↦  if ( 𝑥  ⊆  ( 𝑂 ‘ ∅ ) ,  ( 𝐹 ‘ 𝑥 ) ,  ∅ ) ) )  ∈  ( 𝐻 ‘ suc  ∅ ) ) ) | 
						
							| 128 |  | ordelon | ⊢ ( ( Ord  dom  𝑂  ∧  ( ◡ 𝑂 ‘ 𝑋 )  ∈  dom  𝑂 )  →  ( ◡ 𝑂 ‘ 𝑋 )  ∈  On ) | 
						
							| 129 | 37 53 128 | sylancr | ⊢ ( 𝜑  →  ( ◡ 𝑂 ‘ 𝑋 )  ∈  On ) | 
						
							| 130 | 37 | a1i | ⊢ ( 𝜑  →  Ord  dom  𝑂 ) | 
						
							| 131 |  | ordelon | ⊢ ( ( Ord  dom  𝑂  ∧  suc  𝑢  ∈  dom  𝑂 )  →  suc  𝑢  ∈  On ) | 
						
							| 132 | 130 131 | sylan | ⊢ ( ( 𝜑  ∧  suc  𝑢  ∈  dom  𝑂 )  →  suc  𝑢  ∈  On ) | 
						
							| 133 |  | onsseleq | ⊢ ( ( ( ◡ 𝑂 ‘ 𝑋 )  ∈  On  ∧  suc  𝑢  ∈  On )  →  ( ( ◡ 𝑂 ‘ 𝑋 )  ⊆  suc  𝑢  ↔  ( ( ◡ 𝑂 ‘ 𝑋 )  ∈  suc  𝑢  ∨  ( ◡ 𝑂 ‘ 𝑋 )  =  suc  𝑢 ) ) ) | 
						
							| 134 | 129 132 133 | syl2an2r | ⊢ ( ( 𝜑  ∧  suc  𝑢  ∈  dom  𝑂 )  →  ( ( ◡ 𝑂 ‘ 𝑋 )  ⊆  suc  𝑢  ↔  ( ( ◡ 𝑂 ‘ 𝑋 )  ∈  suc  𝑢  ∨  ( ◡ 𝑂 ‘ 𝑋 )  =  suc  𝑢 ) ) ) | 
						
							| 135 |  | onsucb | ⊢ ( 𝑢  ∈  On  ↔  suc  𝑢  ∈  On ) | 
						
							| 136 | 132 135 | sylibr | ⊢ ( ( 𝜑  ∧  suc  𝑢  ∈  dom  𝑂 )  →  𝑢  ∈  On ) | 
						
							| 137 |  | eloni | ⊢ ( 𝑢  ∈  On  →  Ord  𝑢 ) | 
						
							| 138 | 136 137 | syl | ⊢ ( ( 𝜑  ∧  suc  𝑢  ∈  dom  𝑂 )  →  Ord  𝑢 ) | 
						
							| 139 |  | ordsssuc | ⊢ ( ( ( ◡ 𝑂 ‘ 𝑋 )  ∈  On  ∧  Ord  𝑢 )  →  ( ( ◡ 𝑂 ‘ 𝑋 )  ⊆  𝑢  ↔  ( ◡ 𝑂 ‘ 𝑋 )  ∈  suc  𝑢 ) ) | 
						
							| 140 | 129 138 139 | syl2an2r | ⊢ ( ( 𝜑  ∧  suc  𝑢  ∈  dom  𝑂 )  →  ( ( ◡ 𝑂 ‘ 𝑋 )  ⊆  𝑢  ↔  ( ◡ 𝑂 ‘ 𝑋 )  ∈  suc  𝑢 ) ) | 
						
							| 141 |  | ordtr | ⊢ ( Ord  dom  𝑂  →  Tr  dom  𝑂 ) | 
						
							| 142 | 37 141 | mp1i | ⊢ ( ( 𝜑  ∧  ( suc  𝑢  ∈  dom  𝑂  ∧  ( ◡ 𝑂 ‘ 𝑋 )  ⊆  𝑢 ) )  →  Tr  dom  𝑂 ) | 
						
							| 143 |  | simprl | ⊢ ( ( 𝜑  ∧  ( suc  𝑢  ∈  dom  𝑂  ∧  ( ◡ 𝑂 ‘ 𝑋 )  ⊆  𝑢 ) )  →  suc  𝑢  ∈  dom  𝑂 ) | 
						
							| 144 |  | trsuc | ⊢ ( ( Tr  dom  𝑂  ∧  suc  𝑢  ∈  dom  𝑂 )  →  𝑢  ∈  dom  𝑂 ) | 
						
							| 145 | 142 143 144 | syl2anc | ⊢ ( ( 𝜑  ∧  ( suc  𝑢  ∈  dom  𝑂  ∧  ( ◡ 𝑂 ‘ 𝑋 )  ⊆  𝑢 ) )  →  𝑢  ∈  dom  𝑂 ) | 
						
							| 146 |  | simprr | ⊢ ( ( 𝜑  ∧  ( suc  𝑢  ∈  dom  𝑂  ∧  ( ◡ 𝑂 ‘ 𝑋 )  ⊆  𝑢 ) )  →  ( ◡ 𝑂 ‘ 𝑋 )  ⊆  𝑢 ) | 
						
							| 147 | 145 146 | jca | ⊢ ( ( 𝜑  ∧  ( suc  𝑢  ∈  dom  𝑂  ∧  ( ◡ 𝑂 ‘ 𝑋 )  ⊆  𝑢 ) )  →  ( 𝑢  ∈  dom  𝑂  ∧  ( ◡ 𝑂 ‘ 𝑋 )  ⊆  𝑢 ) ) | 
						
							| 148 | 3 | adantr | ⊢ ( ( 𝜑  ∧  ( suc  𝑢  ∈  dom  𝑂  ∧  ( ◡ 𝑂 ‘ 𝑋 )  ⊆  𝑢 ) )  →  𝐵  ∈  On ) | 
						
							| 149 |  | oecl | ⊢ ( ( 𝐴  ∈  On  ∧  𝐵  ∈  On )  →  ( 𝐴  ↑o  𝐵 )  ∈  On ) | 
						
							| 150 | 2 148 149 | syl2an2r | ⊢ ( ( 𝜑  ∧  ( suc  𝑢  ∈  dom  𝑂  ∧  ( ◡ 𝑂 ‘ 𝑋 )  ⊆  𝑢 ) )  →  ( 𝐴  ↑o  𝐵 )  ∈  On ) | 
						
							| 151 | 2 | adantr | ⊢ ( ( 𝜑  ∧  ( suc  𝑢  ∈  dom  𝑂  ∧  ( ◡ 𝑂 ‘ 𝑋 )  ⊆  𝑢 ) )  →  𝐴  ∈  On ) | 
						
							| 152 | 1 151 148 | cantnff | ⊢ ( ( 𝜑  ∧  ( suc  𝑢  ∈  dom  𝑂  ∧  ( ◡ 𝑂 ‘ 𝑋 )  ⊆  𝑢 ) )  →  ( 𝐴  CNF  𝐵 ) : 𝑆 ⟶ ( 𝐴  ↑o  𝐵 ) ) | 
						
							| 153 | 1 2 3 | cantnfs | ⊢ ( 𝜑  →  ( 𝐹  ∈  𝑆  ↔  ( 𝐹 : 𝐵 ⟶ 𝐴  ∧  𝐹  finSupp  ∅ ) ) ) | 
						
							| 154 | 5 153 | mpbid | ⊢ ( 𝜑  →  ( 𝐹 : 𝐵 ⟶ 𝐴  ∧  𝐹  finSupp  ∅ ) ) | 
						
							| 155 | 154 | simpld | ⊢ ( 𝜑  →  𝐹 : 𝐵 ⟶ 𝐴 ) | 
						
							| 156 | 155 | ffvelcdmda | ⊢ ( ( 𝜑  ∧  𝑥  ∈  𝐵 )  →  ( 𝐹 ‘ 𝑥 )  ∈  𝐴 ) | 
						
							| 157 | 1 2 3 | cantnfs | ⊢ ( 𝜑  →  ( 𝐺  ∈  𝑆  ↔  ( 𝐺 : 𝐵 ⟶ 𝐴  ∧  𝐺  finSupp  ∅ ) ) ) | 
						
							| 158 | 6 157 | mpbid | ⊢ ( 𝜑  →  ( 𝐺 : 𝐵 ⟶ 𝐴  ∧  𝐺  finSupp  ∅ ) ) | 
						
							| 159 | 158 | simpld | ⊢ ( 𝜑  →  𝐺 : 𝐵 ⟶ 𝐴 ) | 
						
							| 160 | 1 2 3 4 5 6 7 8 | oemapvali | ⊢ ( 𝜑  →  ( 𝑋  ∈  𝐵  ∧  ( 𝐹 ‘ 𝑋 )  ∈  ( 𝐺 ‘ 𝑋 )  ∧  ∀ 𝑤  ∈  𝐵 ( 𝑋  ∈  𝑤  →  ( 𝐹 ‘ 𝑤 )  =  ( 𝐺 ‘ 𝑤 ) ) ) ) | 
						
							| 161 | 160 | simp1d | ⊢ ( 𝜑  →  𝑋  ∈  𝐵 ) | 
						
							| 162 | 159 161 | ffvelcdmd | ⊢ ( 𝜑  →  ( 𝐺 ‘ 𝑋 )  ∈  𝐴 ) | 
						
							| 163 | 162 | ne0d | ⊢ ( 𝜑  →  𝐴  ≠  ∅ ) | 
						
							| 164 |  | on0eln0 | ⊢ ( 𝐴  ∈  On  →  ( ∅  ∈  𝐴  ↔  𝐴  ≠  ∅ ) ) | 
						
							| 165 | 2 164 | syl | ⊢ ( 𝜑  →  ( ∅  ∈  𝐴  ↔  𝐴  ≠  ∅ ) ) | 
						
							| 166 | 163 165 | mpbird | ⊢ ( 𝜑  →  ∅  ∈  𝐴 ) | 
						
							| 167 | 166 | adantr | ⊢ ( ( 𝜑  ∧  𝑥  ∈  𝐵 )  →  ∅  ∈  𝐴 ) | 
						
							| 168 | 156 167 | ifcld | ⊢ ( ( 𝜑  ∧  𝑥  ∈  𝐵 )  →  if ( 𝑥  ⊆  ( 𝑂 ‘ 𝑢 ) ,  ( 𝐹 ‘ 𝑥 ) ,  ∅ )  ∈  𝐴 ) | 
						
							| 169 | 168 | fmpttd | ⊢ ( 𝜑  →  ( 𝑥  ∈  𝐵  ↦  if ( 𝑥  ⊆  ( 𝑂 ‘ 𝑢 ) ,  ( 𝐹 ‘ 𝑥 ) ,  ∅ ) ) : 𝐵 ⟶ 𝐴 ) | 
						
							| 170 | 3 | mptexd | ⊢ ( 𝜑  →  ( 𝑥  ∈  𝐵  ↦  if ( 𝑥  ⊆  ( 𝑂 ‘ 𝑢 ) ,  ( 𝐹 ‘ 𝑥 ) ,  ∅ ) )  ∈  V ) | 
						
							| 171 |  | funmpt | ⊢ Fun  ( 𝑥  ∈  𝐵  ↦  if ( 𝑥  ⊆  ( 𝑂 ‘ 𝑢 ) ,  ( 𝐹 ‘ 𝑥 ) ,  ∅ ) ) | 
						
							| 172 | 171 | a1i | ⊢ ( 𝜑  →  Fun  ( 𝑥  ∈  𝐵  ↦  if ( 𝑥  ⊆  ( 𝑂 ‘ 𝑢 ) ,  ( 𝐹 ‘ 𝑥 ) ,  ∅ ) ) ) | 
						
							| 173 | 154 | simprd | ⊢ ( 𝜑  →  𝐹  finSupp  ∅ ) | 
						
							| 174 |  | ssidd | ⊢ ( 𝜑  →  ( 𝐹  supp  ∅ )  ⊆  ( 𝐹  supp  ∅ ) ) | 
						
							| 175 |  | 0ex | ⊢ ∅  ∈  V | 
						
							| 176 | 175 | a1i | ⊢ ( 𝜑  →  ∅  ∈  V ) | 
						
							| 177 | 155 174 3 176 | suppssr | ⊢ ( ( 𝜑  ∧  𝑥  ∈  ( 𝐵  ∖  ( 𝐹  supp  ∅ ) ) )  →  ( 𝐹 ‘ 𝑥 )  =  ∅ ) | 
						
							| 178 | 177 | ifeq1d | ⊢ ( ( 𝜑  ∧  𝑥  ∈  ( 𝐵  ∖  ( 𝐹  supp  ∅ ) ) )  →  if ( 𝑥  ⊆  ( 𝑂 ‘ 𝑢 ) ,  ( 𝐹 ‘ 𝑥 ) ,  ∅ )  =  if ( 𝑥  ⊆  ( 𝑂 ‘ 𝑢 ) ,  ∅ ,  ∅ ) ) | 
						
							| 179 |  | ifid | ⊢ if ( 𝑥  ⊆  ( 𝑂 ‘ 𝑢 ) ,  ∅ ,  ∅ )  =  ∅ | 
						
							| 180 | 178 179 | eqtrdi | ⊢ ( ( 𝜑  ∧  𝑥  ∈  ( 𝐵  ∖  ( 𝐹  supp  ∅ ) ) )  →  if ( 𝑥  ⊆  ( 𝑂 ‘ 𝑢 ) ,  ( 𝐹 ‘ 𝑥 ) ,  ∅ )  =  ∅ ) | 
						
							| 181 | 180 3 | suppss2 | ⊢ ( 𝜑  →  ( ( 𝑥  ∈  𝐵  ↦  if ( 𝑥  ⊆  ( 𝑂 ‘ 𝑢 ) ,  ( 𝐹 ‘ 𝑥 ) ,  ∅ ) )  supp  ∅ )  ⊆  ( 𝐹  supp  ∅ ) ) | 
						
							| 182 |  | fsuppsssupp | ⊢ ( ( ( ( 𝑥  ∈  𝐵  ↦  if ( 𝑥  ⊆  ( 𝑂 ‘ 𝑢 ) ,  ( 𝐹 ‘ 𝑥 ) ,  ∅ ) )  ∈  V  ∧  Fun  ( 𝑥  ∈  𝐵  ↦  if ( 𝑥  ⊆  ( 𝑂 ‘ 𝑢 ) ,  ( 𝐹 ‘ 𝑥 ) ,  ∅ ) ) )  ∧  ( 𝐹  finSupp  ∅  ∧  ( ( 𝑥  ∈  𝐵  ↦  if ( 𝑥  ⊆  ( 𝑂 ‘ 𝑢 ) ,  ( 𝐹 ‘ 𝑥 ) ,  ∅ ) )  supp  ∅ )  ⊆  ( 𝐹  supp  ∅ ) ) )  →  ( 𝑥  ∈  𝐵  ↦  if ( 𝑥  ⊆  ( 𝑂 ‘ 𝑢 ) ,  ( 𝐹 ‘ 𝑥 ) ,  ∅ ) )  finSupp  ∅ ) | 
						
							| 183 | 170 172 173 181 182 | syl22anc | ⊢ ( 𝜑  →  ( 𝑥  ∈  𝐵  ↦  if ( 𝑥  ⊆  ( 𝑂 ‘ 𝑢 ) ,  ( 𝐹 ‘ 𝑥 ) ,  ∅ ) )  finSupp  ∅ ) | 
						
							| 184 | 1 2 3 | cantnfs | ⊢ ( 𝜑  →  ( ( 𝑥  ∈  𝐵  ↦  if ( 𝑥  ⊆  ( 𝑂 ‘ 𝑢 ) ,  ( 𝐹 ‘ 𝑥 ) ,  ∅ ) )  ∈  𝑆  ↔  ( ( 𝑥  ∈  𝐵  ↦  if ( 𝑥  ⊆  ( 𝑂 ‘ 𝑢 ) ,  ( 𝐹 ‘ 𝑥 ) ,  ∅ ) ) : 𝐵 ⟶ 𝐴  ∧  ( 𝑥  ∈  𝐵  ↦  if ( 𝑥  ⊆  ( 𝑂 ‘ 𝑢 ) ,  ( 𝐹 ‘ 𝑥 ) ,  ∅ ) )  finSupp  ∅ ) ) ) | 
						
							| 185 | 169 183 184 | mpbir2and | ⊢ ( 𝜑  →  ( 𝑥  ∈  𝐵  ↦  if ( 𝑥  ⊆  ( 𝑂 ‘ 𝑢 ) ,  ( 𝐹 ‘ 𝑥 ) ,  ∅ ) )  ∈  𝑆 ) | 
						
							| 186 | 185 | adantr | ⊢ ( ( 𝜑  ∧  ( suc  𝑢  ∈  dom  𝑂  ∧  ( ◡ 𝑂 ‘ 𝑋 )  ⊆  𝑢 ) )  →  ( 𝑥  ∈  𝐵  ↦  if ( 𝑥  ⊆  ( 𝑂 ‘ 𝑢 ) ,  ( 𝐹 ‘ 𝑥 ) ,  ∅ ) )  ∈  𝑆 ) | 
						
							| 187 | 152 186 | ffvelcdmd | ⊢ ( ( 𝜑  ∧  ( suc  𝑢  ∈  dom  𝑂  ∧  ( ◡ 𝑂 ‘ 𝑋 )  ⊆  𝑢 ) )  →  ( ( 𝐴  CNF  𝐵 ) ‘ ( 𝑥  ∈  𝐵  ↦  if ( 𝑥  ⊆  ( 𝑂 ‘ 𝑢 ) ,  ( 𝐹 ‘ 𝑥 ) ,  ∅ ) ) )  ∈  ( 𝐴  ↑o  𝐵 ) ) | 
						
							| 188 |  | onelon | ⊢ ( ( ( 𝐴  ↑o  𝐵 )  ∈  On  ∧  ( ( 𝐴  CNF  𝐵 ) ‘ ( 𝑥  ∈  𝐵  ↦  if ( 𝑥  ⊆  ( 𝑂 ‘ 𝑢 ) ,  ( 𝐹 ‘ 𝑥 ) ,  ∅ ) ) )  ∈  ( 𝐴  ↑o  𝐵 ) )  →  ( ( 𝐴  CNF  𝐵 ) ‘ ( 𝑥  ∈  𝐵  ↦  if ( 𝑥  ⊆  ( 𝑂 ‘ 𝑢 ) ,  ( 𝐹 ‘ 𝑥 ) ,  ∅ ) ) )  ∈  On ) | 
						
							| 189 | 150 187 188 | syl2anc | ⊢ ( ( 𝜑  ∧  ( suc  𝑢  ∈  dom  𝑂  ∧  ( ◡ 𝑂 ‘ 𝑋 )  ⊆  𝑢 ) )  →  ( ( 𝐴  CNF  𝐵 ) ‘ ( 𝑥  ∈  𝐵  ↦  if ( 𝑥  ⊆  ( 𝑂 ‘ 𝑢 ) ,  ( 𝐹 ‘ 𝑥 ) ,  ∅ ) ) )  ∈  On ) | 
						
							| 190 | 32 | adantr | ⊢ ( ( 𝜑  ∧  ( suc  𝑢  ∈  dom  𝑂  ∧  ( ◡ 𝑂 ‘ 𝑋 )  ⊆  𝑢 ) )  →  dom  𝑂  ∈  ω ) | 
						
							| 191 |  | elnn | ⊢ ( ( suc  𝑢  ∈  dom  𝑂  ∧  dom  𝑂  ∈  ω )  →  suc  𝑢  ∈  ω ) | 
						
							| 192 | 143 190 191 | syl2anc | ⊢ ( ( 𝜑  ∧  ( suc  𝑢  ∈  dom  𝑂  ∧  ( ◡ 𝑂 ‘ 𝑋 )  ⊆  𝑢 ) )  →  suc  𝑢  ∈  ω ) | 
						
							| 193 | 10 | cantnfvalf | ⊢ 𝐻 : ω ⟶ On | 
						
							| 194 | 193 | ffvelcdmi | ⊢ ( suc  𝑢  ∈  ω  →  ( 𝐻 ‘ suc  𝑢 )  ∈  On ) | 
						
							| 195 | 192 194 | syl | ⊢ ( ( 𝜑  ∧  ( suc  𝑢  ∈  dom  𝑂  ∧  ( ◡ 𝑂 ‘ 𝑋 )  ⊆  𝑢 ) )  →  ( 𝐻 ‘ suc  𝑢 )  ∈  On ) | 
						
							| 196 |  | suppssdm | ⊢ ( 𝐺  supp  ∅ )  ⊆  dom  𝐺 | 
						
							| 197 | 196 159 | fssdm | ⊢ ( 𝜑  →  ( 𝐺  supp  ∅ )  ⊆  𝐵 ) | 
						
							| 198 | 197 | adantr | ⊢ ( ( 𝜑  ∧  ( suc  𝑢  ∈  dom  𝑂  ∧  ( ◡ 𝑂 ‘ 𝑋 )  ⊆  𝑢 ) )  →  ( 𝐺  supp  ∅ )  ⊆  𝐵 ) | 
						
							| 199 | 9 | oif | ⊢ 𝑂 : dom  𝑂 ⟶ ( 𝐺  supp  ∅ ) | 
						
							| 200 | 199 | ffvelcdmi | ⊢ ( suc  𝑢  ∈  dom  𝑂  →  ( 𝑂 ‘ suc  𝑢 )  ∈  ( 𝐺  supp  ∅ ) ) | 
						
							| 201 | 143 200 | syl | ⊢ ( ( 𝜑  ∧  ( suc  𝑢  ∈  dom  𝑂  ∧  ( ◡ 𝑂 ‘ 𝑋 )  ⊆  𝑢 ) )  →  ( 𝑂 ‘ suc  𝑢 )  ∈  ( 𝐺  supp  ∅ ) ) | 
						
							| 202 | 198 201 | sseldd | ⊢ ( ( 𝜑  ∧  ( suc  𝑢  ∈  dom  𝑂  ∧  ( ◡ 𝑂 ‘ 𝑋 )  ⊆  𝑢 ) )  →  ( 𝑂 ‘ suc  𝑢 )  ∈  𝐵 ) | 
						
							| 203 |  | onelon | ⊢ ( ( 𝐵  ∈  On  ∧  ( 𝑂 ‘ suc  𝑢 )  ∈  𝐵 )  →  ( 𝑂 ‘ suc  𝑢 )  ∈  On ) | 
						
							| 204 | 3 202 203 | syl2an2r | ⊢ ( ( 𝜑  ∧  ( suc  𝑢  ∈  dom  𝑂  ∧  ( ◡ 𝑂 ‘ 𝑋 )  ⊆  𝑢 ) )  →  ( 𝑂 ‘ suc  𝑢 )  ∈  On ) | 
						
							| 205 |  | oecl | ⊢ ( ( 𝐴  ∈  On  ∧  ( 𝑂 ‘ suc  𝑢 )  ∈  On )  →  ( 𝐴  ↑o  ( 𝑂 ‘ suc  𝑢 ) )  ∈  On ) | 
						
							| 206 | 2 204 205 | syl2an2r | ⊢ ( ( 𝜑  ∧  ( suc  𝑢  ∈  dom  𝑂  ∧  ( ◡ 𝑂 ‘ 𝑋 )  ⊆  𝑢 ) )  →  ( 𝐴  ↑o  ( 𝑂 ‘ suc  𝑢 ) )  ∈  On ) | 
						
							| 207 | 155 | adantr | ⊢ ( ( 𝜑  ∧  ( suc  𝑢  ∈  dom  𝑂  ∧  ( ◡ 𝑂 ‘ 𝑋 )  ⊆  𝑢 ) )  →  𝐹 : 𝐵 ⟶ 𝐴 ) | 
						
							| 208 | 207 202 | ffvelcdmd | ⊢ ( ( 𝜑  ∧  ( suc  𝑢  ∈  dom  𝑂  ∧  ( ◡ 𝑂 ‘ 𝑋 )  ⊆  𝑢 ) )  →  ( 𝐹 ‘ ( 𝑂 ‘ suc  𝑢 ) )  ∈  𝐴 ) | 
						
							| 209 |  | onelon | ⊢ ( ( 𝐴  ∈  On  ∧  ( 𝐹 ‘ ( 𝑂 ‘ suc  𝑢 ) )  ∈  𝐴 )  →  ( 𝐹 ‘ ( 𝑂 ‘ suc  𝑢 ) )  ∈  On ) | 
						
							| 210 | 2 208 209 | syl2an2r | ⊢ ( ( 𝜑  ∧  ( suc  𝑢  ∈  dom  𝑂  ∧  ( ◡ 𝑂 ‘ 𝑋 )  ⊆  𝑢 ) )  →  ( 𝐹 ‘ ( 𝑂 ‘ suc  𝑢 ) )  ∈  On ) | 
						
							| 211 |  | omcl | ⊢ ( ( ( 𝐴  ↑o  ( 𝑂 ‘ suc  𝑢 ) )  ∈  On  ∧  ( 𝐹 ‘ ( 𝑂 ‘ suc  𝑢 ) )  ∈  On )  →  ( ( 𝐴  ↑o  ( 𝑂 ‘ suc  𝑢 ) )  ·o  ( 𝐹 ‘ ( 𝑂 ‘ suc  𝑢 ) ) )  ∈  On ) | 
						
							| 212 | 206 210 211 | syl2anc | ⊢ ( ( 𝜑  ∧  ( suc  𝑢  ∈  dom  𝑂  ∧  ( ◡ 𝑂 ‘ 𝑋 )  ⊆  𝑢 ) )  →  ( ( 𝐴  ↑o  ( 𝑂 ‘ suc  𝑢 ) )  ·o  ( 𝐹 ‘ ( 𝑂 ‘ suc  𝑢 ) ) )  ∈  On ) | 
						
							| 213 |  | oaord | ⊢ ( ( ( ( 𝐴  CNF  𝐵 ) ‘ ( 𝑥  ∈  𝐵  ↦  if ( 𝑥  ⊆  ( 𝑂 ‘ 𝑢 ) ,  ( 𝐹 ‘ 𝑥 ) ,  ∅ ) ) )  ∈  On  ∧  ( 𝐻 ‘ suc  𝑢 )  ∈  On  ∧  ( ( 𝐴  ↑o  ( 𝑂 ‘ suc  𝑢 ) )  ·o  ( 𝐹 ‘ ( 𝑂 ‘ suc  𝑢 ) ) )  ∈  On )  →  ( ( ( 𝐴  CNF  𝐵 ) ‘ ( 𝑥  ∈  𝐵  ↦  if ( 𝑥  ⊆  ( 𝑂 ‘ 𝑢 ) ,  ( 𝐹 ‘ 𝑥 ) ,  ∅ ) ) )  ∈  ( 𝐻 ‘ suc  𝑢 )  ↔  ( ( ( 𝐴  ↑o  ( 𝑂 ‘ suc  𝑢 ) )  ·o  ( 𝐹 ‘ ( 𝑂 ‘ suc  𝑢 ) ) )  +o  ( ( 𝐴  CNF  𝐵 ) ‘ ( 𝑥  ∈  𝐵  ↦  if ( 𝑥  ⊆  ( 𝑂 ‘ 𝑢 ) ,  ( 𝐹 ‘ 𝑥 ) ,  ∅ ) ) ) )  ∈  ( ( ( 𝐴  ↑o  ( 𝑂 ‘ suc  𝑢 ) )  ·o  ( 𝐹 ‘ ( 𝑂 ‘ suc  𝑢 ) ) )  +o  ( 𝐻 ‘ suc  𝑢 ) ) ) ) | 
						
							| 214 | 189 195 212 213 | syl3anc | ⊢ ( ( 𝜑  ∧  ( suc  𝑢  ∈  dom  𝑂  ∧  ( ◡ 𝑂 ‘ 𝑋 )  ⊆  𝑢 ) )  →  ( ( ( 𝐴  CNF  𝐵 ) ‘ ( 𝑥  ∈  𝐵  ↦  if ( 𝑥  ⊆  ( 𝑂 ‘ 𝑢 ) ,  ( 𝐹 ‘ 𝑥 ) ,  ∅ ) ) )  ∈  ( 𝐻 ‘ suc  𝑢 )  ↔  ( ( ( 𝐴  ↑o  ( 𝑂 ‘ suc  𝑢 ) )  ·o  ( 𝐹 ‘ ( 𝑂 ‘ suc  𝑢 ) ) )  +o  ( ( 𝐴  CNF  𝐵 ) ‘ ( 𝑥  ∈  𝐵  ↦  if ( 𝑥  ⊆  ( 𝑂 ‘ 𝑢 ) ,  ( 𝐹 ‘ 𝑥 ) ,  ∅ ) ) ) )  ∈  ( ( ( 𝐴  ↑o  ( 𝑂 ‘ suc  𝑢 ) )  ·o  ( 𝐹 ‘ ( 𝑂 ‘ suc  𝑢 ) ) )  +o  ( 𝐻 ‘ suc  𝑢 ) ) ) ) | 
						
							| 215 |  | ifeq1 | ⊢ ( ( 𝐹 ‘ 𝑥 )  =  ∅  →  if ( 𝑥  ⊆  ( 𝑂 ‘ suc  𝑢 ) ,  ( 𝐹 ‘ 𝑥 ) ,  ∅ )  =  if ( 𝑥  ⊆  ( 𝑂 ‘ suc  𝑢 ) ,  ∅ ,  ∅ ) ) | 
						
							| 216 |  | ifid | ⊢ if ( 𝑥  ⊆  ( 𝑂 ‘ suc  𝑢 ) ,  ∅ ,  ∅ )  =  ∅ | 
						
							| 217 | 215 216 | eqtrdi | ⊢ ( ( 𝐹 ‘ 𝑥 )  =  ∅  →  if ( 𝑥  ⊆  ( 𝑂 ‘ suc  𝑢 ) ,  ( 𝐹 ‘ 𝑥 ) ,  ∅ )  =  ∅ ) | 
						
							| 218 |  | ifeq1 | ⊢ ( ( 𝐹 ‘ 𝑥 )  =  ∅  →  if ( ( 𝑥  =  ( 𝑂 ‘ suc  𝑢 )  ∨  𝑥  ⊆  ( 𝑂 ‘ 𝑢 ) ) ,  ( 𝐹 ‘ 𝑥 ) ,  ∅ )  =  if ( ( 𝑥  =  ( 𝑂 ‘ suc  𝑢 )  ∨  𝑥  ⊆  ( 𝑂 ‘ 𝑢 ) ) ,  ∅ ,  ∅ ) ) | 
						
							| 219 |  | ifid | ⊢ if ( ( 𝑥  =  ( 𝑂 ‘ suc  𝑢 )  ∨  𝑥  ⊆  ( 𝑂 ‘ 𝑢 ) ) ,  ∅ ,  ∅ )  =  ∅ | 
						
							| 220 | 218 219 | eqtrdi | ⊢ ( ( 𝐹 ‘ 𝑥 )  =  ∅  →  if ( ( 𝑥  =  ( 𝑂 ‘ suc  𝑢 )  ∨  𝑥  ⊆  ( 𝑂 ‘ 𝑢 ) ) ,  ( 𝐹 ‘ 𝑥 ) ,  ∅ )  =  ∅ ) | 
						
							| 221 | 217 220 | eqeq12d | ⊢ ( ( 𝐹 ‘ 𝑥 )  =  ∅  →  ( if ( 𝑥  ⊆  ( 𝑂 ‘ suc  𝑢 ) ,  ( 𝐹 ‘ 𝑥 ) ,  ∅ )  =  if ( ( 𝑥  =  ( 𝑂 ‘ suc  𝑢 )  ∨  𝑥  ⊆  ( 𝑂 ‘ 𝑢 ) ) ,  ( 𝐹 ‘ 𝑥 ) ,  ∅ )  ↔  ∅  =  ∅ ) ) | 
						
							| 222 |  | onss | ⊢ ( 𝐵  ∈  On  →  𝐵  ⊆  On ) | 
						
							| 223 | 3 222 | syl | ⊢ ( 𝜑  →  𝐵  ⊆  On ) | 
						
							| 224 | 223 | sselda | ⊢ ( ( 𝜑  ∧  𝑥  ∈  𝐵 )  →  𝑥  ∈  On ) | 
						
							| 225 | 224 | adantlr | ⊢ ( ( ( 𝜑  ∧  ( suc  𝑢  ∈  dom  𝑂  ∧  ( ◡ 𝑂 ‘ 𝑋 )  ⊆  𝑢 ) )  ∧  𝑥  ∈  𝐵 )  →  𝑥  ∈  On ) | 
						
							| 226 | 204 | adantr | ⊢ ( ( ( 𝜑  ∧  ( suc  𝑢  ∈  dom  𝑂  ∧  ( ◡ 𝑂 ‘ 𝑋 )  ⊆  𝑢 ) )  ∧  𝑥  ∈  𝐵 )  →  ( 𝑂 ‘ suc  𝑢 )  ∈  On ) | 
						
							| 227 |  | onsseleq | ⊢ ( ( 𝑥  ∈  On  ∧  ( 𝑂 ‘ suc  𝑢 )  ∈  On )  →  ( 𝑥  ⊆  ( 𝑂 ‘ suc  𝑢 )  ↔  ( 𝑥  ∈  ( 𝑂 ‘ suc  𝑢 )  ∨  𝑥  =  ( 𝑂 ‘ suc  𝑢 ) ) ) ) | 
						
							| 228 | 225 226 227 | syl2anc | ⊢ ( ( ( 𝜑  ∧  ( suc  𝑢  ∈  dom  𝑂  ∧  ( ◡ 𝑂 ‘ 𝑋 )  ⊆  𝑢 ) )  ∧  𝑥  ∈  𝐵 )  →  ( 𝑥  ⊆  ( 𝑂 ‘ suc  𝑢 )  ↔  ( 𝑥  ∈  ( 𝑂 ‘ suc  𝑢 )  ∨  𝑥  =  ( 𝑂 ‘ suc  𝑢 ) ) ) ) | 
						
							| 229 | 228 | adantr | ⊢ ( ( ( ( 𝜑  ∧  ( suc  𝑢  ∈  dom  𝑂  ∧  ( ◡ 𝑂 ‘ 𝑋 )  ⊆  𝑢 ) )  ∧  𝑥  ∈  𝐵 )  ∧  ( 𝐹 ‘ 𝑥 )  ≠  ∅ )  →  ( 𝑥  ⊆  ( 𝑂 ‘ suc  𝑢 )  ↔  ( 𝑥  ∈  ( 𝑂 ‘ suc  𝑢 )  ∨  𝑥  =  ( 𝑂 ‘ suc  𝑢 ) ) ) ) | 
						
							| 230 | 199 | ffvelcdmi | ⊢ ( 𝑢  ∈  dom  𝑂  →  ( 𝑂 ‘ 𝑢 )  ∈  ( 𝐺  supp  ∅ ) ) | 
						
							| 231 | 145 230 | syl | ⊢ ( ( 𝜑  ∧  ( suc  𝑢  ∈  dom  𝑂  ∧  ( ◡ 𝑂 ‘ 𝑋 )  ⊆  𝑢 ) )  →  ( 𝑂 ‘ 𝑢 )  ∈  ( 𝐺  supp  ∅ ) ) | 
						
							| 232 | 198 231 | sseldd | ⊢ ( ( 𝜑  ∧  ( suc  𝑢  ∈  dom  𝑂  ∧  ( ◡ 𝑂 ‘ 𝑋 )  ⊆  𝑢 ) )  →  ( 𝑂 ‘ 𝑢 )  ∈  𝐵 ) | 
						
							| 233 |  | onelon | ⊢ ( ( 𝐵  ∈  On  ∧  ( 𝑂 ‘ 𝑢 )  ∈  𝐵 )  →  ( 𝑂 ‘ 𝑢 )  ∈  On ) | 
						
							| 234 | 3 232 233 | syl2an2r | ⊢ ( ( 𝜑  ∧  ( suc  𝑢  ∈  dom  𝑂  ∧  ( ◡ 𝑂 ‘ 𝑋 )  ⊆  𝑢 ) )  →  ( 𝑂 ‘ 𝑢 )  ∈  On ) | 
						
							| 235 | 234 | ad2antrr | ⊢ ( ( ( ( 𝜑  ∧  ( suc  𝑢  ∈  dom  𝑂  ∧  ( ◡ 𝑂 ‘ 𝑋 )  ⊆  𝑢 ) )  ∧  𝑥  ∈  𝐵 )  ∧  ( 𝐹 ‘ 𝑥 )  ≠  ∅ )  →  ( 𝑂 ‘ 𝑢 )  ∈  On ) | 
						
							| 236 |  | onsssuc | ⊢ ( ( 𝑥  ∈  On  ∧  ( 𝑂 ‘ 𝑢 )  ∈  On )  →  ( 𝑥  ⊆  ( 𝑂 ‘ 𝑢 )  ↔  𝑥  ∈  suc  ( 𝑂 ‘ 𝑢 ) ) ) | 
						
							| 237 | 225 235 236 | syl2an2r | ⊢ ( ( ( ( 𝜑  ∧  ( suc  𝑢  ∈  dom  𝑂  ∧  ( ◡ 𝑂 ‘ 𝑋 )  ⊆  𝑢 ) )  ∧  𝑥  ∈  𝐵 )  ∧  ( 𝐹 ‘ 𝑥 )  ≠  ∅ )  →  ( 𝑥  ⊆  ( 𝑂 ‘ 𝑢 )  ↔  𝑥  ∈  suc  ( 𝑂 ‘ 𝑢 ) ) ) | 
						
							| 238 |  | vex | ⊢ 𝑢  ∈  V | 
						
							| 239 | 238 | sucid | ⊢ 𝑢  ∈  suc  𝑢 | 
						
							| 240 | 47 | adantr | ⊢ ( ( 𝜑  ∧  ( suc  𝑢  ∈  dom  𝑂  ∧  ( ◡ 𝑂 ‘ 𝑋 )  ⊆  𝑢 ) )  →  𝑂  Isom   E  ,   E  ( dom  𝑂 ,  ( 𝐺  supp  ∅ ) ) ) | 
						
							| 241 |  | isorel | ⊢ ( ( 𝑂  Isom   E  ,   E  ( dom  𝑂 ,  ( 𝐺  supp  ∅ ) )  ∧  ( 𝑢  ∈  dom  𝑂  ∧  suc  𝑢  ∈  dom  𝑂 ) )  →  ( 𝑢  E  suc  𝑢  ↔  ( 𝑂 ‘ 𝑢 )  E  ( 𝑂 ‘ suc  𝑢 ) ) ) | 
						
							| 242 | 240 145 143 241 | syl12anc | ⊢ ( ( 𝜑  ∧  ( suc  𝑢  ∈  dom  𝑂  ∧  ( ◡ 𝑂 ‘ 𝑋 )  ⊆  𝑢 ) )  →  ( 𝑢  E  suc  𝑢  ↔  ( 𝑂 ‘ 𝑢 )  E  ( 𝑂 ‘ suc  𝑢 ) ) ) | 
						
							| 243 | 238 | sucex | ⊢ suc  𝑢  ∈  V | 
						
							| 244 | 243 | epeli | ⊢ ( 𝑢  E  suc  𝑢  ↔  𝑢  ∈  suc  𝑢 ) | 
						
							| 245 |  | fvex | ⊢ ( 𝑂 ‘ suc  𝑢 )  ∈  V | 
						
							| 246 | 245 | epeli | ⊢ ( ( 𝑂 ‘ 𝑢 )  E  ( 𝑂 ‘ suc  𝑢 )  ↔  ( 𝑂 ‘ 𝑢 )  ∈  ( 𝑂 ‘ suc  𝑢 ) ) | 
						
							| 247 | 242 244 246 | 3bitr3g | ⊢ ( ( 𝜑  ∧  ( suc  𝑢  ∈  dom  𝑂  ∧  ( ◡ 𝑂 ‘ 𝑋 )  ⊆  𝑢 ) )  →  ( 𝑢  ∈  suc  𝑢  ↔  ( 𝑂 ‘ 𝑢 )  ∈  ( 𝑂 ‘ suc  𝑢 ) ) ) | 
						
							| 248 | 239 247 | mpbii | ⊢ ( ( 𝜑  ∧  ( suc  𝑢  ∈  dom  𝑂  ∧  ( ◡ 𝑂 ‘ 𝑋 )  ⊆  𝑢 ) )  →  ( 𝑂 ‘ 𝑢 )  ∈  ( 𝑂 ‘ suc  𝑢 ) ) | 
						
							| 249 |  | eloni | ⊢ ( ( 𝑂 ‘ suc  𝑢 )  ∈  On  →  Ord  ( 𝑂 ‘ suc  𝑢 ) ) | 
						
							| 250 | 204 249 | syl | ⊢ ( ( 𝜑  ∧  ( suc  𝑢  ∈  dom  𝑂  ∧  ( ◡ 𝑂 ‘ 𝑋 )  ⊆  𝑢 ) )  →  Ord  ( 𝑂 ‘ suc  𝑢 ) ) | 
						
							| 251 |  | ordelsuc | ⊢ ( ( ( 𝑂 ‘ 𝑢 )  ∈  On  ∧  Ord  ( 𝑂 ‘ suc  𝑢 ) )  →  ( ( 𝑂 ‘ 𝑢 )  ∈  ( 𝑂 ‘ suc  𝑢 )  ↔  suc  ( 𝑂 ‘ 𝑢 )  ⊆  ( 𝑂 ‘ suc  𝑢 ) ) ) | 
						
							| 252 | 234 250 251 | syl2anc | ⊢ ( ( 𝜑  ∧  ( suc  𝑢  ∈  dom  𝑂  ∧  ( ◡ 𝑂 ‘ 𝑋 )  ⊆  𝑢 ) )  →  ( ( 𝑂 ‘ 𝑢 )  ∈  ( 𝑂 ‘ suc  𝑢 )  ↔  suc  ( 𝑂 ‘ 𝑢 )  ⊆  ( 𝑂 ‘ suc  𝑢 ) ) ) | 
						
							| 253 | 248 252 | mpbid | ⊢ ( ( 𝜑  ∧  ( suc  𝑢  ∈  dom  𝑂  ∧  ( ◡ 𝑂 ‘ 𝑋 )  ⊆  𝑢 ) )  →  suc  ( 𝑂 ‘ 𝑢 )  ⊆  ( 𝑂 ‘ suc  𝑢 ) ) | 
						
							| 254 | 253 | ad2antrr | ⊢ ( ( ( ( 𝜑  ∧  ( suc  𝑢  ∈  dom  𝑂  ∧  ( ◡ 𝑂 ‘ 𝑋 )  ⊆  𝑢 ) )  ∧  𝑥  ∈  𝐵 )  ∧  ( 𝐹 ‘ 𝑥 )  ≠  ∅ )  →  suc  ( 𝑂 ‘ 𝑢 )  ⊆  ( 𝑂 ‘ suc  𝑢 ) ) | 
						
							| 255 | 254 | sseld | ⊢ ( ( ( ( 𝜑  ∧  ( suc  𝑢  ∈  dom  𝑂  ∧  ( ◡ 𝑂 ‘ 𝑋 )  ⊆  𝑢 ) )  ∧  𝑥  ∈  𝐵 )  ∧  ( 𝐹 ‘ 𝑥 )  ≠  ∅ )  →  ( 𝑥  ∈  suc  ( 𝑂 ‘ 𝑢 )  →  𝑥  ∈  ( 𝑂 ‘ suc  𝑢 ) ) ) | 
						
							| 256 | 237 255 | sylbid | ⊢ ( ( ( ( 𝜑  ∧  ( suc  𝑢  ∈  dom  𝑂  ∧  ( ◡ 𝑂 ‘ 𝑋 )  ⊆  𝑢 ) )  ∧  𝑥  ∈  𝐵 )  ∧  ( 𝐹 ‘ 𝑥 )  ≠  ∅ )  →  ( 𝑥  ⊆  ( 𝑂 ‘ 𝑢 )  →  𝑥  ∈  ( 𝑂 ‘ suc  𝑢 ) ) ) | 
						
							| 257 |  | simprr | ⊢ ( ( ( ( 𝜑  ∧  ( suc  𝑢  ∈  dom  𝑂  ∧  ( ◡ 𝑂 ‘ 𝑋 )  ⊆  𝑢 ) )  ∧  𝑥  ∈  𝐵 )  ∧  ( ( 𝐹 ‘ 𝑥 )  ≠  ∅  ∧  ( 𝑂 ‘ 𝑢 )  ∈  𝑥 ) )  →  ( 𝑂 ‘ 𝑢 )  ∈  𝑥 ) | 
						
							| 258 | 240 | ad2antrr | ⊢ ( ( ( ( 𝜑  ∧  ( suc  𝑢  ∈  dom  𝑂  ∧  ( ◡ 𝑂 ‘ 𝑋 )  ⊆  𝑢 ) )  ∧  𝑥  ∈  𝐵 )  ∧  ( ( 𝐹 ‘ 𝑥 )  ≠  ∅  ∧  ( 𝑂 ‘ 𝑢 )  ∈  𝑥 ) )  →  𝑂  Isom   E  ,   E  ( dom  𝑂 ,  ( 𝐺  supp  ∅ ) ) ) | 
						
							| 259 | 258 48 | syl | ⊢ ( ( ( ( 𝜑  ∧  ( suc  𝑢  ∈  dom  𝑂  ∧  ( ◡ 𝑂 ‘ 𝑋 )  ⊆  𝑢 ) )  ∧  𝑥  ∈  𝐵 )  ∧  ( ( 𝐹 ‘ 𝑥 )  ≠  ∅  ∧  ( 𝑂 ‘ 𝑢 )  ∈  𝑥 ) )  →  𝑂 : dom  𝑂 –1-1-onto→ ( 𝐺  supp  ∅ ) ) | 
						
							| 260 | 1 2 3 4 5 6 7 8 9 | cantnflem1c | ⊢ ( ( ( ( 𝜑  ∧  ( suc  𝑢  ∈  dom  𝑂  ∧  ( ◡ 𝑂 ‘ 𝑋 )  ⊆  𝑢 ) )  ∧  𝑥  ∈  𝐵 )  ∧  ( ( 𝐹 ‘ 𝑥 )  ≠  ∅  ∧  ( 𝑂 ‘ 𝑢 )  ∈  𝑥 ) )  →  𝑥  ∈  ( 𝐺  supp  ∅ ) ) | 
						
							| 261 |  | f1ocnvfv2 | ⊢ ( ( 𝑂 : dom  𝑂 –1-1-onto→ ( 𝐺  supp  ∅ )  ∧  𝑥  ∈  ( 𝐺  supp  ∅ ) )  →  ( 𝑂 ‘ ( ◡ 𝑂 ‘ 𝑥 ) )  =  𝑥 ) | 
						
							| 262 | 259 260 261 | syl2anc | ⊢ ( ( ( ( 𝜑  ∧  ( suc  𝑢  ∈  dom  𝑂  ∧  ( ◡ 𝑂 ‘ 𝑋 )  ⊆  𝑢 ) )  ∧  𝑥  ∈  𝐵 )  ∧  ( ( 𝐹 ‘ 𝑥 )  ≠  ∅  ∧  ( 𝑂 ‘ 𝑢 )  ∈  𝑥 ) )  →  ( 𝑂 ‘ ( ◡ 𝑂 ‘ 𝑥 ) )  =  𝑥 ) | 
						
							| 263 | 257 262 | eleqtrrd | ⊢ ( ( ( ( 𝜑  ∧  ( suc  𝑢  ∈  dom  𝑂  ∧  ( ◡ 𝑂 ‘ 𝑋 )  ⊆  𝑢 ) )  ∧  𝑥  ∈  𝐵 )  ∧  ( ( 𝐹 ‘ 𝑥 )  ≠  ∅  ∧  ( 𝑂 ‘ 𝑢 )  ∈  𝑥 ) )  →  ( 𝑂 ‘ 𝑢 )  ∈  ( 𝑂 ‘ ( ◡ 𝑂 ‘ 𝑥 ) ) ) | 
						
							| 264 | 145 | ad2antrr | ⊢ ( ( ( ( 𝜑  ∧  ( suc  𝑢  ∈  dom  𝑂  ∧  ( ◡ 𝑂 ‘ 𝑋 )  ⊆  𝑢 ) )  ∧  𝑥  ∈  𝐵 )  ∧  ( ( 𝐹 ‘ 𝑥 )  ≠  ∅  ∧  ( 𝑂 ‘ 𝑢 )  ∈  𝑥 ) )  →  𝑢  ∈  dom  𝑂 ) | 
						
							| 265 | 259 50 51 | 3syl | ⊢ ( ( ( ( 𝜑  ∧  ( suc  𝑢  ∈  dom  𝑂  ∧  ( ◡ 𝑂 ‘ 𝑋 )  ⊆  𝑢 ) )  ∧  𝑥  ∈  𝐵 )  ∧  ( ( 𝐹 ‘ 𝑥 )  ≠  ∅  ∧  ( 𝑂 ‘ 𝑢 )  ∈  𝑥 ) )  →  ◡ 𝑂 : ( 𝐺  supp  ∅ ) ⟶ dom  𝑂 ) | 
						
							| 266 | 265 260 | ffvelcdmd | ⊢ ( ( ( ( 𝜑  ∧  ( suc  𝑢  ∈  dom  𝑂  ∧  ( ◡ 𝑂 ‘ 𝑋 )  ⊆  𝑢 ) )  ∧  𝑥  ∈  𝐵 )  ∧  ( ( 𝐹 ‘ 𝑥 )  ≠  ∅  ∧  ( 𝑂 ‘ 𝑢 )  ∈  𝑥 ) )  →  ( ◡ 𝑂 ‘ 𝑥 )  ∈  dom  𝑂 ) | 
						
							| 267 |  | isorel | ⊢ ( ( 𝑂  Isom   E  ,   E  ( dom  𝑂 ,  ( 𝐺  supp  ∅ ) )  ∧  ( 𝑢  ∈  dom  𝑂  ∧  ( ◡ 𝑂 ‘ 𝑥 )  ∈  dom  𝑂 ) )  →  ( 𝑢  E  ( ◡ 𝑂 ‘ 𝑥 )  ↔  ( 𝑂 ‘ 𝑢 )  E  ( 𝑂 ‘ ( ◡ 𝑂 ‘ 𝑥 ) ) ) ) | 
						
							| 268 | 258 264 266 267 | syl12anc | ⊢ ( ( ( ( 𝜑  ∧  ( suc  𝑢  ∈  dom  𝑂  ∧  ( ◡ 𝑂 ‘ 𝑋 )  ⊆  𝑢 ) )  ∧  𝑥  ∈  𝐵 )  ∧  ( ( 𝐹 ‘ 𝑥 )  ≠  ∅  ∧  ( 𝑂 ‘ 𝑢 )  ∈  𝑥 ) )  →  ( 𝑢  E  ( ◡ 𝑂 ‘ 𝑥 )  ↔  ( 𝑂 ‘ 𝑢 )  E  ( 𝑂 ‘ ( ◡ 𝑂 ‘ 𝑥 ) ) ) ) | 
						
							| 269 |  | fvex | ⊢ ( ◡ 𝑂 ‘ 𝑥 )  ∈  V | 
						
							| 270 | 269 | epeli | ⊢ ( 𝑢  E  ( ◡ 𝑂 ‘ 𝑥 )  ↔  𝑢  ∈  ( ◡ 𝑂 ‘ 𝑥 ) ) | 
						
							| 271 |  | fvex | ⊢ ( 𝑂 ‘ ( ◡ 𝑂 ‘ 𝑥 ) )  ∈  V | 
						
							| 272 | 271 | epeli | ⊢ ( ( 𝑂 ‘ 𝑢 )  E  ( 𝑂 ‘ ( ◡ 𝑂 ‘ 𝑥 ) )  ↔  ( 𝑂 ‘ 𝑢 )  ∈  ( 𝑂 ‘ ( ◡ 𝑂 ‘ 𝑥 ) ) ) | 
						
							| 273 | 268 270 272 | 3bitr3g | ⊢ ( ( ( ( 𝜑  ∧  ( suc  𝑢  ∈  dom  𝑂  ∧  ( ◡ 𝑂 ‘ 𝑋 )  ⊆  𝑢 ) )  ∧  𝑥  ∈  𝐵 )  ∧  ( ( 𝐹 ‘ 𝑥 )  ≠  ∅  ∧  ( 𝑂 ‘ 𝑢 )  ∈  𝑥 ) )  →  ( 𝑢  ∈  ( ◡ 𝑂 ‘ 𝑥 )  ↔  ( 𝑂 ‘ 𝑢 )  ∈  ( 𝑂 ‘ ( ◡ 𝑂 ‘ 𝑥 ) ) ) ) | 
						
							| 274 | 263 273 | mpbird | ⊢ ( ( ( ( 𝜑  ∧  ( suc  𝑢  ∈  dom  𝑂  ∧  ( ◡ 𝑂 ‘ 𝑋 )  ⊆  𝑢 ) )  ∧  𝑥  ∈  𝐵 )  ∧  ( ( 𝐹 ‘ 𝑥 )  ≠  ∅  ∧  ( 𝑂 ‘ 𝑢 )  ∈  𝑥 ) )  →  𝑢  ∈  ( ◡ 𝑂 ‘ 𝑥 ) ) | 
						
							| 275 |  | ordelon | ⊢ ( ( Ord  dom  𝑂  ∧  ( ◡ 𝑂 ‘ 𝑥 )  ∈  dom  𝑂 )  →  ( ◡ 𝑂 ‘ 𝑥 )  ∈  On ) | 
						
							| 276 | 37 266 275 | sylancr | ⊢ ( ( ( ( 𝜑  ∧  ( suc  𝑢  ∈  dom  𝑂  ∧  ( ◡ 𝑂 ‘ 𝑋 )  ⊆  𝑢 ) )  ∧  𝑥  ∈  𝐵 )  ∧  ( ( 𝐹 ‘ 𝑥 )  ≠  ∅  ∧  ( 𝑂 ‘ 𝑢 )  ∈  𝑥 ) )  →  ( ◡ 𝑂 ‘ 𝑥 )  ∈  On ) | 
						
							| 277 |  | eloni | ⊢ ( ( ◡ 𝑂 ‘ 𝑥 )  ∈  On  →  Ord  ( ◡ 𝑂 ‘ 𝑥 ) ) | 
						
							| 278 | 276 277 | syl | ⊢ ( ( ( ( 𝜑  ∧  ( suc  𝑢  ∈  dom  𝑂  ∧  ( ◡ 𝑂 ‘ 𝑋 )  ⊆  𝑢 ) )  ∧  𝑥  ∈  𝐵 )  ∧  ( ( 𝐹 ‘ 𝑥 )  ≠  ∅  ∧  ( 𝑂 ‘ 𝑢 )  ∈  𝑥 ) )  →  Ord  ( ◡ 𝑂 ‘ 𝑥 ) ) | 
						
							| 279 |  | ordelsuc | ⊢ ( ( 𝑢  ∈  ( ◡ 𝑂 ‘ 𝑥 )  ∧  Ord  ( ◡ 𝑂 ‘ 𝑥 ) )  →  ( 𝑢  ∈  ( ◡ 𝑂 ‘ 𝑥 )  ↔  suc  𝑢  ⊆  ( ◡ 𝑂 ‘ 𝑥 ) ) ) | 
						
							| 280 | 274 278 279 | syl2anc | ⊢ ( ( ( ( 𝜑  ∧  ( suc  𝑢  ∈  dom  𝑂  ∧  ( ◡ 𝑂 ‘ 𝑋 )  ⊆  𝑢 ) )  ∧  𝑥  ∈  𝐵 )  ∧  ( ( 𝐹 ‘ 𝑥 )  ≠  ∅  ∧  ( 𝑂 ‘ 𝑢 )  ∈  𝑥 ) )  →  ( 𝑢  ∈  ( ◡ 𝑂 ‘ 𝑥 )  ↔  suc  𝑢  ⊆  ( ◡ 𝑂 ‘ 𝑥 ) ) ) | 
						
							| 281 | 274 280 | mpbid | ⊢ ( ( ( ( 𝜑  ∧  ( suc  𝑢  ∈  dom  𝑂  ∧  ( ◡ 𝑂 ‘ 𝑋 )  ⊆  𝑢 ) )  ∧  𝑥  ∈  𝐵 )  ∧  ( ( 𝐹 ‘ 𝑥 )  ≠  ∅  ∧  ( 𝑂 ‘ 𝑢 )  ∈  𝑥 ) )  →  suc  𝑢  ⊆  ( ◡ 𝑂 ‘ 𝑥 ) ) | 
						
							| 282 | 143 | ad2antrr | ⊢ ( ( ( ( 𝜑  ∧  ( suc  𝑢  ∈  dom  𝑂  ∧  ( ◡ 𝑂 ‘ 𝑋 )  ⊆  𝑢 ) )  ∧  𝑥  ∈  𝐵 )  ∧  ( ( 𝐹 ‘ 𝑥 )  ≠  ∅  ∧  ( 𝑂 ‘ 𝑢 )  ∈  𝑥 ) )  →  suc  𝑢  ∈  dom  𝑂 ) | 
						
							| 283 | 37 282 131 | sylancr | ⊢ ( ( ( ( 𝜑  ∧  ( suc  𝑢  ∈  dom  𝑂  ∧  ( ◡ 𝑂 ‘ 𝑋 )  ⊆  𝑢 ) )  ∧  𝑥  ∈  𝐵 )  ∧  ( ( 𝐹 ‘ 𝑥 )  ≠  ∅  ∧  ( 𝑂 ‘ 𝑢 )  ∈  𝑥 ) )  →  suc  𝑢  ∈  On ) | 
						
							| 284 |  | ontri1 | ⊢ ( ( suc  𝑢  ∈  On  ∧  ( ◡ 𝑂 ‘ 𝑥 )  ∈  On )  →  ( suc  𝑢  ⊆  ( ◡ 𝑂 ‘ 𝑥 )  ↔  ¬  ( ◡ 𝑂 ‘ 𝑥 )  ∈  suc  𝑢 ) ) | 
						
							| 285 | 283 276 284 | syl2anc | ⊢ ( ( ( ( 𝜑  ∧  ( suc  𝑢  ∈  dom  𝑂  ∧  ( ◡ 𝑂 ‘ 𝑋 )  ⊆  𝑢 ) )  ∧  𝑥  ∈  𝐵 )  ∧  ( ( 𝐹 ‘ 𝑥 )  ≠  ∅  ∧  ( 𝑂 ‘ 𝑢 )  ∈  𝑥 ) )  →  ( suc  𝑢  ⊆  ( ◡ 𝑂 ‘ 𝑥 )  ↔  ¬  ( ◡ 𝑂 ‘ 𝑥 )  ∈  suc  𝑢 ) ) | 
						
							| 286 | 281 285 | mpbid | ⊢ ( ( ( ( 𝜑  ∧  ( suc  𝑢  ∈  dom  𝑂  ∧  ( ◡ 𝑂 ‘ 𝑋 )  ⊆  𝑢 ) )  ∧  𝑥  ∈  𝐵 )  ∧  ( ( 𝐹 ‘ 𝑥 )  ≠  ∅  ∧  ( 𝑂 ‘ 𝑢 )  ∈  𝑥 ) )  →  ¬  ( ◡ 𝑂 ‘ 𝑥 )  ∈  suc  𝑢 ) | 
						
							| 287 |  | isorel | ⊢ ( ( 𝑂  Isom   E  ,   E  ( dom  𝑂 ,  ( 𝐺  supp  ∅ ) )  ∧  ( ( ◡ 𝑂 ‘ 𝑥 )  ∈  dom  𝑂  ∧  suc  𝑢  ∈  dom  𝑂 ) )  →  ( ( ◡ 𝑂 ‘ 𝑥 )  E  suc  𝑢  ↔  ( 𝑂 ‘ ( ◡ 𝑂 ‘ 𝑥 ) )  E  ( 𝑂 ‘ suc  𝑢 ) ) ) | 
						
							| 288 | 258 266 282 287 | syl12anc | ⊢ ( ( ( ( 𝜑  ∧  ( suc  𝑢  ∈  dom  𝑂  ∧  ( ◡ 𝑂 ‘ 𝑋 )  ⊆  𝑢 ) )  ∧  𝑥  ∈  𝐵 )  ∧  ( ( 𝐹 ‘ 𝑥 )  ≠  ∅  ∧  ( 𝑂 ‘ 𝑢 )  ∈  𝑥 ) )  →  ( ( ◡ 𝑂 ‘ 𝑥 )  E  suc  𝑢  ↔  ( 𝑂 ‘ ( ◡ 𝑂 ‘ 𝑥 ) )  E  ( 𝑂 ‘ suc  𝑢 ) ) ) | 
						
							| 289 | 243 | epeli | ⊢ ( ( ◡ 𝑂 ‘ 𝑥 )  E  suc  𝑢  ↔  ( ◡ 𝑂 ‘ 𝑥 )  ∈  suc  𝑢 ) | 
						
							| 290 | 245 | epeli | ⊢ ( ( 𝑂 ‘ ( ◡ 𝑂 ‘ 𝑥 ) )  E  ( 𝑂 ‘ suc  𝑢 )  ↔  ( 𝑂 ‘ ( ◡ 𝑂 ‘ 𝑥 ) )  ∈  ( 𝑂 ‘ suc  𝑢 ) ) | 
						
							| 291 | 288 289 290 | 3bitr3g | ⊢ ( ( ( ( 𝜑  ∧  ( suc  𝑢  ∈  dom  𝑂  ∧  ( ◡ 𝑂 ‘ 𝑋 )  ⊆  𝑢 ) )  ∧  𝑥  ∈  𝐵 )  ∧  ( ( 𝐹 ‘ 𝑥 )  ≠  ∅  ∧  ( 𝑂 ‘ 𝑢 )  ∈  𝑥 ) )  →  ( ( ◡ 𝑂 ‘ 𝑥 )  ∈  suc  𝑢  ↔  ( 𝑂 ‘ ( ◡ 𝑂 ‘ 𝑥 ) )  ∈  ( 𝑂 ‘ suc  𝑢 ) ) ) | 
						
							| 292 | 262 | eleq1d | ⊢ ( ( ( ( 𝜑  ∧  ( suc  𝑢  ∈  dom  𝑂  ∧  ( ◡ 𝑂 ‘ 𝑋 )  ⊆  𝑢 ) )  ∧  𝑥  ∈  𝐵 )  ∧  ( ( 𝐹 ‘ 𝑥 )  ≠  ∅  ∧  ( 𝑂 ‘ 𝑢 )  ∈  𝑥 ) )  →  ( ( 𝑂 ‘ ( ◡ 𝑂 ‘ 𝑥 ) )  ∈  ( 𝑂 ‘ suc  𝑢 )  ↔  𝑥  ∈  ( 𝑂 ‘ suc  𝑢 ) ) ) | 
						
							| 293 | 291 292 | bitrd | ⊢ ( ( ( ( 𝜑  ∧  ( suc  𝑢  ∈  dom  𝑂  ∧  ( ◡ 𝑂 ‘ 𝑋 )  ⊆  𝑢 ) )  ∧  𝑥  ∈  𝐵 )  ∧  ( ( 𝐹 ‘ 𝑥 )  ≠  ∅  ∧  ( 𝑂 ‘ 𝑢 )  ∈  𝑥 ) )  →  ( ( ◡ 𝑂 ‘ 𝑥 )  ∈  suc  𝑢  ↔  𝑥  ∈  ( 𝑂 ‘ suc  𝑢 ) ) ) | 
						
							| 294 | 286 293 | mtbid | ⊢ ( ( ( ( 𝜑  ∧  ( suc  𝑢  ∈  dom  𝑂  ∧  ( ◡ 𝑂 ‘ 𝑋 )  ⊆  𝑢 ) )  ∧  𝑥  ∈  𝐵 )  ∧  ( ( 𝐹 ‘ 𝑥 )  ≠  ∅  ∧  ( 𝑂 ‘ 𝑢 )  ∈  𝑥 ) )  →  ¬  𝑥  ∈  ( 𝑂 ‘ suc  𝑢 ) ) | 
						
							| 295 | 294 | expr | ⊢ ( ( ( ( 𝜑  ∧  ( suc  𝑢  ∈  dom  𝑂  ∧  ( ◡ 𝑂 ‘ 𝑋 )  ⊆  𝑢 ) )  ∧  𝑥  ∈  𝐵 )  ∧  ( 𝐹 ‘ 𝑥 )  ≠  ∅ )  →  ( ( 𝑂 ‘ 𝑢 )  ∈  𝑥  →  ¬  𝑥  ∈  ( 𝑂 ‘ suc  𝑢 ) ) ) | 
						
							| 296 | 295 | con2d | ⊢ ( ( ( ( 𝜑  ∧  ( suc  𝑢  ∈  dom  𝑂  ∧  ( ◡ 𝑂 ‘ 𝑋 )  ⊆  𝑢 ) )  ∧  𝑥  ∈  𝐵 )  ∧  ( 𝐹 ‘ 𝑥 )  ≠  ∅ )  →  ( 𝑥  ∈  ( 𝑂 ‘ suc  𝑢 )  →  ¬  ( 𝑂 ‘ 𝑢 )  ∈  𝑥 ) ) | 
						
							| 297 |  | ontri1 | ⊢ ( ( 𝑥  ∈  On  ∧  ( 𝑂 ‘ 𝑢 )  ∈  On )  →  ( 𝑥  ⊆  ( 𝑂 ‘ 𝑢 )  ↔  ¬  ( 𝑂 ‘ 𝑢 )  ∈  𝑥 ) ) | 
						
							| 298 | 225 235 297 | syl2an2r | ⊢ ( ( ( ( 𝜑  ∧  ( suc  𝑢  ∈  dom  𝑂  ∧  ( ◡ 𝑂 ‘ 𝑋 )  ⊆  𝑢 ) )  ∧  𝑥  ∈  𝐵 )  ∧  ( 𝐹 ‘ 𝑥 )  ≠  ∅ )  →  ( 𝑥  ⊆  ( 𝑂 ‘ 𝑢 )  ↔  ¬  ( 𝑂 ‘ 𝑢 )  ∈  𝑥 ) ) | 
						
							| 299 | 296 298 | sylibrd | ⊢ ( ( ( ( 𝜑  ∧  ( suc  𝑢  ∈  dom  𝑂  ∧  ( ◡ 𝑂 ‘ 𝑋 )  ⊆  𝑢 ) )  ∧  𝑥  ∈  𝐵 )  ∧  ( 𝐹 ‘ 𝑥 )  ≠  ∅ )  →  ( 𝑥  ∈  ( 𝑂 ‘ suc  𝑢 )  →  𝑥  ⊆  ( 𝑂 ‘ 𝑢 ) ) ) | 
						
							| 300 | 256 299 | impbid | ⊢ ( ( ( ( 𝜑  ∧  ( suc  𝑢  ∈  dom  𝑂  ∧  ( ◡ 𝑂 ‘ 𝑋 )  ⊆  𝑢 ) )  ∧  𝑥  ∈  𝐵 )  ∧  ( 𝐹 ‘ 𝑥 )  ≠  ∅ )  →  ( 𝑥  ⊆  ( 𝑂 ‘ 𝑢 )  ↔  𝑥  ∈  ( 𝑂 ‘ suc  𝑢 ) ) ) | 
						
							| 301 | 300 | orbi1d | ⊢ ( ( ( ( 𝜑  ∧  ( suc  𝑢  ∈  dom  𝑂  ∧  ( ◡ 𝑂 ‘ 𝑋 )  ⊆  𝑢 ) )  ∧  𝑥  ∈  𝐵 )  ∧  ( 𝐹 ‘ 𝑥 )  ≠  ∅ )  →  ( ( 𝑥  ⊆  ( 𝑂 ‘ 𝑢 )  ∨  𝑥  =  ( 𝑂 ‘ suc  𝑢 ) )  ↔  ( 𝑥  ∈  ( 𝑂 ‘ suc  𝑢 )  ∨  𝑥  =  ( 𝑂 ‘ suc  𝑢 ) ) ) ) | 
						
							| 302 | 229 301 | bitr4d | ⊢ ( ( ( ( 𝜑  ∧  ( suc  𝑢  ∈  dom  𝑂  ∧  ( ◡ 𝑂 ‘ 𝑋 )  ⊆  𝑢 ) )  ∧  𝑥  ∈  𝐵 )  ∧  ( 𝐹 ‘ 𝑥 )  ≠  ∅ )  →  ( 𝑥  ⊆  ( 𝑂 ‘ suc  𝑢 )  ↔  ( 𝑥  ⊆  ( 𝑂 ‘ 𝑢 )  ∨  𝑥  =  ( 𝑂 ‘ suc  𝑢 ) ) ) ) | 
						
							| 303 |  | orcom | ⊢ ( ( 𝑥  ⊆  ( 𝑂 ‘ 𝑢 )  ∨  𝑥  =  ( 𝑂 ‘ suc  𝑢 ) )  ↔  ( 𝑥  =  ( 𝑂 ‘ suc  𝑢 )  ∨  𝑥  ⊆  ( 𝑂 ‘ 𝑢 ) ) ) | 
						
							| 304 | 302 303 | bitrdi | ⊢ ( ( ( ( 𝜑  ∧  ( suc  𝑢  ∈  dom  𝑂  ∧  ( ◡ 𝑂 ‘ 𝑋 )  ⊆  𝑢 ) )  ∧  𝑥  ∈  𝐵 )  ∧  ( 𝐹 ‘ 𝑥 )  ≠  ∅ )  →  ( 𝑥  ⊆  ( 𝑂 ‘ suc  𝑢 )  ↔  ( 𝑥  =  ( 𝑂 ‘ suc  𝑢 )  ∨  𝑥  ⊆  ( 𝑂 ‘ 𝑢 ) ) ) ) | 
						
							| 305 | 304 | ifbid | ⊢ ( ( ( ( 𝜑  ∧  ( suc  𝑢  ∈  dom  𝑂  ∧  ( ◡ 𝑂 ‘ 𝑋 )  ⊆  𝑢 ) )  ∧  𝑥  ∈  𝐵 )  ∧  ( 𝐹 ‘ 𝑥 )  ≠  ∅ )  →  if ( 𝑥  ⊆  ( 𝑂 ‘ suc  𝑢 ) ,  ( 𝐹 ‘ 𝑥 ) ,  ∅ )  =  if ( ( 𝑥  =  ( 𝑂 ‘ suc  𝑢 )  ∨  𝑥  ⊆  ( 𝑂 ‘ 𝑢 ) ) ,  ( 𝐹 ‘ 𝑥 ) ,  ∅ ) ) | 
						
							| 306 |  | eqidd | ⊢ ( ( ( 𝜑  ∧  ( suc  𝑢  ∈  dom  𝑂  ∧  ( ◡ 𝑂 ‘ 𝑋 )  ⊆  𝑢 ) )  ∧  𝑥  ∈  𝐵 )  →  ∅  =  ∅ ) | 
						
							| 307 | 221 305 306 | pm2.61ne | ⊢ ( ( ( 𝜑  ∧  ( suc  𝑢  ∈  dom  𝑂  ∧  ( ◡ 𝑂 ‘ 𝑋 )  ⊆  𝑢 ) )  ∧  𝑥  ∈  𝐵 )  →  if ( 𝑥  ⊆  ( 𝑂 ‘ suc  𝑢 ) ,  ( 𝐹 ‘ 𝑥 ) ,  ∅ )  =  if ( ( 𝑥  =  ( 𝑂 ‘ suc  𝑢 )  ∨  𝑥  ⊆  ( 𝑂 ‘ 𝑢 ) ) ,  ( 𝐹 ‘ 𝑥 ) ,  ∅ ) ) | 
						
							| 308 | 307 | mpteq2dva | ⊢ ( ( 𝜑  ∧  ( suc  𝑢  ∈  dom  𝑂  ∧  ( ◡ 𝑂 ‘ 𝑋 )  ⊆  𝑢 ) )  →  ( 𝑥  ∈  𝐵  ↦  if ( 𝑥  ⊆  ( 𝑂 ‘ suc  𝑢 ) ,  ( 𝐹 ‘ 𝑥 ) ,  ∅ ) )  =  ( 𝑥  ∈  𝐵  ↦  if ( ( 𝑥  =  ( 𝑂 ‘ suc  𝑢 )  ∨  𝑥  ⊆  ( 𝑂 ‘ 𝑢 ) ) ,  ( 𝐹 ‘ 𝑥 ) ,  ∅ ) ) ) | 
						
							| 309 | 308 | fveq2d | ⊢ ( ( 𝜑  ∧  ( suc  𝑢  ∈  dom  𝑂  ∧  ( ◡ 𝑂 ‘ 𝑋 )  ⊆  𝑢 ) )  →  ( ( 𝐴  CNF  𝐵 ) ‘ ( 𝑥  ∈  𝐵  ↦  if ( 𝑥  ⊆  ( 𝑂 ‘ suc  𝑢 ) ,  ( 𝐹 ‘ 𝑥 ) ,  ∅ ) ) )  =  ( ( 𝐴  CNF  𝐵 ) ‘ ( 𝑥  ∈  𝐵  ↦  if ( ( 𝑥  =  ( 𝑂 ‘ suc  𝑢 )  ∨  𝑥  ⊆  ( 𝑂 ‘ 𝑢 ) ) ,  ( 𝐹 ‘ 𝑥 ) ,  ∅ ) ) ) ) | 
						
							| 310 |  | fvex | ⊢ ( 𝐹 ‘ 𝑥 )  ∈  V | 
						
							| 311 | 310 175 | ifex | ⊢ if ( 𝑥  ⊆  ( 𝑂 ‘ 𝑢 ) ,  ( 𝐹 ‘ 𝑥 ) ,  ∅ )  ∈  V | 
						
							| 312 | 311 | a1i | ⊢ ( ( 𝜑  ∧  ( suc  𝑢  ∈  dom  𝑂  ∧  ( ◡ 𝑂 ‘ 𝑋 )  ⊆  𝑢 ) )  →  if ( 𝑥  ⊆  ( 𝑂 ‘ 𝑢 ) ,  ( 𝐹 ‘ 𝑥 ) ,  ∅ )  ∈  V ) | 
						
							| 313 | 312 | ralrimivw | ⊢ ( ( 𝜑  ∧  ( suc  𝑢  ∈  dom  𝑂  ∧  ( ◡ 𝑂 ‘ 𝑋 )  ⊆  𝑢 ) )  →  ∀ 𝑥  ∈  𝐵 if ( 𝑥  ⊆  ( 𝑂 ‘ 𝑢 ) ,  ( 𝐹 ‘ 𝑥 ) ,  ∅ )  ∈  V ) | 
						
							| 314 |  | eqid | ⊢ ( 𝑥  ∈  𝐵  ↦  if ( 𝑥  ⊆  ( 𝑂 ‘ 𝑢 ) ,  ( 𝐹 ‘ 𝑥 ) ,  ∅ ) )  =  ( 𝑥  ∈  𝐵  ↦  if ( 𝑥  ⊆  ( 𝑂 ‘ 𝑢 ) ,  ( 𝐹 ‘ 𝑥 ) ,  ∅ ) ) | 
						
							| 315 | 314 | fnmpt | ⊢ ( ∀ 𝑥  ∈  𝐵 if ( 𝑥  ⊆  ( 𝑂 ‘ 𝑢 ) ,  ( 𝐹 ‘ 𝑥 ) ,  ∅ )  ∈  V  →  ( 𝑥  ∈  𝐵  ↦  if ( 𝑥  ⊆  ( 𝑂 ‘ 𝑢 ) ,  ( 𝐹 ‘ 𝑥 ) ,  ∅ ) )  Fn  𝐵 ) | 
						
							| 316 | 313 315 | syl | ⊢ ( ( 𝜑  ∧  ( suc  𝑢  ∈  dom  𝑂  ∧  ( ◡ 𝑂 ‘ 𝑋 )  ⊆  𝑢 ) )  →  ( 𝑥  ∈  𝐵  ↦  if ( 𝑥  ⊆  ( 𝑂 ‘ 𝑢 ) ,  ( 𝐹 ‘ 𝑥 ) ,  ∅ ) )  Fn  𝐵 ) | 
						
							| 317 | 175 | a1i | ⊢ ( ( 𝜑  ∧  ( suc  𝑢  ∈  dom  𝑂  ∧  ( ◡ 𝑂 ‘ 𝑋 )  ⊆  𝑢 ) )  →  ∅  ∈  V ) | 
						
							| 318 |  | suppvalfn | ⊢ ( ( ( 𝑥  ∈  𝐵  ↦  if ( 𝑥  ⊆  ( 𝑂 ‘ 𝑢 ) ,  ( 𝐹 ‘ 𝑥 ) ,  ∅ ) )  Fn  𝐵  ∧  𝐵  ∈  On  ∧  ∅  ∈  V )  →  ( ( 𝑥  ∈  𝐵  ↦  if ( 𝑥  ⊆  ( 𝑂 ‘ 𝑢 ) ,  ( 𝐹 ‘ 𝑥 ) ,  ∅ ) )  supp  ∅ )  =  { 𝑦  ∈  𝐵  ∣  ( ( 𝑥  ∈  𝐵  ↦  if ( 𝑥  ⊆  ( 𝑂 ‘ 𝑢 ) ,  ( 𝐹 ‘ 𝑥 ) ,  ∅ ) ) ‘ 𝑦 )  ≠  ∅ } ) | 
						
							| 319 |  | nfcv | ⊢ Ⅎ 𝑦 𝐵 | 
						
							| 320 |  | nfcv | ⊢ Ⅎ 𝑥 𝐵 | 
						
							| 321 |  | nffvmpt1 | ⊢ Ⅎ 𝑥 ( ( 𝑥  ∈  𝐵  ↦  if ( 𝑥  ⊆  ( 𝑂 ‘ 𝑢 ) ,  ( 𝐹 ‘ 𝑥 ) ,  ∅ ) ) ‘ 𝑦 ) | 
						
							| 322 |  | nfcv | ⊢ Ⅎ 𝑥 ∅ | 
						
							| 323 | 321 322 | nfne | ⊢ Ⅎ 𝑥 ( ( 𝑥  ∈  𝐵  ↦  if ( 𝑥  ⊆  ( 𝑂 ‘ 𝑢 ) ,  ( 𝐹 ‘ 𝑥 ) ,  ∅ ) ) ‘ 𝑦 )  ≠  ∅ | 
						
							| 324 |  | nfv | ⊢ Ⅎ 𝑦 ( ( 𝑥  ∈  𝐵  ↦  if ( 𝑥  ⊆  ( 𝑂 ‘ 𝑢 ) ,  ( 𝐹 ‘ 𝑥 ) ,  ∅ ) ) ‘ 𝑥 )  ≠  ∅ | 
						
							| 325 |  | fveq2 | ⊢ ( 𝑦  =  𝑥  →  ( ( 𝑥  ∈  𝐵  ↦  if ( 𝑥  ⊆  ( 𝑂 ‘ 𝑢 ) ,  ( 𝐹 ‘ 𝑥 ) ,  ∅ ) ) ‘ 𝑦 )  =  ( ( 𝑥  ∈  𝐵  ↦  if ( 𝑥  ⊆  ( 𝑂 ‘ 𝑢 ) ,  ( 𝐹 ‘ 𝑥 ) ,  ∅ ) ) ‘ 𝑥 ) ) | 
						
							| 326 | 325 | neeq1d | ⊢ ( 𝑦  =  𝑥  →  ( ( ( 𝑥  ∈  𝐵  ↦  if ( 𝑥  ⊆  ( 𝑂 ‘ 𝑢 ) ,  ( 𝐹 ‘ 𝑥 ) ,  ∅ ) ) ‘ 𝑦 )  ≠  ∅  ↔  ( ( 𝑥  ∈  𝐵  ↦  if ( 𝑥  ⊆  ( 𝑂 ‘ 𝑢 ) ,  ( 𝐹 ‘ 𝑥 ) ,  ∅ ) ) ‘ 𝑥 )  ≠  ∅ ) ) | 
						
							| 327 | 319 320 323 324 326 | cbvrabw | ⊢ { 𝑦  ∈  𝐵  ∣  ( ( 𝑥  ∈  𝐵  ↦  if ( 𝑥  ⊆  ( 𝑂 ‘ 𝑢 ) ,  ( 𝐹 ‘ 𝑥 ) ,  ∅ ) ) ‘ 𝑦 )  ≠  ∅ }  =  { 𝑥  ∈  𝐵  ∣  ( ( 𝑥  ∈  𝐵  ↦  if ( 𝑥  ⊆  ( 𝑂 ‘ 𝑢 ) ,  ( 𝐹 ‘ 𝑥 ) ,  ∅ ) ) ‘ 𝑥 )  ≠  ∅ } | 
						
							| 328 | 318 327 | eqtrdi | ⊢ ( ( ( 𝑥  ∈  𝐵  ↦  if ( 𝑥  ⊆  ( 𝑂 ‘ 𝑢 ) ,  ( 𝐹 ‘ 𝑥 ) ,  ∅ ) )  Fn  𝐵  ∧  𝐵  ∈  On  ∧  ∅  ∈  V )  →  ( ( 𝑥  ∈  𝐵  ↦  if ( 𝑥  ⊆  ( 𝑂 ‘ 𝑢 ) ,  ( 𝐹 ‘ 𝑥 ) ,  ∅ ) )  supp  ∅ )  =  { 𝑥  ∈  𝐵  ∣  ( ( 𝑥  ∈  𝐵  ↦  if ( 𝑥  ⊆  ( 𝑂 ‘ 𝑢 ) ,  ( 𝐹 ‘ 𝑥 ) ,  ∅ ) ) ‘ 𝑥 )  ≠  ∅ } ) | 
						
							| 329 | 316 148 317 328 | syl3anc | ⊢ ( ( 𝜑  ∧  ( suc  𝑢  ∈  dom  𝑂  ∧  ( ◡ 𝑂 ‘ 𝑋 )  ⊆  𝑢 ) )  →  ( ( 𝑥  ∈  𝐵  ↦  if ( 𝑥  ⊆  ( 𝑂 ‘ 𝑢 ) ,  ( 𝐹 ‘ 𝑥 ) ,  ∅ ) )  supp  ∅ )  =  { 𝑥  ∈  𝐵  ∣  ( ( 𝑥  ∈  𝐵  ↦  if ( 𝑥  ⊆  ( 𝑂 ‘ 𝑢 ) ,  ( 𝐹 ‘ 𝑥 ) ,  ∅ ) ) ‘ 𝑥 )  ≠  ∅ } ) | 
						
							| 330 |  | eqidd | ⊢ ( ( 𝜑  ∧  ( suc  𝑢  ∈  dom  𝑂  ∧  ( ◡ 𝑂 ‘ 𝑋 )  ⊆  𝑢 ) )  →  ( 𝑥  ∈  𝐵  ↦  if ( 𝑥  ⊆  ( 𝑂 ‘ 𝑢 ) ,  ( 𝐹 ‘ 𝑥 ) ,  ∅ ) )  =  ( 𝑥  ∈  𝐵  ↦  if ( 𝑥  ⊆  ( 𝑂 ‘ 𝑢 ) ,  ( 𝐹 ‘ 𝑥 ) ,  ∅ ) ) ) | 
						
							| 331 | 311 | a1i | ⊢ ( ( ( 𝜑  ∧  ( suc  𝑢  ∈  dom  𝑂  ∧  ( ◡ 𝑂 ‘ 𝑋 )  ⊆  𝑢 ) )  ∧  𝑥  ∈  𝐵 )  →  if ( 𝑥  ⊆  ( 𝑂 ‘ 𝑢 ) ,  ( 𝐹 ‘ 𝑥 ) ,  ∅ )  ∈  V ) | 
						
							| 332 | 330 331 | fvmpt2d | ⊢ ( ( ( 𝜑  ∧  ( suc  𝑢  ∈  dom  𝑂  ∧  ( ◡ 𝑂 ‘ 𝑋 )  ⊆  𝑢 ) )  ∧  𝑥  ∈  𝐵 )  →  ( ( 𝑥  ∈  𝐵  ↦  if ( 𝑥  ⊆  ( 𝑂 ‘ 𝑢 ) ,  ( 𝐹 ‘ 𝑥 ) ,  ∅ ) ) ‘ 𝑥 )  =  if ( 𝑥  ⊆  ( 𝑂 ‘ 𝑢 ) ,  ( 𝐹 ‘ 𝑥 ) ,  ∅ ) ) | 
						
							| 333 | 332 | neeq1d | ⊢ ( ( ( 𝜑  ∧  ( suc  𝑢  ∈  dom  𝑂  ∧  ( ◡ 𝑂 ‘ 𝑋 )  ⊆  𝑢 ) )  ∧  𝑥  ∈  𝐵 )  →  ( ( ( 𝑥  ∈  𝐵  ↦  if ( 𝑥  ⊆  ( 𝑂 ‘ 𝑢 ) ,  ( 𝐹 ‘ 𝑥 ) ,  ∅ ) ) ‘ 𝑥 )  ≠  ∅  ↔  if ( 𝑥  ⊆  ( 𝑂 ‘ 𝑢 ) ,  ( 𝐹 ‘ 𝑥 ) ,  ∅ )  ≠  ∅ ) ) | 
						
							| 334 | 331 | biantrurd | ⊢ ( ( ( 𝜑  ∧  ( suc  𝑢  ∈  dom  𝑂  ∧  ( ◡ 𝑂 ‘ 𝑋 )  ⊆  𝑢 ) )  ∧  𝑥  ∈  𝐵 )  →  ( if ( 𝑥  ⊆  ( 𝑂 ‘ 𝑢 ) ,  ( 𝐹 ‘ 𝑥 ) ,  ∅ )  ≠  ∅  ↔  ( if ( 𝑥  ⊆  ( 𝑂 ‘ 𝑢 ) ,  ( 𝐹 ‘ 𝑥 ) ,  ∅ )  ∈  V  ∧  if ( 𝑥  ⊆  ( 𝑂 ‘ 𝑢 ) ,  ( 𝐹 ‘ 𝑥 ) ,  ∅ )  ≠  ∅ ) ) ) | 
						
							| 335 |  | dif1o | ⊢ ( if ( 𝑥  ⊆  ( 𝑂 ‘ 𝑢 ) ,  ( 𝐹 ‘ 𝑥 ) ,  ∅ )  ∈  ( V  ∖  1o )  ↔  ( if ( 𝑥  ⊆  ( 𝑂 ‘ 𝑢 ) ,  ( 𝐹 ‘ 𝑥 ) ,  ∅ )  ∈  V  ∧  if ( 𝑥  ⊆  ( 𝑂 ‘ 𝑢 ) ,  ( 𝐹 ‘ 𝑥 ) ,  ∅ )  ≠  ∅ ) ) | 
						
							| 336 | 334 335 | bitr4di | ⊢ ( ( ( 𝜑  ∧  ( suc  𝑢  ∈  dom  𝑂  ∧  ( ◡ 𝑂 ‘ 𝑋 )  ⊆  𝑢 ) )  ∧  𝑥  ∈  𝐵 )  →  ( if ( 𝑥  ⊆  ( 𝑂 ‘ 𝑢 ) ,  ( 𝐹 ‘ 𝑥 ) ,  ∅ )  ≠  ∅  ↔  if ( 𝑥  ⊆  ( 𝑂 ‘ 𝑢 ) ,  ( 𝐹 ‘ 𝑥 ) ,  ∅ )  ∈  ( V  ∖  1o ) ) ) | 
						
							| 337 | 333 336 | bitrd | ⊢ ( ( ( 𝜑  ∧  ( suc  𝑢  ∈  dom  𝑂  ∧  ( ◡ 𝑂 ‘ 𝑋 )  ⊆  𝑢 ) )  ∧  𝑥  ∈  𝐵 )  →  ( ( ( 𝑥  ∈  𝐵  ↦  if ( 𝑥  ⊆  ( 𝑂 ‘ 𝑢 ) ,  ( 𝐹 ‘ 𝑥 ) ,  ∅ ) ) ‘ 𝑥 )  ≠  ∅  ↔  if ( 𝑥  ⊆  ( 𝑂 ‘ 𝑢 ) ,  ( 𝐹 ‘ 𝑥 ) ,  ∅ )  ∈  ( V  ∖  1o ) ) ) | 
						
							| 338 | 337 | rabbidva | ⊢ ( ( 𝜑  ∧  ( suc  𝑢  ∈  dom  𝑂  ∧  ( ◡ 𝑂 ‘ 𝑋 )  ⊆  𝑢 ) )  →  { 𝑥  ∈  𝐵  ∣  ( ( 𝑥  ∈  𝐵  ↦  if ( 𝑥  ⊆  ( 𝑂 ‘ 𝑢 ) ,  ( 𝐹 ‘ 𝑥 ) ,  ∅ ) ) ‘ 𝑥 )  ≠  ∅ }  =  { 𝑥  ∈  𝐵  ∣  if ( 𝑥  ⊆  ( 𝑂 ‘ 𝑢 ) ,  ( 𝐹 ‘ 𝑥 ) ,  ∅ )  ∈  ( V  ∖  1o ) } ) | 
						
							| 339 | 329 338 | eqtrd | ⊢ ( ( 𝜑  ∧  ( suc  𝑢  ∈  dom  𝑂  ∧  ( ◡ 𝑂 ‘ 𝑋 )  ⊆  𝑢 ) )  →  ( ( 𝑥  ∈  𝐵  ↦  if ( 𝑥  ⊆  ( 𝑂 ‘ 𝑢 ) ,  ( 𝐹 ‘ 𝑥 ) ,  ∅ ) )  supp  ∅ )  =  { 𝑥  ∈  𝐵  ∣  if ( 𝑥  ⊆  ( 𝑂 ‘ 𝑢 ) ,  ( 𝐹 ‘ 𝑥 ) ,  ∅ )  ∈  ( V  ∖  1o ) } ) | 
						
							| 340 | 311 335 | mpbiran | ⊢ ( if ( 𝑥  ⊆  ( 𝑂 ‘ 𝑢 ) ,  ( 𝐹 ‘ 𝑥 ) ,  ∅ )  ∈  ( V  ∖  1o )  ↔  if ( 𝑥  ⊆  ( 𝑂 ‘ 𝑢 ) ,  ( 𝐹 ‘ 𝑥 ) ,  ∅ )  ≠  ∅ ) | 
						
							| 341 |  | ifeq1 | ⊢ ( ( 𝐹 ‘ 𝑥 )  =  ∅  →  if ( 𝑥  ⊆  ( 𝑂 ‘ 𝑢 ) ,  ( 𝐹 ‘ 𝑥 ) ,  ∅ )  =  if ( 𝑥  ⊆  ( 𝑂 ‘ 𝑢 ) ,  ∅ ,  ∅ ) ) | 
						
							| 342 | 341 179 | eqtrdi | ⊢ ( ( 𝐹 ‘ 𝑥 )  =  ∅  →  if ( 𝑥  ⊆  ( 𝑂 ‘ 𝑢 ) ,  ( 𝐹 ‘ 𝑥 ) ,  ∅ )  =  ∅ ) | 
						
							| 343 | 342 | necon3i | ⊢ ( if ( 𝑥  ⊆  ( 𝑂 ‘ 𝑢 ) ,  ( 𝐹 ‘ 𝑥 ) ,  ∅ )  ≠  ∅  →  ( 𝐹 ‘ 𝑥 )  ≠  ∅ ) | 
						
							| 344 |  | iffalse | ⊢ ( ¬  𝑥  ⊆  ( 𝑂 ‘ 𝑢 )  →  if ( 𝑥  ⊆  ( 𝑂 ‘ 𝑢 ) ,  ( 𝐹 ‘ 𝑥 ) ,  ∅ )  =  ∅ ) | 
						
							| 345 | 344 | necon1ai | ⊢ ( if ( 𝑥  ⊆  ( 𝑂 ‘ 𝑢 ) ,  ( 𝐹 ‘ 𝑥 ) ,  ∅ )  ≠  ∅  →  𝑥  ⊆  ( 𝑂 ‘ 𝑢 ) ) | 
						
							| 346 | 343 345 | jca | ⊢ ( if ( 𝑥  ⊆  ( 𝑂 ‘ 𝑢 ) ,  ( 𝐹 ‘ 𝑥 ) ,  ∅ )  ≠  ∅  →  ( ( 𝐹 ‘ 𝑥 )  ≠  ∅  ∧  𝑥  ⊆  ( 𝑂 ‘ 𝑢 ) ) ) | 
						
							| 347 | 256 | expimpd | ⊢ ( ( ( 𝜑  ∧  ( suc  𝑢  ∈  dom  𝑂  ∧  ( ◡ 𝑂 ‘ 𝑋 )  ⊆  𝑢 ) )  ∧  𝑥  ∈  𝐵 )  →  ( ( ( 𝐹 ‘ 𝑥 )  ≠  ∅  ∧  𝑥  ⊆  ( 𝑂 ‘ 𝑢 ) )  →  𝑥  ∈  ( 𝑂 ‘ suc  𝑢 ) ) ) | 
						
							| 348 | 346 347 | syl5 | ⊢ ( ( ( 𝜑  ∧  ( suc  𝑢  ∈  dom  𝑂  ∧  ( ◡ 𝑂 ‘ 𝑋 )  ⊆  𝑢 ) )  ∧  𝑥  ∈  𝐵 )  →  ( if ( 𝑥  ⊆  ( 𝑂 ‘ 𝑢 ) ,  ( 𝐹 ‘ 𝑥 ) ,  ∅ )  ≠  ∅  →  𝑥  ∈  ( 𝑂 ‘ suc  𝑢 ) ) ) | 
						
							| 349 | 340 348 | biimtrid | ⊢ ( ( ( 𝜑  ∧  ( suc  𝑢  ∈  dom  𝑂  ∧  ( ◡ 𝑂 ‘ 𝑋 )  ⊆  𝑢 ) )  ∧  𝑥  ∈  𝐵 )  →  ( if ( 𝑥  ⊆  ( 𝑂 ‘ 𝑢 ) ,  ( 𝐹 ‘ 𝑥 ) ,  ∅ )  ∈  ( V  ∖  1o )  →  𝑥  ∈  ( 𝑂 ‘ suc  𝑢 ) ) ) | 
						
							| 350 | 349 | 3impia | ⊢ ( ( ( 𝜑  ∧  ( suc  𝑢  ∈  dom  𝑂  ∧  ( ◡ 𝑂 ‘ 𝑋 )  ⊆  𝑢 ) )  ∧  𝑥  ∈  𝐵  ∧  if ( 𝑥  ⊆  ( 𝑂 ‘ 𝑢 ) ,  ( 𝐹 ‘ 𝑥 ) ,  ∅ )  ∈  ( V  ∖  1o ) )  →  𝑥  ∈  ( 𝑂 ‘ suc  𝑢 ) ) | 
						
							| 351 | 350 | rabssdv | ⊢ ( ( 𝜑  ∧  ( suc  𝑢  ∈  dom  𝑂  ∧  ( ◡ 𝑂 ‘ 𝑋 )  ⊆  𝑢 ) )  →  { 𝑥  ∈  𝐵  ∣  if ( 𝑥  ⊆  ( 𝑂 ‘ 𝑢 ) ,  ( 𝐹 ‘ 𝑥 ) ,  ∅ )  ∈  ( V  ∖  1o ) }  ⊆  ( 𝑂 ‘ suc  𝑢 ) ) | 
						
							| 352 | 339 351 | eqsstrd | ⊢ ( ( 𝜑  ∧  ( suc  𝑢  ∈  dom  𝑂  ∧  ( ◡ 𝑂 ‘ 𝑋 )  ⊆  𝑢 ) )  →  ( ( 𝑥  ∈  𝐵  ↦  if ( 𝑥  ⊆  ( 𝑂 ‘ 𝑢 ) ,  ( 𝐹 ‘ 𝑥 ) ,  ∅ ) )  supp  ∅ )  ⊆  ( 𝑂 ‘ suc  𝑢 ) ) | 
						
							| 353 |  | eqeq1 | ⊢ ( 𝑥  =  𝑦  →  ( 𝑥  =  ( 𝑂 ‘ suc  𝑢 )  ↔  𝑦  =  ( 𝑂 ‘ suc  𝑢 ) ) ) | 
						
							| 354 |  | sseq1 | ⊢ ( 𝑥  =  𝑦  →  ( 𝑥  ⊆  ( 𝑂 ‘ 𝑢 )  ↔  𝑦  ⊆  ( 𝑂 ‘ 𝑢 ) ) ) | 
						
							| 355 | 353 354 | orbi12d | ⊢ ( 𝑥  =  𝑦  →  ( ( 𝑥  =  ( 𝑂 ‘ suc  𝑢 )  ∨  𝑥  ⊆  ( 𝑂 ‘ 𝑢 ) )  ↔  ( 𝑦  =  ( 𝑂 ‘ suc  𝑢 )  ∨  𝑦  ⊆  ( 𝑂 ‘ 𝑢 ) ) ) ) | 
						
							| 356 |  | fveq2 | ⊢ ( 𝑥  =  𝑦  →  ( 𝐹 ‘ 𝑥 )  =  ( 𝐹 ‘ 𝑦 ) ) | 
						
							| 357 | 355 356 | ifbieq1d | ⊢ ( 𝑥  =  𝑦  →  if ( ( 𝑥  =  ( 𝑂 ‘ suc  𝑢 )  ∨  𝑥  ⊆  ( 𝑂 ‘ 𝑢 ) ) ,  ( 𝐹 ‘ 𝑥 ) ,  ∅ )  =  if ( ( 𝑦  =  ( 𝑂 ‘ suc  𝑢 )  ∨  𝑦  ⊆  ( 𝑂 ‘ 𝑢 ) ) ,  ( 𝐹 ‘ 𝑦 ) ,  ∅ ) ) | 
						
							| 358 | 357 | cbvmptv | ⊢ ( 𝑥  ∈  𝐵  ↦  if ( ( 𝑥  =  ( 𝑂 ‘ suc  𝑢 )  ∨  𝑥  ⊆  ( 𝑂 ‘ 𝑢 ) ) ,  ( 𝐹 ‘ 𝑥 ) ,  ∅ ) )  =  ( 𝑦  ∈  𝐵  ↦  if ( ( 𝑦  =  ( 𝑂 ‘ suc  𝑢 )  ∨  𝑦  ⊆  ( 𝑂 ‘ 𝑢 ) ) ,  ( 𝐹 ‘ 𝑦 ) ,  ∅ ) ) | 
						
							| 359 |  | fveq2 | ⊢ ( 𝑦  =  ( 𝑂 ‘ suc  𝑢 )  →  ( 𝐹 ‘ 𝑦 )  =  ( 𝐹 ‘ ( 𝑂 ‘ suc  𝑢 ) ) ) | 
						
							| 360 | 359 | adantl | ⊢ ( ( 𝑦  ∈  𝐵  ∧  𝑦  =  ( 𝑂 ‘ suc  𝑢 ) )  →  ( 𝐹 ‘ 𝑦 )  =  ( 𝐹 ‘ ( 𝑂 ‘ suc  𝑢 ) ) ) | 
						
							| 361 | 360 | ifeq1da | ⊢ ( 𝑦  ∈  𝐵  →  if ( 𝑦  =  ( 𝑂 ‘ suc  𝑢 ) ,  ( 𝐹 ‘ 𝑦 ) ,  ( ( 𝑥  ∈  𝐵  ↦  if ( 𝑥  ⊆  ( 𝑂 ‘ 𝑢 ) ,  ( 𝐹 ‘ 𝑥 ) ,  ∅ ) ) ‘ 𝑦 ) )  =  if ( 𝑦  =  ( 𝑂 ‘ suc  𝑢 ) ,  ( 𝐹 ‘ ( 𝑂 ‘ suc  𝑢 ) ) ,  ( ( 𝑥  ∈  𝐵  ↦  if ( 𝑥  ⊆  ( 𝑂 ‘ 𝑢 ) ,  ( 𝐹 ‘ 𝑥 ) ,  ∅ ) ) ‘ 𝑦 ) ) ) | 
						
							| 362 | 354 356 | ifbieq1d | ⊢ ( 𝑥  =  𝑦  →  if ( 𝑥  ⊆  ( 𝑂 ‘ 𝑢 ) ,  ( 𝐹 ‘ 𝑥 ) ,  ∅ )  =  if ( 𝑦  ⊆  ( 𝑂 ‘ 𝑢 ) ,  ( 𝐹 ‘ 𝑦 ) ,  ∅ ) ) | 
						
							| 363 |  | fvex | ⊢ ( 𝐹 ‘ 𝑦 )  ∈  V | 
						
							| 364 | 363 175 | ifex | ⊢ if ( 𝑦  ⊆  ( 𝑂 ‘ 𝑢 ) ,  ( 𝐹 ‘ 𝑦 ) ,  ∅ )  ∈  V | 
						
							| 365 | 362 314 364 | fvmpt | ⊢ ( 𝑦  ∈  𝐵  →  ( ( 𝑥  ∈  𝐵  ↦  if ( 𝑥  ⊆  ( 𝑂 ‘ 𝑢 ) ,  ( 𝐹 ‘ 𝑥 ) ,  ∅ ) ) ‘ 𝑦 )  =  if ( 𝑦  ⊆  ( 𝑂 ‘ 𝑢 ) ,  ( 𝐹 ‘ 𝑦 ) ,  ∅ ) ) | 
						
							| 366 | 365 | ifeq2d | ⊢ ( 𝑦  ∈  𝐵  →  if ( 𝑦  =  ( 𝑂 ‘ suc  𝑢 ) ,  ( 𝐹 ‘ 𝑦 ) ,  ( ( 𝑥  ∈  𝐵  ↦  if ( 𝑥  ⊆  ( 𝑂 ‘ 𝑢 ) ,  ( 𝐹 ‘ 𝑥 ) ,  ∅ ) ) ‘ 𝑦 ) )  =  if ( 𝑦  =  ( 𝑂 ‘ suc  𝑢 ) ,  ( 𝐹 ‘ 𝑦 ) ,  if ( 𝑦  ⊆  ( 𝑂 ‘ 𝑢 ) ,  ( 𝐹 ‘ 𝑦 ) ,  ∅ ) ) ) | 
						
							| 367 |  | ifor | ⊢ if ( ( 𝑦  =  ( 𝑂 ‘ suc  𝑢 )  ∨  𝑦  ⊆  ( 𝑂 ‘ 𝑢 ) ) ,  ( 𝐹 ‘ 𝑦 ) ,  ∅ )  =  if ( 𝑦  =  ( 𝑂 ‘ suc  𝑢 ) ,  ( 𝐹 ‘ 𝑦 ) ,  if ( 𝑦  ⊆  ( 𝑂 ‘ 𝑢 ) ,  ( 𝐹 ‘ 𝑦 ) ,  ∅ ) ) | 
						
							| 368 | 366 367 | eqtr4di | ⊢ ( 𝑦  ∈  𝐵  →  if ( 𝑦  =  ( 𝑂 ‘ suc  𝑢 ) ,  ( 𝐹 ‘ 𝑦 ) ,  ( ( 𝑥  ∈  𝐵  ↦  if ( 𝑥  ⊆  ( 𝑂 ‘ 𝑢 ) ,  ( 𝐹 ‘ 𝑥 ) ,  ∅ ) ) ‘ 𝑦 ) )  =  if ( ( 𝑦  =  ( 𝑂 ‘ suc  𝑢 )  ∨  𝑦  ⊆  ( 𝑂 ‘ 𝑢 ) ) ,  ( 𝐹 ‘ 𝑦 ) ,  ∅ ) ) | 
						
							| 369 | 361 368 | eqtr3d | ⊢ ( 𝑦  ∈  𝐵  →  if ( 𝑦  =  ( 𝑂 ‘ suc  𝑢 ) ,  ( 𝐹 ‘ ( 𝑂 ‘ suc  𝑢 ) ) ,  ( ( 𝑥  ∈  𝐵  ↦  if ( 𝑥  ⊆  ( 𝑂 ‘ 𝑢 ) ,  ( 𝐹 ‘ 𝑥 ) ,  ∅ ) ) ‘ 𝑦 ) )  =  if ( ( 𝑦  =  ( 𝑂 ‘ suc  𝑢 )  ∨  𝑦  ⊆  ( 𝑂 ‘ 𝑢 ) ) ,  ( 𝐹 ‘ 𝑦 ) ,  ∅ ) ) | 
						
							| 370 | 369 | mpteq2ia | ⊢ ( 𝑦  ∈  𝐵  ↦  if ( 𝑦  =  ( 𝑂 ‘ suc  𝑢 ) ,  ( 𝐹 ‘ ( 𝑂 ‘ suc  𝑢 ) ) ,  ( ( 𝑥  ∈  𝐵  ↦  if ( 𝑥  ⊆  ( 𝑂 ‘ 𝑢 ) ,  ( 𝐹 ‘ 𝑥 ) ,  ∅ ) ) ‘ 𝑦 ) ) )  =  ( 𝑦  ∈  𝐵  ↦  if ( ( 𝑦  =  ( 𝑂 ‘ suc  𝑢 )  ∨  𝑦  ⊆  ( 𝑂 ‘ 𝑢 ) ) ,  ( 𝐹 ‘ 𝑦 ) ,  ∅ ) ) | 
						
							| 371 | 358 370 | eqtr4i | ⊢ ( 𝑥  ∈  𝐵  ↦  if ( ( 𝑥  =  ( 𝑂 ‘ suc  𝑢 )  ∨  𝑥  ⊆  ( 𝑂 ‘ 𝑢 ) ) ,  ( 𝐹 ‘ 𝑥 ) ,  ∅ ) )  =  ( 𝑦  ∈  𝐵  ↦  if ( 𝑦  =  ( 𝑂 ‘ suc  𝑢 ) ,  ( 𝐹 ‘ ( 𝑂 ‘ suc  𝑢 ) ) ,  ( ( 𝑥  ∈  𝐵  ↦  if ( 𝑥  ⊆  ( 𝑂 ‘ 𝑢 ) ,  ( 𝐹 ‘ 𝑥 ) ,  ∅ ) ) ‘ 𝑦 ) ) ) | 
						
							| 372 | 1 151 148 186 202 208 352 371 | cantnfp1 | ⊢ ( ( 𝜑  ∧  ( suc  𝑢  ∈  dom  𝑂  ∧  ( ◡ 𝑂 ‘ 𝑋 )  ⊆  𝑢 ) )  →  ( ( 𝑥  ∈  𝐵  ↦  if ( ( 𝑥  =  ( 𝑂 ‘ suc  𝑢 )  ∨  𝑥  ⊆  ( 𝑂 ‘ 𝑢 ) ) ,  ( 𝐹 ‘ 𝑥 ) ,  ∅ ) )  ∈  𝑆  ∧  ( ( 𝐴  CNF  𝐵 ) ‘ ( 𝑥  ∈  𝐵  ↦  if ( ( 𝑥  =  ( 𝑂 ‘ suc  𝑢 )  ∨  𝑥  ⊆  ( 𝑂 ‘ 𝑢 ) ) ,  ( 𝐹 ‘ 𝑥 ) ,  ∅ ) ) )  =  ( ( ( 𝐴  ↑o  ( 𝑂 ‘ suc  𝑢 ) )  ·o  ( 𝐹 ‘ ( 𝑂 ‘ suc  𝑢 ) ) )  +o  ( ( 𝐴  CNF  𝐵 ) ‘ ( 𝑥  ∈  𝐵  ↦  if ( 𝑥  ⊆  ( 𝑂 ‘ 𝑢 ) ,  ( 𝐹 ‘ 𝑥 ) ,  ∅ ) ) ) ) ) ) | 
						
							| 373 | 372 | simprd | ⊢ ( ( 𝜑  ∧  ( suc  𝑢  ∈  dom  𝑂  ∧  ( ◡ 𝑂 ‘ 𝑋 )  ⊆  𝑢 ) )  →  ( ( 𝐴  CNF  𝐵 ) ‘ ( 𝑥  ∈  𝐵  ↦  if ( ( 𝑥  =  ( 𝑂 ‘ suc  𝑢 )  ∨  𝑥  ⊆  ( 𝑂 ‘ 𝑢 ) ) ,  ( 𝐹 ‘ 𝑥 ) ,  ∅ ) ) )  =  ( ( ( 𝐴  ↑o  ( 𝑂 ‘ suc  𝑢 ) )  ·o  ( 𝐹 ‘ ( 𝑂 ‘ suc  𝑢 ) ) )  +o  ( ( 𝐴  CNF  𝐵 ) ‘ ( 𝑥  ∈  𝐵  ↦  if ( 𝑥  ⊆  ( 𝑂 ‘ 𝑢 ) ,  ( 𝐹 ‘ 𝑥 ) ,  ∅ ) ) ) ) ) | 
						
							| 374 | 309 373 | eqtrd | ⊢ ( ( 𝜑  ∧  ( suc  𝑢  ∈  dom  𝑂  ∧  ( ◡ 𝑂 ‘ 𝑋 )  ⊆  𝑢 ) )  →  ( ( 𝐴  CNF  𝐵 ) ‘ ( 𝑥  ∈  𝐵  ↦  if ( 𝑥  ⊆  ( 𝑂 ‘ suc  𝑢 ) ,  ( 𝐹 ‘ 𝑥 ) ,  ∅ ) ) )  =  ( ( ( 𝐴  ↑o  ( 𝑂 ‘ suc  𝑢 ) )  ·o  ( 𝐹 ‘ ( 𝑂 ‘ suc  𝑢 ) ) )  +o  ( ( 𝐴  CNF  𝐵 ) ‘ ( 𝑥  ∈  𝐵  ↦  if ( 𝑥  ⊆  ( 𝑂 ‘ 𝑢 ) ,  ( 𝐹 ‘ 𝑥 ) ,  ∅ ) ) ) ) ) | 
						
							| 375 | 1 2 3 9 6 10 | cantnfsuc | ⊢ ( ( 𝜑  ∧  suc  𝑢  ∈  ω )  →  ( 𝐻 ‘ suc  suc  𝑢 )  =  ( ( ( 𝐴  ↑o  ( 𝑂 ‘ suc  𝑢 ) )  ·o  ( 𝐺 ‘ ( 𝑂 ‘ suc  𝑢 ) ) )  +o  ( 𝐻 ‘ suc  𝑢 ) ) ) | 
						
							| 376 | 192 375 | syldan | ⊢ ( ( 𝜑  ∧  ( suc  𝑢  ∈  dom  𝑂  ∧  ( ◡ 𝑂 ‘ 𝑋 )  ⊆  𝑢 ) )  →  ( 𝐻 ‘ suc  suc  𝑢 )  =  ( ( ( 𝐴  ↑o  ( 𝑂 ‘ suc  𝑢 ) )  ·o  ( 𝐺 ‘ ( 𝑂 ‘ suc  𝑢 ) ) )  +o  ( 𝐻 ‘ suc  𝑢 ) ) ) | 
						
							| 377 | 160 | simp3d | ⊢ ( 𝜑  →  ∀ 𝑤  ∈  𝐵 ( 𝑋  ∈  𝑤  →  ( 𝐹 ‘ 𝑤 )  =  ( 𝐺 ‘ 𝑤 ) ) ) | 
						
							| 378 | 377 | adantr | ⊢ ( ( 𝜑  ∧  ( suc  𝑢  ∈  dom  𝑂  ∧  ( ◡ 𝑂 ‘ 𝑋 )  ⊆  𝑢 ) )  →  ∀ 𝑤  ∈  𝐵 ( 𝑋  ∈  𝑤  →  ( 𝐹 ‘ 𝑤 )  =  ( 𝐺 ‘ 𝑤 ) ) ) | 
						
							| 379 | 109 | adantr | ⊢ ( ( 𝜑  ∧  ( suc  𝑢  ∈  dom  𝑂  ∧  ( ◡ 𝑂 ‘ 𝑋 )  ⊆  𝑢 ) )  →  ( 𝑂 ‘ ( ◡ 𝑂 ‘ 𝑋 ) )  =  𝑋 ) | 
						
							| 380 | 136 | adantrr | ⊢ ( ( 𝜑  ∧  ( suc  𝑢  ∈  dom  𝑂  ∧  ( ◡ 𝑂 ‘ 𝑋 )  ⊆  𝑢 ) )  →  𝑢  ∈  On ) | 
						
							| 381 |  | onsssuc | ⊢ ( ( ( ◡ 𝑂 ‘ 𝑋 )  ∈  On  ∧  𝑢  ∈  On )  →  ( ( ◡ 𝑂 ‘ 𝑋 )  ⊆  𝑢  ↔  ( ◡ 𝑂 ‘ 𝑋 )  ∈  suc  𝑢 ) ) | 
						
							| 382 | 129 380 381 | syl2an2r | ⊢ ( ( 𝜑  ∧  ( suc  𝑢  ∈  dom  𝑂  ∧  ( ◡ 𝑂 ‘ 𝑋 )  ⊆  𝑢 ) )  →  ( ( ◡ 𝑂 ‘ 𝑋 )  ⊆  𝑢  ↔  ( ◡ 𝑂 ‘ 𝑋 )  ∈  suc  𝑢 ) ) | 
						
							| 383 | 146 382 | mpbid | ⊢ ( ( 𝜑  ∧  ( suc  𝑢  ∈  dom  𝑂  ∧  ( ◡ 𝑂 ‘ 𝑋 )  ⊆  𝑢 ) )  →  ( ◡ 𝑂 ‘ 𝑋 )  ∈  suc  𝑢 ) | 
						
							| 384 | 53 | adantr | ⊢ ( ( 𝜑  ∧  ( suc  𝑢  ∈  dom  𝑂  ∧  ( ◡ 𝑂 ‘ 𝑋 )  ⊆  𝑢 ) )  →  ( ◡ 𝑂 ‘ 𝑋 )  ∈  dom  𝑂 ) | 
						
							| 385 |  | isorel | ⊢ ( ( 𝑂  Isom   E  ,   E  ( dom  𝑂 ,  ( 𝐺  supp  ∅ ) )  ∧  ( ( ◡ 𝑂 ‘ 𝑋 )  ∈  dom  𝑂  ∧  suc  𝑢  ∈  dom  𝑂 ) )  →  ( ( ◡ 𝑂 ‘ 𝑋 )  E  suc  𝑢  ↔  ( 𝑂 ‘ ( ◡ 𝑂 ‘ 𝑋 ) )  E  ( 𝑂 ‘ suc  𝑢 ) ) ) | 
						
							| 386 | 240 384 143 385 | syl12anc | ⊢ ( ( 𝜑  ∧  ( suc  𝑢  ∈  dom  𝑂  ∧  ( ◡ 𝑂 ‘ 𝑋 )  ⊆  𝑢 ) )  →  ( ( ◡ 𝑂 ‘ 𝑋 )  E  suc  𝑢  ↔  ( 𝑂 ‘ ( ◡ 𝑂 ‘ 𝑋 ) )  E  ( 𝑂 ‘ suc  𝑢 ) ) ) | 
						
							| 387 | 243 | epeli | ⊢ ( ( ◡ 𝑂 ‘ 𝑋 )  E  suc  𝑢  ↔  ( ◡ 𝑂 ‘ 𝑋 )  ∈  suc  𝑢 ) | 
						
							| 388 | 245 | epeli | ⊢ ( ( 𝑂 ‘ ( ◡ 𝑂 ‘ 𝑋 ) )  E  ( 𝑂 ‘ suc  𝑢 )  ↔  ( 𝑂 ‘ ( ◡ 𝑂 ‘ 𝑋 ) )  ∈  ( 𝑂 ‘ suc  𝑢 ) ) | 
						
							| 389 | 386 387 388 | 3bitr3g | ⊢ ( ( 𝜑  ∧  ( suc  𝑢  ∈  dom  𝑂  ∧  ( ◡ 𝑂 ‘ 𝑋 )  ⊆  𝑢 ) )  →  ( ( ◡ 𝑂 ‘ 𝑋 )  ∈  suc  𝑢  ↔  ( 𝑂 ‘ ( ◡ 𝑂 ‘ 𝑋 ) )  ∈  ( 𝑂 ‘ suc  𝑢 ) ) ) | 
						
							| 390 | 383 389 | mpbid | ⊢ ( ( 𝜑  ∧  ( suc  𝑢  ∈  dom  𝑂  ∧  ( ◡ 𝑂 ‘ 𝑋 )  ⊆  𝑢 ) )  →  ( 𝑂 ‘ ( ◡ 𝑂 ‘ 𝑋 ) )  ∈  ( 𝑂 ‘ suc  𝑢 ) ) | 
						
							| 391 | 379 390 | eqeltrrd | ⊢ ( ( 𝜑  ∧  ( suc  𝑢  ∈  dom  𝑂  ∧  ( ◡ 𝑂 ‘ 𝑋 )  ⊆  𝑢 ) )  →  𝑋  ∈  ( 𝑂 ‘ suc  𝑢 ) ) | 
						
							| 392 |  | eleq2 | ⊢ ( 𝑤  =  ( 𝑂 ‘ suc  𝑢 )  →  ( 𝑋  ∈  𝑤  ↔  𝑋  ∈  ( 𝑂 ‘ suc  𝑢 ) ) ) | 
						
							| 393 |  | fveq2 | ⊢ ( 𝑤  =  ( 𝑂 ‘ suc  𝑢 )  →  ( 𝐹 ‘ 𝑤 )  =  ( 𝐹 ‘ ( 𝑂 ‘ suc  𝑢 ) ) ) | 
						
							| 394 |  | fveq2 | ⊢ ( 𝑤  =  ( 𝑂 ‘ suc  𝑢 )  →  ( 𝐺 ‘ 𝑤 )  =  ( 𝐺 ‘ ( 𝑂 ‘ suc  𝑢 ) ) ) | 
						
							| 395 | 393 394 | eqeq12d | ⊢ ( 𝑤  =  ( 𝑂 ‘ suc  𝑢 )  →  ( ( 𝐹 ‘ 𝑤 )  =  ( 𝐺 ‘ 𝑤 )  ↔  ( 𝐹 ‘ ( 𝑂 ‘ suc  𝑢 ) )  =  ( 𝐺 ‘ ( 𝑂 ‘ suc  𝑢 ) ) ) ) | 
						
							| 396 | 392 395 | imbi12d | ⊢ ( 𝑤  =  ( 𝑂 ‘ suc  𝑢 )  →  ( ( 𝑋  ∈  𝑤  →  ( 𝐹 ‘ 𝑤 )  =  ( 𝐺 ‘ 𝑤 ) )  ↔  ( 𝑋  ∈  ( 𝑂 ‘ suc  𝑢 )  →  ( 𝐹 ‘ ( 𝑂 ‘ suc  𝑢 ) )  =  ( 𝐺 ‘ ( 𝑂 ‘ suc  𝑢 ) ) ) ) ) | 
						
							| 397 | 396 | rspcv | ⊢ ( ( 𝑂 ‘ suc  𝑢 )  ∈  𝐵  →  ( ∀ 𝑤  ∈  𝐵 ( 𝑋  ∈  𝑤  →  ( 𝐹 ‘ 𝑤 )  =  ( 𝐺 ‘ 𝑤 ) )  →  ( 𝑋  ∈  ( 𝑂 ‘ suc  𝑢 )  →  ( 𝐹 ‘ ( 𝑂 ‘ suc  𝑢 ) )  =  ( 𝐺 ‘ ( 𝑂 ‘ suc  𝑢 ) ) ) ) ) | 
						
							| 398 | 202 378 391 397 | syl3c | ⊢ ( ( 𝜑  ∧  ( suc  𝑢  ∈  dom  𝑂  ∧  ( ◡ 𝑂 ‘ 𝑋 )  ⊆  𝑢 ) )  →  ( 𝐹 ‘ ( 𝑂 ‘ suc  𝑢 ) )  =  ( 𝐺 ‘ ( 𝑂 ‘ suc  𝑢 ) ) ) | 
						
							| 399 | 398 | oveq2d | ⊢ ( ( 𝜑  ∧  ( suc  𝑢  ∈  dom  𝑂  ∧  ( ◡ 𝑂 ‘ 𝑋 )  ⊆  𝑢 ) )  →  ( ( 𝐴  ↑o  ( 𝑂 ‘ suc  𝑢 ) )  ·o  ( 𝐹 ‘ ( 𝑂 ‘ suc  𝑢 ) ) )  =  ( ( 𝐴  ↑o  ( 𝑂 ‘ suc  𝑢 ) )  ·o  ( 𝐺 ‘ ( 𝑂 ‘ suc  𝑢 ) ) ) ) | 
						
							| 400 | 399 | oveq1d | ⊢ ( ( 𝜑  ∧  ( suc  𝑢  ∈  dom  𝑂  ∧  ( ◡ 𝑂 ‘ 𝑋 )  ⊆  𝑢 ) )  →  ( ( ( 𝐴  ↑o  ( 𝑂 ‘ suc  𝑢 ) )  ·o  ( 𝐹 ‘ ( 𝑂 ‘ suc  𝑢 ) ) )  +o  ( 𝐻 ‘ suc  𝑢 ) )  =  ( ( ( 𝐴  ↑o  ( 𝑂 ‘ suc  𝑢 ) )  ·o  ( 𝐺 ‘ ( 𝑂 ‘ suc  𝑢 ) ) )  +o  ( 𝐻 ‘ suc  𝑢 ) ) ) | 
						
							| 401 | 376 400 | eqtr4d | ⊢ ( ( 𝜑  ∧  ( suc  𝑢  ∈  dom  𝑂  ∧  ( ◡ 𝑂 ‘ 𝑋 )  ⊆  𝑢 ) )  →  ( 𝐻 ‘ suc  suc  𝑢 )  =  ( ( ( 𝐴  ↑o  ( 𝑂 ‘ suc  𝑢 ) )  ·o  ( 𝐹 ‘ ( 𝑂 ‘ suc  𝑢 ) ) )  +o  ( 𝐻 ‘ suc  𝑢 ) ) ) | 
						
							| 402 | 374 401 | eleq12d | ⊢ ( ( 𝜑  ∧  ( suc  𝑢  ∈  dom  𝑂  ∧  ( ◡ 𝑂 ‘ 𝑋 )  ⊆  𝑢 ) )  →  ( ( ( 𝐴  CNF  𝐵 ) ‘ ( 𝑥  ∈  𝐵  ↦  if ( 𝑥  ⊆  ( 𝑂 ‘ suc  𝑢 ) ,  ( 𝐹 ‘ 𝑥 ) ,  ∅ ) ) )  ∈  ( 𝐻 ‘ suc  suc  𝑢 )  ↔  ( ( ( 𝐴  ↑o  ( 𝑂 ‘ suc  𝑢 ) )  ·o  ( 𝐹 ‘ ( 𝑂 ‘ suc  𝑢 ) ) )  +o  ( ( 𝐴  CNF  𝐵 ) ‘ ( 𝑥  ∈  𝐵  ↦  if ( 𝑥  ⊆  ( 𝑂 ‘ 𝑢 ) ,  ( 𝐹 ‘ 𝑥 ) ,  ∅ ) ) ) )  ∈  ( ( ( 𝐴  ↑o  ( 𝑂 ‘ suc  𝑢 ) )  ·o  ( 𝐹 ‘ ( 𝑂 ‘ suc  𝑢 ) ) )  +o  ( 𝐻 ‘ suc  𝑢 ) ) ) ) | 
						
							| 403 | 214 402 | bitr4d | ⊢ ( ( 𝜑  ∧  ( suc  𝑢  ∈  dom  𝑂  ∧  ( ◡ 𝑂 ‘ 𝑋 )  ⊆  𝑢 ) )  →  ( ( ( 𝐴  CNF  𝐵 ) ‘ ( 𝑥  ∈  𝐵  ↦  if ( 𝑥  ⊆  ( 𝑂 ‘ 𝑢 ) ,  ( 𝐹 ‘ 𝑥 ) ,  ∅ ) ) )  ∈  ( 𝐻 ‘ suc  𝑢 )  ↔  ( ( 𝐴  CNF  𝐵 ) ‘ ( 𝑥  ∈  𝐵  ↦  if ( 𝑥  ⊆  ( 𝑂 ‘ suc  𝑢 ) ,  ( 𝐹 ‘ 𝑥 ) ,  ∅ ) ) )  ∈  ( 𝐻 ‘ suc  suc  𝑢 ) ) ) | 
						
							| 404 | 403 | biimpd | ⊢ ( ( 𝜑  ∧  ( suc  𝑢  ∈  dom  𝑂  ∧  ( ◡ 𝑂 ‘ 𝑋 )  ⊆  𝑢 ) )  →  ( ( ( 𝐴  CNF  𝐵 ) ‘ ( 𝑥  ∈  𝐵  ↦  if ( 𝑥  ⊆  ( 𝑂 ‘ 𝑢 ) ,  ( 𝐹 ‘ 𝑥 ) ,  ∅ ) ) )  ∈  ( 𝐻 ‘ suc  𝑢 )  →  ( ( 𝐴  CNF  𝐵 ) ‘ ( 𝑥  ∈  𝐵  ↦  if ( 𝑥  ⊆  ( 𝑂 ‘ suc  𝑢 ) ,  ( 𝐹 ‘ 𝑥 ) ,  ∅ ) ) )  ∈  ( 𝐻 ‘ suc  suc  𝑢 ) ) ) | 
						
							| 405 | 147 404 | embantd | ⊢ ( ( 𝜑  ∧  ( suc  𝑢  ∈  dom  𝑂  ∧  ( ◡ 𝑂 ‘ 𝑋 )  ⊆  𝑢 ) )  →  ( ( ( 𝑢  ∈  dom  𝑂  ∧  ( ◡ 𝑂 ‘ 𝑋 )  ⊆  𝑢 )  →  ( ( 𝐴  CNF  𝐵 ) ‘ ( 𝑥  ∈  𝐵  ↦  if ( 𝑥  ⊆  ( 𝑂 ‘ 𝑢 ) ,  ( 𝐹 ‘ 𝑥 ) ,  ∅ ) ) )  ∈  ( 𝐻 ‘ suc  𝑢 ) )  →  ( ( 𝐴  CNF  𝐵 ) ‘ ( 𝑥  ∈  𝐵  ↦  if ( 𝑥  ⊆  ( 𝑂 ‘ suc  𝑢 ) ,  ( 𝐹 ‘ 𝑥 ) ,  ∅ ) ) )  ∈  ( 𝐻 ‘ suc  suc  𝑢 ) ) ) | 
						
							| 406 | 405 | expr | ⊢ ( ( 𝜑  ∧  suc  𝑢  ∈  dom  𝑂 )  →  ( ( ◡ 𝑂 ‘ 𝑋 )  ⊆  𝑢  →  ( ( ( 𝑢  ∈  dom  𝑂  ∧  ( ◡ 𝑂 ‘ 𝑋 )  ⊆  𝑢 )  →  ( ( 𝐴  CNF  𝐵 ) ‘ ( 𝑥  ∈  𝐵  ↦  if ( 𝑥  ⊆  ( 𝑂 ‘ 𝑢 ) ,  ( 𝐹 ‘ 𝑥 ) ,  ∅ ) ) )  ∈  ( 𝐻 ‘ suc  𝑢 ) )  →  ( ( 𝐴  CNF  𝐵 ) ‘ ( 𝑥  ∈  𝐵  ↦  if ( 𝑥  ⊆  ( 𝑂 ‘ suc  𝑢 ) ,  ( 𝐹 ‘ 𝑥 ) ,  ∅ ) ) )  ∈  ( 𝐻 ‘ suc  suc  𝑢 ) ) ) ) | 
						
							| 407 | 140 406 | sylbird | ⊢ ( ( 𝜑  ∧  suc  𝑢  ∈  dom  𝑂 )  →  ( ( ◡ 𝑂 ‘ 𝑋 )  ∈  suc  𝑢  →  ( ( ( 𝑢  ∈  dom  𝑂  ∧  ( ◡ 𝑂 ‘ 𝑋 )  ⊆  𝑢 )  →  ( ( 𝐴  CNF  𝐵 ) ‘ ( 𝑥  ∈  𝐵  ↦  if ( 𝑥  ⊆  ( 𝑂 ‘ 𝑢 ) ,  ( 𝐹 ‘ 𝑥 ) ,  ∅ ) ) )  ∈  ( 𝐻 ‘ suc  𝑢 ) )  →  ( ( 𝐴  CNF  𝐵 ) ‘ ( 𝑥  ∈  𝐵  ↦  if ( 𝑥  ⊆  ( 𝑂 ‘ suc  𝑢 ) ,  ( 𝐹 ‘ 𝑥 ) ,  ∅ ) ) )  ∈  ( 𝐻 ‘ suc  suc  𝑢 ) ) ) ) | 
						
							| 408 |  | fveq2 | ⊢ ( ( ◡ 𝑂 ‘ 𝑋 )  =  suc  𝑢  →  ( 𝑂 ‘ ( ◡ 𝑂 ‘ 𝑋 ) )  =  ( 𝑂 ‘ suc  𝑢 ) ) | 
						
							| 409 | 408 | sseq2d | ⊢ ( ( ◡ 𝑂 ‘ 𝑋 )  =  suc  𝑢  →  ( 𝑥  ⊆  ( 𝑂 ‘ ( ◡ 𝑂 ‘ 𝑋 ) )  ↔  𝑥  ⊆  ( 𝑂 ‘ suc  𝑢 ) ) ) | 
						
							| 410 | 409 | ifbid | ⊢ ( ( ◡ 𝑂 ‘ 𝑋 )  =  suc  𝑢  →  if ( 𝑥  ⊆  ( 𝑂 ‘ ( ◡ 𝑂 ‘ 𝑋 ) ) ,  ( 𝐹 ‘ 𝑥 ) ,  ∅ )  =  if ( 𝑥  ⊆  ( 𝑂 ‘ suc  𝑢 ) ,  ( 𝐹 ‘ 𝑥 ) ,  ∅ ) ) | 
						
							| 411 | 410 | mpteq2dv | ⊢ ( ( ◡ 𝑂 ‘ 𝑋 )  =  suc  𝑢  →  ( 𝑥  ∈  𝐵  ↦  if ( 𝑥  ⊆  ( 𝑂 ‘ ( ◡ 𝑂 ‘ 𝑋 ) ) ,  ( 𝐹 ‘ 𝑥 ) ,  ∅ ) )  =  ( 𝑥  ∈  𝐵  ↦  if ( 𝑥  ⊆  ( 𝑂 ‘ suc  𝑢 ) ,  ( 𝐹 ‘ 𝑥 ) ,  ∅ ) ) ) | 
						
							| 412 | 411 | fveq2d | ⊢ ( ( ◡ 𝑂 ‘ 𝑋 )  =  suc  𝑢  →  ( ( 𝐴  CNF  𝐵 ) ‘ ( 𝑥  ∈  𝐵  ↦  if ( 𝑥  ⊆  ( 𝑂 ‘ ( ◡ 𝑂 ‘ 𝑋 ) ) ,  ( 𝐹 ‘ 𝑥 ) ,  ∅ ) ) )  =  ( ( 𝐴  CNF  𝐵 ) ‘ ( 𝑥  ∈  𝐵  ↦  if ( 𝑥  ⊆  ( 𝑂 ‘ suc  𝑢 ) ,  ( 𝐹 ‘ 𝑥 ) ,  ∅ ) ) ) ) | 
						
							| 413 |  | suceq | ⊢ ( ( ◡ 𝑂 ‘ 𝑋 )  =  suc  𝑢  →  suc  ( ◡ 𝑂 ‘ 𝑋 )  =  suc  suc  𝑢 ) | 
						
							| 414 | 413 | fveq2d | ⊢ ( ( ◡ 𝑂 ‘ 𝑋 )  =  suc  𝑢  →  ( 𝐻 ‘ suc  ( ◡ 𝑂 ‘ 𝑋 ) )  =  ( 𝐻 ‘ suc  suc  𝑢 ) ) | 
						
							| 415 | 412 414 | eleq12d | ⊢ ( ( ◡ 𝑂 ‘ 𝑋 )  =  suc  𝑢  →  ( ( ( 𝐴  CNF  𝐵 ) ‘ ( 𝑥  ∈  𝐵  ↦  if ( 𝑥  ⊆  ( 𝑂 ‘ ( ◡ 𝑂 ‘ 𝑋 ) ) ,  ( 𝐹 ‘ 𝑥 ) ,  ∅ ) ) )  ∈  ( 𝐻 ‘ suc  ( ◡ 𝑂 ‘ 𝑋 ) )  ↔  ( ( 𝐴  CNF  𝐵 ) ‘ ( 𝑥  ∈  𝐵  ↦  if ( 𝑥  ⊆  ( 𝑂 ‘ suc  𝑢 ) ,  ( 𝐹 ‘ 𝑥 ) ,  ∅ ) ) )  ∈  ( 𝐻 ‘ suc  suc  𝑢 ) ) ) | 
						
							| 416 | 115 415 | syl5ibcom | ⊢ ( 𝜑  →  ( ( ◡ 𝑂 ‘ 𝑋 )  =  suc  𝑢  →  ( ( 𝐴  CNF  𝐵 ) ‘ ( 𝑥  ∈  𝐵  ↦  if ( 𝑥  ⊆  ( 𝑂 ‘ suc  𝑢 ) ,  ( 𝐹 ‘ 𝑥 ) ,  ∅ ) ) )  ∈  ( 𝐻 ‘ suc  suc  𝑢 ) ) ) | 
						
							| 417 | 416 | adantr | ⊢ ( ( 𝜑  ∧  suc  𝑢  ∈  dom  𝑂 )  →  ( ( ◡ 𝑂 ‘ 𝑋 )  =  suc  𝑢  →  ( ( 𝐴  CNF  𝐵 ) ‘ ( 𝑥  ∈  𝐵  ↦  if ( 𝑥  ⊆  ( 𝑂 ‘ suc  𝑢 ) ,  ( 𝐹 ‘ 𝑥 ) ,  ∅ ) ) )  ∈  ( 𝐻 ‘ suc  suc  𝑢 ) ) ) | 
						
							| 418 | 417 | a1dd | ⊢ ( ( 𝜑  ∧  suc  𝑢  ∈  dom  𝑂 )  →  ( ( ◡ 𝑂 ‘ 𝑋 )  =  suc  𝑢  →  ( ( ( 𝑢  ∈  dom  𝑂  ∧  ( ◡ 𝑂 ‘ 𝑋 )  ⊆  𝑢 )  →  ( ( 𝐴  CNF  𝐵 ) ‘ ( 𝑥  ∈  𝐵  ↦  if ( 𝑥  ⊆  ( 𝑂 ‘ 𝑢 ) ,  ( 𝐹 ‘ 𝑥 ) ,  ∅ ) ) )  ∈  ( 𝐻 ‘ suc  𝑢 ) )  →  ( ( 𝐴  CNF  𝐵 ) ‘ ( 𝑥  ∈  𝐵  ↦  if ( 𝑥  ⊆  ( 𝑂 ‘ suc  𝑢 ) ,  ( 𝐹 ‘ 𝑥 ) ,  ∅ ) ) )  ∈  ( 𝐻 ‘ suc  suc  𝑢 ) ) ) ) | 
						
							| 419 | 407 418 | jaod | ⊢ ( ( 𝜑  ∧  suc  𝑢  ∈  dom  𝑂 )  →  ( ( ( ◡ 𝑂 ‘ 𝑋 )  ∈  suc  𝑢  ∨  ( ◡ 𝑂 ‘ 𝑋 )  =  suc  𝑢 )  →  ( ( ( 𝑢  ∈  dom  𝑂  ∧  ( ◡ 𝑂 ‘ 𝑋 )  ⊆  𝑢 )  →  ( ( 𝐴  CNF  𝐵 ) ‘ ( 𝑥  ∈  𝐵  ↦  if ( 𝑥  ⊆  ( 𝑂 ‘ 𝑢 ) ,  ( 𝐹 ‘ 𝑥 ) ,  ∅ ) ) )  ∈  ( 𝐻 ‘ suc  𝑢 ) )  →  ( ( 𝐴  CNF  𝐵 ) ‘ ( 𝑥  ∈  𝐵  ↦  if ( 𝑥  ⊆  ( 𝑂 ‘ suc  𝑢 ) ,  ( 𝐹 ‘ 𝑥 ) ,  ∅ ) ) )  ∈  ( 𝐻 ‘ suc  suc  𝑢 ) ) ) ) | 
						
							| 420 | 134 419 | sylbid | ⊢ ( ( 𝜑  ∧  suc  𝑢  ∈  dom  𝑂 )  →  ( ( ◡ 𝑂 ‘ 𝑋 )  ⊆  suc  𝑢  →  ( ( ( 𝑢  ∈  dom  𝑂  ∧  ( ◡ 𝑂 ‘ 𝑋 )  ⊆  𝑢 )  →  ( ( 𝐴  CNF  𝐵 ) ‘ ( 𝑥  ∈  𝐵  ↦  if ( 𝑥  ⊆  ( 𝑂 ‘ 𝑢 ) ,  ( 𝐹 ‘ 𝑥 ) ,  ∅ ) ) )  ∈  ( 𝐻 ‘ suc  𝑢 ) )  →  ( ( 𝐴  CNF  𝐵 ) ‘ ( 𝑥  ∈  𝐵  ↦  if ( 𝑥  ⊆  ( 𝑂 ‘ suc  𝑢 ) ,  ( 𝐹 ‘ 𝑥 ) ,  ∅ ) ) )  ∈  ( 𝐻 ‘ suc  suc  𝑢 ) ) ) ) | 
						
							| 421 | 420 | expimpd | ⊢ ( 𝜑  →  ( ( suc  𝑢  ∈  dom  𝑂  ∧  ( ◡ 𝑂 ‘ 𝑋 )  ⊆  suc  𝑢 )  →  ( ( ( 𝑢  ∈  dom  𝑂  ∧  ( ◡ 𝑂 ‘ 𝑋 )  ⊆  𝑢 )  →  ( ( 𝐴  CNF  𝐵 ) ‘ ( 𝑥  ∈  𝐵  ↦  if ( 𝑥  ⊆  ( 𝑂 ‘ 𝑢 ) ,  ( 𝐹 ‘ 𝑥 ) ,  ∅ ) ) )  ∈  ( 𝐻 ‘ suc  𝑢 ) )  →  ( ( 𝐴  CNF  𝐵 ) ‘ ( 𝑥  ∈  𝐵  ↦  if ( 𝑥  ⊆  ( 𝑂 ‘ suc  𝑢 ) ,  ( 𝐹 ‘ 𝑥 ) ,  ∅ ) ) )  ∈  ( 𝐻 ‘ suc  suc  𝑢 ) ) ) ) | 
						
							| 422 | 421 | com23 | ⊢ ( 𝜑  →  ( ( ( 𝑢  ∈  dom  𝑂  ∧  ( ◡ 𝑂 ‘ 𝑋 )  ⊆  𝑢 )  →  ( ( 𝐴  CNF  𝐵 ) ‘ ( 𝑥  ∈  𝐵  ↦  if ( 𝑥  ⊆  ( 𝑂 ‘ 𝑢 ) ,  ( 𝐹 ‘ 𝑥 ) ,  ∅ ) ) )  ∈  ( 𝐻 ‘ suc  𝑢 ) )  →  ( ( suc  𝑢  ∈  dom  𝑂  ∧  ( ◡ 𝑂 ‘ 𝑋 )  ⊆  suc  𝑢 )  →  ( ( 𝐴  CNF  𝐵 ) ‘ ( 𝑥  ∈  𝐵  ↦  if ( 𝑥  ⊆  ( 𝑂 ‘ suc  𝑢 ) ,  ( 𝐹 ‘ 𝑥 ) ,  ∅ ) ) )  ∈  ( 𝐻 ‘ suc  suc  𝑢 ) ) ) ) | 
						
							| 423 | 422 | a1i | ⊢ ( 𝑢  ∈  ω  →  ( 𝜑  →  ( ( ( 𝑢  ∈  dom  𝑂  ∧  ( ◡ 𝑂 ‘ 𝑋 )  ⊆  𝑢 )  →  ( ( 𝐴  CNF  𝐵 ) ‘ ( 𝑥  ∈  𝐵  ↦  if ( 𝑥  ⊆  ( 𝑂 ‘ 𝑢 ) ,  ( 𝐹 ‘ 𝑥 ) ,  ∅ ) ) )  ∈  ( 𝐻 ‘ suc  𝑢 ) )  →  ( ( suc  𝑢  ∈  dom  𝑂  ∧  ( ◡ 𝑂 ‘ 𝑋 )  ⊆  suc  𝑢 )  →  ( ( 𝐴  CNF  𝐵 ) ‘ ( 𝑥  ∈  𝐵  ↦  if ( 𝑥  ⊆  ( 𝑂 ‘ suc  𝑢 ) ,  ( 𝐹 ‘ 𝑥 ) ,  ∅ ) ) )  ∈  ( 𝐻 ‘ suc  suc  𝑢 ) ) ) ) ) | 
						
							| 424 | 83 95 107 127 423 | finds2 | ⊢ ( 𝑦  ∈  ω  →  ( 𝜑  →  ( ( 𝑦  ∈  dom  𝑂  ∧  ( ◡ 𝑂 ‘ 𝑋 )  ⊆  𝑦 )  →  ( ( 𝐴  CNF  𝐵 ) ‘ ( 𝑥  ∈  𝐵  ↦  if ( 𝑥  ⊆  ( 𝑂 ‘ 𝑦 ) ,  ( 𝐹 ‘ 𝑥 ) ,  ∅ ) ) )  ∈  ( 𝐻 ‘ suc  𝑦 ) ) ) ) | 
						
							| 425 | 71 424 | vtoclga | ⊢ ( ∪  dom  𝑂  ∈  ω  →  ( 𝜑  →  ( ( ∪  dom  𝑂  ∈  dom  𝑂  ∧  ( ◡ 𝑂 ‘ 𝑋 )  ⊆  ∪  dom  𝑂 )  →  ( ( 𝐴  CNF  𝐵 ) ‘ ( 𝑥  ∈  𝐵  ↦  if ( 𝑥  ⊆  ( 𝑂 ‘ ∪  dom  𝑂 ) ,  ( 𝐹 ‘ 𝑥 ) ,  ∅ ) ) )  ∈  ( 𝐻 ‘ suc  ∪  dom  𝑂 ) ) ) ) | 
						
							| 426 | 58 425 | mpcom | ⊢ ( 𝜑  →  ( ( ∪  dom  𝑂  ∈  dom  𝑂  ∧  ( ◡ 𝑂 ‘ 𝑋 )  ⊆  ∪  dom  𝑂 )  →  ( ( 𝐴  CNF  𝐵 ) ‘ ( 𝑥  ∈  𝐵  ↦  if ( 𝑥  ⊆  ( 𝑂 ‘ ∪  dom  𝑂 ) ,  ( 𝐹 ‘ 𝑥 ) ,  ∅ ) ) )  ∈  ( 𝐻 ‘ suc  ∪  dom  𝑂 ) ) ) | 
						
							| 427 | 45 55 426 | mp2and | ⊢ ( 𝜑  →  ( ( 𝐴  CNF  𝐵 ) ‘ ( 𝑥  ∈  𝐵  ↦  if ( 𝑥  ⊆  ( 𝑂 ‘ ∪  dom  𝑂 ) ,  ( 𝐹 ‘ 𝑥 ) ,  ∅ ) ) )  ∈  ( 𝐻 ‘ suc  ∪  dom  𝑂 ) ) | 
						
							| 428 | 155 | feqmptd | ⊢ ( 𝜑  →  𝐹  =  ( 𝑥  ∈  𝐵  ↦  ( 𝐹 ‘ 𝑥 ) ) ) | 
						
							| 429 |  | eqeq2 | ⊢ ( ( 𝐹 ‘ 𝑥 )  =  if ( 𝑥  ⊆  ( 𝑂 ‘ ∪  dom  𝑂 ) ,  ( 𝐹 ‘ 𝑥 ) ,  ∅ )  →  ( ( 𝐹 ‘ 𝑥 )  =  ( 𝐹 ‘ 𝑥 )  ↔  ( 𝐹 ‘ 𝑥 )  =  if ( 𝑥  ⊆  ( 𝑂 ‘ ∪  dom  𝑂 ) ,  ( 𝐹 ‘ 𝑥 ) ,  ∅ ) ) ) | 
						
							| 430 |  | eqeq2 | ⊢ ( ∅  =  if ( 𝑥  ⊆  ( 𝑂 ‘ ∪  dom  𝑂 ) ,  ( 𝐹 ‘ 𝑥 ) ,  ∅ )  →  ( ( 𝐹 ‘ 𝑥 )  =  ∅  ↔  ( 𝐹 ‘ 𝑥 )  =  if ( 𝑥  ⊆  ( 𝑂 ‘ ∪  dom  𝑂 ) ,  ( 𝐹 ‘ 𝑥 ) ,  ∅ ) ) ) | 
						
							| 431 |  | eqidd | ⊢ ( ( ( 𝜑  ∧  𝑥  ∈  𝐵 )  ∧  𝑥  ⊆  ( 𝑂 ‘ ∪  dom  𝑂 ) )  →  ( 𝐹 ‘ 𝑥 )  =  ( 𝐹 ‘ 𝑥 ) ) | 
						
							| 432 | 199 | ffvelcdmi | ⊢ ( ∪  dom  𝑂  ∈  dom  𝑂  →  ( 𝑂 ‘ ∪  dom  𝑂 )  ∈  ( 𝐺  supp  ∅ ) ) | 
						
							| 433 | 45 432 | syl | ⊢ ( 𝜑  →  ( 𝑂 ‘ ∪  dom  𝑂 )  ∈  ( 𝐺  supp  ∅ ) ) | 
						
							| 434 | 197 433 | sseldd | ⊢ ( 𝜑  →  ( 𝑂 ‘ ∪  dom  𝑂 )  ∈  𝐵 ) | 
						
							| 435 |  | onelon | ⊢ ( ( 𝐵  ∈  On  ∧  ( 𝑂 ‘ ∪  dom  𝑂 )  ∈  𝐵 )  →  ( 𝑂 ‘ ∪  dom  𝑂 )  ∈  On ) | 
						
							| 436 | 3 434 435 | syl2anc | ⊢ ( 𝜑  →  ( 𝑂 ‘ ∪  dom  𝑂 )  ∈  On ) | 
						
							| 437 | 436 | adantr | ⊢ ( ( 𝜑  ∧  𝑥  ∈  𝐵 )  →  ( 𝑂 ‘ ∪  dom  𝑂 )  ∈  On ) | 
						
							| 438 |  | ontri1 | ⊢ ( ( 𝑥  ∈  On  ∧  ( 𝑂 ‘ ∪  dom  𝑂 )  ∈  On )  →  ( 𝑥  ⊆  ( 𝑂 ‘ ∪  dom  𝑂 )  ↔  ¬  ( 𝑂 ‘ ∪  dom  𝑂 )  ∈  𝑥 ) ) | 
						
							| 439 | 224 437 438 | syl2anc | ⊢ ( ( 𝜑  ∧  𝑥  ∈  𝐵 )  →  ( 𝑥  ⊆  ( 𝑂 ‘ ∪  dom  𝑂 )  ↔  ¬  ( 𝑂 ‘ ∪  dom  𝑂 )  ∈  𝑥 ) ) | 
						
							| 440 | 439 | con2bid | ⊢ ( ( 𝜑  ∧  𝑥  ∈  𝐵 )  →  ( ( 𝑂 ‘ ∪  dom  𝑂 )  ∈  𝑥  ↔  ¬  𝑥  ⊆  ( 𝑂 ‘ ∪  dom  𝑂 ) ) ) | 
						
							| 441 |  | simprl | ⊢ ( ( 𝜑  ∧  ( 𝑥  ∈  𝐵  ∧  ( 𝑂 ‘ ∪  dom  𝑂 )  ∈  𝑥 ) )  →  𝑥  ∈  𝐵 ) | 
						
							| 442 | 377 | adantr | ⊢ ( ( 𝜑  ∧  ( 𝑥  ∈  𝐵  ∧  ( 𝑂 ‘ ∪  dom  𝑂 )  ∈  𝑥 ) )  →  ∀ 𝑤  ∈  𝐵 ( 𝑋  ∈  𝑤  →  ( 𝐹 ‘ 𝑤 )  =  ( 𝐺 ‘ 𝑤 ) ) ) | 
						
							| 443 |  | eloni | ⊢ ( ( ◡ 𝑂 ‘ 𝑋 )  ∈  On  →  Ord  ( ◡ 𝑂 ‘ 𝑋 ) ) | 
						
							| 444 | 129 443 | syl | ⊢ ( 𝜑  →  Ord  ( ◡ 𝑂 ‘ 𝑋 ) ) | 
						
							| 445 |  | orduni | ⊢ ( Ord  dom  𝑂  →  Ord  ∪  dom  𝑂 ) | 
						
							| 446 | 37 445 | ax-mp | ⊢ Ord  ∪  dom  𝑂 | 
						
							| 447 |  | ordtri1 | ⊢ ( ( Ord  ( ◡ 𝑂 ‘ 𝑋 )  ∧  Ord  ∪  dom  𝑂 )  →  ( ( ◡ 𝑂 ‘ 𝑋 )  ⊆  ∪  dom  𝑂  ↔  ¬  ∪  dom  𝑂  ∈  ( ◡ 𝑂 ‘ 𝑋 ) ) ) | 
						
							| 448 | 444 446 447 | sylancl | ⊢ ( 𝜑  →  ( ( ◡ 𝑂 ‘ 𝑋 )  ⊆  ∪  dom  𝑂  ↔  ¬  ∪  dom  𝑂  ∈  ( ◡ 𝑂 ‘ 𝑋 ) ) ) | 
						
							| 449 | 55 448 | mpbid | ⊢ ( 𝜑  →  ¬  ∪  dom  𝑂  ∈  ( ◡ 𝑂 ‘ 𝑋 ) ) | 
						
							| 450 |  | isorel | ⊢ ( ( 𝑂  Isom   E  ,   E  ( dom  𝑂 ,  ( 𝐺  supp  ∅ ) )  ∧  ( ∪  dom  𝑂  ∈  dom  𝑂  ∧  ( ◡ 𝑂 ‘ 𝑋 )  ∈  dom  𝑂 ) )  →  ( ∪  dom  𝑂  E  ( ◡ 𝑂 ‘ 𝑋 )  ↔  ( 𝑂 ‘ ∪  dom  𝑂 )  E  ( 𝑂 ‘ ( ◡ 𝑂 ‘ 𝑋 ) ) ) ) | 
						
							| 451 | 47 45 53 450 | syl12anc | ⊢ ( 𝜑  →  ( ∪  dom  𝑂  E  ( ◡ 𝑂 ‘ 𝑋 )  ↔  ( 𝑂 ‘ ∪  dom  𝑂 )  E  ( 𝑂 ‘ ( ◡ 𝑂 ‘ 𝑋 ) ) ) ) | 
						
							| 452 |  | fvex | ⊢ ( ◡ 𝑂 ‘ 𝑋 )  ∈  V | 
						
							| 453 | 452 | epeli | ⊢ ( ∪  dom  𝑂  E  ( ◡ 𝑂 ‘ 𝑋 )  ↔  ∪  dom  𝑂  ∈  ( ◡ 𝑂 ‘ 𝑋 ) ) | 
						
							| 454 |  | fvex | ⊢ ( 𝑂 ‘ ( ◡ 𝑂 ‘ 𝑋 ) )  ∈  V | 
						
							| 455 | 454 | epeli | ⊢ ( ( 𝑂 ‘ ∪  dom  𝑂 )  E  ( 𝑂 ‘ ( ◡ 𝑂 ‘ 𝑋 ) )  ↔  ( 𝑂 ‘ ∪  dom  𝑂 )  ∈  ( 𝑂 ‘ ( ◡ 𝑂 ‘ 𝑋 ) ) ) | 
						
							| 456 | 451 453 455 | 3bitr3g | ⊢ ( 𝜑  →  ( ∪  dom  𝑂  ∈  ( ◡ 𝑂 ‘ 𝑋 )  ↔  ( 𝑂 ‘ ∪  dom  𝑂 )  ∈  ( 𝑂 ‘ ( ◡ 𝑂 ‘ 𝑋 ) ) ) ) | 
						
							| 457 | 109 | eleq2d | ⊢ ( 𝜑  →  ( ( 𝑂 ‘ ∪  dom  𝑂 )  ∈  ( 𝑂 ‘ ( ◡ 𝑂 ‘ 𝑋 ) )  ↔  ( 𝑂 ‘ ∪  dom  𝑂 )  ∈  𝑋 ) ) | 
						
							| 458 | 456 457 | bitrd | ⊢ ( 𝜑  →  ( ∪  dom  𝑂  ∈  ( ◡ 𝑂 ‘ 𝑋 )  ↔  ( 𝑂 ‘ ∪  dom  𝑂 )  ∈  𝑋 ) ) | 
						
							| 459 | 449 458 | mtbid | ⊢ ( 𝜑  →  ¬  ( 𝑂 ‘ ∪  dom  𝑂 )  ∈  𝑋 ) | 
						
							| 460 |  | onelon | ⊢ ( ( 𝐵  ∈  On  ∧  𝑋  ∈  𝐵 )  →  𝑋  ∈  On ) | 
						
							| 461 | 3 161 460 | syl2anc | ⊢ ( 𝜑  →  𝑋  ∈  On ) | 
						
							| 462 |  | ontri1 | ⊢ ( ( 𝑋  ∈  On  ∧  ( 𝑂 ‘ ∪  dom  𝑂 )  ∈  On )  →  ( 𝑋  ⊆  ( 𝑂 ‘ ∪  dom  𝑂 )  ↔  ¬  ( 𝑂 ‘ ∪  dom  𝑂 )  ∈  𝑋 ) ) | 
						
							| 463 | 461 436 462 | syl2anc | ⊢ ( 𝜑  →  ( 𝑋  ⊆  ( 𝑂 ‘ ∪  dom  𝑂 )  ↔  ¬  ( 𝑂 ‘ ∪  dom  𝑂 )  ∈  𝑋 ) ) | 
						
							| 464 | 459 463 | mpbird | ⊢ ( 𝜑  →  𝑋  ⊆  ( 𝑂 ‘ ∪  dom  𝑂 ) ) | 
						
							| 465 | 464 | adantr | ⊢ ( ( 𝜑  ∧  ( 𝑥  ∈  𝐵  ∧  ( 𝑂 ‘ ∪  dom  𝑂 )  ∈  𝑥 ) )  →  𝑋  ⊆  ( 𝑂 ‘ ∪  dom  𝑂 ) ) | 
						
							| 466 |  | simprr | ⊢ ( ( 𝜑  ∧  ( 𝑥  ∈  𝐵  ∧  ( 𝑂 ‘ ∪  dom  𝑂 )  ∈  𝑥 ) )  →  ( 𝑂 ‘ ∪  dom  𝑂 )  ∈  𝑥 ) | 
						
							| 467 | 224 | adantrr | ⊢ ( ( 𝜑  ∧  ( 𝑥  ∈  𝐵  ∧  ( 𝑂 ‘ ∪  dom  𝑂 )  ∈  𝑥 ) )  →  𝑥  ∈  On ) | 
						
							| 468 |  | ontr2 | ⊢ ( ( 𝑋  ∈  On  ∧  𝑥  ∈  On )  →  ( ( 𝑋  ⊆  ( 𝑂 ‘ ∪  dom  𝑂 )  ∧  ( 𝑂 ‘ ∪  dom  𝑂 )  ∈  𝑥 )  →  𝑋  ∈  𝑥 ) ) | 
						
							| 469 | 461 467 468 | syl2an2r | ⊢ ( ( 𝜑  ∧  ( 𝑥  ∈  𝐵  ∧  ( 𝑂 ‘ ∪  dom  𝑂 )  ∈  𝑥 ) )  →  ( ( 𝑋  ⊆  ( 𝑂 ‘ ∪  dom  𝑂 )  ∧  ( 𝑂 ‘ ∪  dom  𝑂 )  ∈  𝑥 )  →  𝑋  ∈  𝑥 ) ) | 
						
							| 470 | 465 466 469 | mp2and | ⊢ ( ( 𝜑  ∧  ( 𝑥  ∈  𝐵  ∧  ( 𝑂 ‘ ∪  dom  𝑂 )  ∈  𝑥 ) )  →  𝑋  ∈  𝑥 ) | 
						
							| 471 |  | eleq2 | ⊢ ( 𝑤  =  𝑥  →  ( 𝑋  ∈  𝑤  ↔  𝑋  ∈  𝑥 ) ) | 
						
							| 472 |  | fveq2 | ⊢ ( 𝑤  =  𝑥  →  ( 𝐹 ‘ 𝑤 )  =  ( 𝐹 ‘ 𝑥 ) ) | 
						
							| 473 |  | fveq2 | ⊢ ( 𝑤  =  𝑥  →  ( 𝐺 ‘ 𝑤 )  =  ( 𝐺 ‘ 𝑥 ) ) | 
						
							| 474 | 472 473 | eqeq12d | ⊢ ( 𝑤  =  𝑥  →  ( ( 𝐹 ‘ 𝑤 )  =  ( 𝐺 ‘ 𝑤 )  ↔  ( 𝐹 ‘ 𝑥 )  =  ( 𝐺 ‘ 𝑥 ) ) ) | 
						
							| 475 | 471 474 | imbi12d | ⊢ ( 𝑤  =  𝑥  →  ( ( 𝑋  ∈  𝑤  →  ( 𝐹 ‘ 𝑤 )  =  ( 𝐺 ‘ 𝑤 ) )  ↔  ( 𝑋  ∈  𝑥  →  ( 𝐹 ‘ 𝑥 )  =  ( 𝐺 ‘ 𝑥 ) ) ) ) | 
						
							| 476 | 475 | rspcv | ⊢ ( 𝑥  ∈  𝐵  →  ( ∀ 𝑤  ∈  𝐵 ( 𝑋  ∈  𝑤  →  ( 𝐹 ‘ 𝑤 )  =  ( 𝐺 ‘ 𝑤 ) )  →  ( 𝑋  ∈  𝑥  →  ( 𝐹 ‘ 𝑥 )  =  ( 𝐺 ‘ 𝑥 ) ) ) ) | 
						
							| 477 | 441 442 470 476 | syl3c | ⊢ ( ( 𝜑  ∧  ( 𝑥  ∈  𝐵  ∧  ( 𝑂 ‘ ∪  dom  𝑂 )  ∈  𝑥 ) )  →  ( 𝐹 ‘ 𝑥 )  =  ( 𝐺 ‘ 𝑥 ) ) | 
						
							| 478 | 466 | adantr | ⊢ ( ( ( 𝜑  ∧  ( 𝑥  ∈  𝐵  ∧  ( 𝑂 ‘ ∪  dom  𝑂 )  ∈  𝑥 ) )  ∧  𝑥  ∈  ( 𝐺  supp  ∅ ) )  →  ( 𝑂 ‘ ∪  dom  𝑂 )  ∈  𝑥 ) | 
						
							| 479 | 47 | ad2antrr | ⊢ ( ( ( 𝜑  ∧  ( 𝑥  ∈  𝐵  ∧  ( 𝑂 ‘ ∪  dom  𝑂 )  ∈  𝑥 ) )  ∧  𝑥  ∈  ( 𝐺  supp  ∅ ) )  →  𝑂  Isom   E  ,   E  ( dom  𝑂 ,  ( 𝐺  supp  ∅ ) ) ) | 
						
							| 480 | 45 | ad2antrr | ⊢ ( ( ( 𝜑  ∧  ( 𝑥  ∈  𝐵  ∧  ( 𝑂 ‘ ∪  dom  𝑂 )  ∈  𝑥 ) )  ∧  𝑥  ∈  ( 𝐺  supp  ∅ ) )  →  ∪  dom  𝑂  ∈  dom  𝑂 ) | 
						
							| 481 | 52 | ad2antrr | ⊢ ( ( ( 𝜑  ∧  ( 𝑥  ∈  𝐵  ∧  ( 𝑂 ‘ ∪  dom  𝑂 )  ∈  𝑥 ) )  ∧  𝑥  ∈  ( 𝐺  supp  ∅ ) )  →  ◡ 𝑂 : ( 𝐺  supp  ∅ ) ⟶ dom  𝑂 ) | 
						
							| 482 |  | ffvelcdm | ⊢ ( ( ◡ 𝑂 : ( 𝐺  supp  ∅ ) ⟶ dom  𝑂  ∧  𝑥  ∈  ( 𝐺  supp  ∅ ) )  →  ( ◡ 𝑂 ‘ 𝑥 )  ∈  dom  𝑂 ) | 
						
							| 483 | 481 482 | sylancom | ⊢ ( ( ( 𝜑  ∧  ( 𝑥  ∈  𝐵  ∧  ( 𝑂 ‘ ∪  dom  𝑂 )  ∈  𝑥 ) )  ∧  𝑥  ∈  ( 𝐺  supp  ∅ ) )  →  ( ◡ 𝑂 ‘ 𝑥 )  ∈  dom  𝑂 ) | 
						
							| 484 |  | isorel | ⊢ ( ( 𝑂  Isom   E  ,   E  ( dom  𝑂 ,  ( 𝐺  supp  ∅ ) )  ∧  ( ∪  dom  𝑂  ∈  dom  𝑂  ∧  ( ◡ 𝑂 ‘ 𝑥 )  ∈  dom  𝑂 ) )  →  ( ∪  dom  𝑂  E  ( ◡ 𝑂 ‘ 𝑥 )  ↔  ( 𝑂 ‘ ∪  dom  𝑂 )  E  ( 𝑂 ‘ ( ◡ 𝑂 ‘ 𝑥 ) ) ) ) | 
						
							| 485 | 479 480 483 484 | syl12anc | ⊢ ( ( ( 𝜑  ∧  ( 𝑥  ∈  𝐵  ∧  ( 𝑂 ‘ ∪  dom  𝑂 )  ∈  𝑥 ) )  ∧  𝑥  ∈  ( 𝐺  supp  ∅ ) )  →  ( ∪  dom  𝑂  E  ( ◡ 𝑂 ‘ 𝑥 )  ↔  ( 𝑂 ‘ ∪  dom  𝑂 )  E  ( 𝑂 ‘ ( ◡ 𝑂 ‘ 𝑥 ) ) ) ) | 
						
							| 486 | 269 | epeli | ⊢ ( ∪  dom  𝑂  E  ( ◡ 𝑂 ‘ 𝑥 )  ↔  ∪  dom  𝑂  ∈  ( ◡ 𝑂 ‘ 𝑥 ) ) | 
						
							| 487 | 271 | epeli | ⊢ ( ( 𝑂 ‘ ∪  dom  𝑂 )  E  ( 𝑂 ‘ ( ◡ 𝑂 ‘ 𝑥 ) )  ↔  ( 𝑂 ‘ ∪  dom  𝑂 )  ∈  ( 𝑂 ‘ ( ◡ 𝑂 ‘ 𝑥 ) ) ) | 
						
							| 488 | 485 486 487 | 3bitr3g | ⊢ ( ( ( 𝜑  ∧  ( 𝑥  ∈  𝐵  ∧  ( 𝑂 ‘ ∪  dom  𝑂 )  ∈  𝑥 ) )  ∧  𝑥  ∈  ( 𝐺  supp  ∅ ) )  →  ( ∪  dom  𝑂  ∈  ( ◡ 𝑂 ‘ 𝑥 )  ↔  ( 𝑂 ‘ ∪  dom  𝑂 )  ∈  ( 𝑂 ‘ ( ◡ 𝑂 ‘ 𝑥 ) ) ) ) | 
						
							| 489 | 49 | ad2antrr | ⊢ ( ( ( 𝜑  ∧  ( 𝑥  ∈  𝐵  ∧  ( 𝑂 ‘ ∪  dom  𝑂 )  ∈  𝑥 ) )  ∧  𝑥  ∈  ( 𝐺  supp  ∅ ) )  →  𝑂 : dom  𝑂 –1-1-onto→ ( 𝐺  supp  ∅ ) ) | 
						
							| 490 | 489 261 | sylancom | ⊢ ( ( ( 𝜑  ∧  ( 𝑥  ∈  𝐵  ∧  ( 𝑂 ‘ ∪  dom  𝑂 )  ∈  𝑥 ) )  ∧  𝑥  ∈  ( 𝐺  supp  ∅ ) )  →  ( 𝑂 ‘ ( ◡ 𝑂 ‘ 𝑥 ) )  =  𝑥 ) | 
						
							| 491 | 490 | eleq2d | ⊢ ( ( ( 𝜑  ∧  ( 𝑥  ∈  𝐵  ∧  ( 𝑂 ‘ ∪  dom  𝑂 )  ∈  𝑥 ) )  ∧  𝑥  ∈  ( 𝐺  supp  ∅ ) )  →  ( ( 𝑂 ‘ ∪  dom  𝑂 )  ∈  ( 𝑂 ‘ ( ◡ 𝑂 ‘ 𝑥 ) )  ↔  ( 𝑂 ‘ ∪  dom  𝑂 )  ∈  𝑥 ) ) | 
						
							| 492 | 488 491 | bitrd | ⊢ ( ( ( 𝜑  ∧  ( 𝑥  ∈  𝐵  ∧  ( 𝑂 ‘ ∪  dom  𝑂 )  ∈  𝑥 ) )  ∧  𝑥  ∈  ( 𝐺  supp  ∅ ) )  →  ( ∪  dom  𝑂  ∈  ( ◡ 𝑂 ‘ 𝑥 )  ↔  ( 𝑂 ‘ ∪  dom  𝑂 )  ∈  𝑥 ) ) | 
						
							| 493 | 478 492 | mpbird | ⊢ ( ( ( 𝜑  ∧  ( 𝑥  ∈  𝐵  ∧  ( 𝑂 ‘ ∪  dom  𝑂 )  ∈  𝑥 ) )  ∧  𝑥  ∈  ( 𝐺  supp  ∅ ) )  →  ∪  dom  𝑂  ∈  ( ◡ 𝑂 ‘ 𝑥 ) ) | 
						
							| 494 |  | elssuni | ⊢ ( ( ◡ 𝑂 ‘ 𝑥 )  ∈  dom  𝑂  →  ( ◡ 𝑂 ‘ 𝑥 )  ⊆  ∪  dom  𝑂 ) | 
						
							| 495 | 483 494 | syl | ⊢ ( ( ( 𝜑  ∧  ( 𝑥  ∈  𝐵  ∧  ( 𝑂 ‘ ∪  dom  𝑂 )  ∈  𝑥 ) )  ∧  𝑥  ∈  ( 𝐺  supp  ∅ ) )  →  ( ◡ 𝑂 ‘ 𝑥 )  ⊆  ∪  dom  𝑂 ) | 
						
							| 496 | 37 483 275 | sylancr | ⊢ ( ( ( 𝜑  ∧  ( 𝑥  ∈  𝐵  ∧  ( 𝑂 ‘ ∪  dom  𝑂 )  ∈  𝑥 ) )  ∧  𝑥  ∈  ( 𝐺  supp  ∅ ) )  →  ( ◡ 𝑂 ‘ 𝑥 )  ∈  On ) | 
						
							| 497 | 496 277 | syl | ⊢ ( ( ( 𝜑  ∧  ( 𝑥  ∈  𝐵  ∧  ( 𝑂 ‘ ∪  dom  𝑂 )  ∈  𝑥 ) )  ∧  𝑥  ∈  ( 𝐺  supp  ∅ ) )  →  Ord  ( ◡ 𝑂 ‘ 𝑥 ) ) | 
						
							| 498 |  | ordtri1 | ⊢ ( ( Ord  ( ◡ 𝑂 ‘ 𝑥 )  ∧  Ord  ∪  dom  𝑂 )  →  ( ( ◡ 𝑂 ‘ 𝑥 )  ⊆  ∪  dom  𝑂  ↔  ¬  ∪  dom  𝑂  ∈  ( ◡ 𝑂 ‘ 𝑥 ) ) ) | 
						
							| 499 | 497 446 498 | sylancl | ⊢ ( ( ( 𝜑  ∧  ( 𝑥  ∈  𝐵  ∧  ( 𝑂 ‘ ∪  dom  𝑂 )  ∈  𝑥 ) )  ∧  𝑥  ∈  ( 𝐺  supp  ∅ ) )  →  ( ( ◡ 𝑂 ‘ 𝑥 )  ⊆  ∪  dom  𝑂  ↔  ¬  ∪  dom  𝑂  ∈  ( ◡ 𝑂 ‘ 𝑥 ) ) ) | 
						
							| 500 | 495 499 | mpbid | ⊢ ( ( ( 𝜑  ∧  ( 𝑥  ∈  𝐵  ∧  ( 𝑂 ‘ ∪  dom  𝑂 )  ∈  𝑥 ) )  ∧  𝑥  ∈  ( 𝐺  supp  ∅ ) )  →  ¬  ∪  dom  𝑂  ∈  ( ◡ 𝑂 ‘ 𝑥 ) ) | 
						
							| 501 | 493 500 | pm2.65da | ⊢ ( ( 𝜑  ∧  ( 𝑥  ∈  𝐵  ∧  ( 𝑂 ‘ ∪  dom  𝑂 )  ∈  𝑥 ) )  →  ¬  𝑥  ∈  ( 𝐺  supp  ∅ ) ) | 
						
							| 502 | 441 501 | eldifd | ⊢ ( ( 𝜑  ∧  ( 𝑥  ∈  𝐵  ∧  ( 𝑂 ‘ ∪  dom  𝑂 )  ∈  𝑥 ) )  →  𝑥  ∈  ( 𝐵  ∖  ( 𝐺  supp  ∅ ) ) ) | 
						
							| 503 |  | ssidd | ⊢ ( 𝜑  →  ( 𝐺  supp  ∅ )  ⊆  ( 𝐺  supp  ∅ ) ) | 
						
							| 504 | 159 503 3 176 | suppssr | ⊢ ( ( 𝜑  ∧  𝑥  ∈  ( 𝐵  ∖  ( 𝐺  supp  ∅ ) ) )  →  ( 𝐺 ‘ 𝑥 )  =  ∅ ) | 
						
							| 505 | 502 504 | syldan | ⊢ ( ( 𝜑  ∧  ( 𝑥  ∈  𝐵  ∧  ( 𝑂 ‘ ∪  dom  𝑂 )  ∈  𝑥 ) )  →  ( 𝐺 ‘ 𝑥 )  =  ∅ ) | 
						
							| 506 | 477 505 | eqtrd | ⊢ ( ( 𝜑  ∧  ( 𝑥  ∈  𝐵  ∧  ( 𝑂 ‘ ∪  dom  𝑂 )  ∈  𝑥 ) )  →  ( 𝐹 ‘ 𝑥 )  =  ∅ ) | 
						
							| 507 | 506 | expr | ⊢ ( ( 𝜑  ∧  𝑥  ∈  𝐵 )  →  ( ( 𝑂 ‘ ∪  dom  𝑂 )  ∈  𝑥  →  ( 𝐹 ‘ 𝑥 )  =  ∅ ) ) | 
						
							| 508 | 440 507 | sylbird | ⊢ ( ( 𝜑  ∧  𝑥  ∈  𝐵 )  →  ( ¬  𝑥  ⊆  ( 𝑂 ‘ ∪  dom  𝑂 )  →  ( 𝐹 ‘ 𝑥 )  =  ∅ ) ) | 
						
							| 509 | 508 | imp | ⊢ ( ( ( 𝜑  ∧  𝑥  ∈  𝐵 )  ∧  ¬  𝑥  ⊆  ( 𝑂 ‘ ∪  dom  𝑂 ) )  →  ( 𝐹 ‘ 𝑥 )  =  ∅ ) | 
						
							| 510 | 429 430 431 509 | ifbothda | ⊢ ( ( 𝜑  ∧  𝑥  ∈  𝐵 )  →  ( 𝐹 ‘ 𝑥 )  =  if ( 𝑥  ⊆  ( 𝑂 ‘ ∪  dom  𝑂 ) ,  ( 𝐹 ‘ 𝑥 ) ,  ∅ ) ) | 
						
							| 511 | 510 | mpteq2dva | ⊢ ( 𝜑  →  ( 𝑥  ∈  𝐵  ↦  ( 𝐹 ‘ 𝑥 ) )  =  ( 𝑥  ∈  𝐵  ↦  if ( 𝑥  ⊆  ( 𝑂 ‘ ∪  dom  𝑂 ) ,  ( 𝐹 ‘ 𝑥 ) ,  ∅ ) ) ) | 
						
							| 512 | 428 511 | eqtrd | ⊢ ( 𝜑  →  𝐹  =  ( 𝑥  ∈  𝐵  ↦  if ( 𝑥  ⊆  ( 𝑂 ‘ ∪  dom  𝑂 ) ,  ( 𝐹 ‘ 𝑥 ) ,  ∅ ) ) ) | 
						
							| 513 | 512 | fveq2d | ⊢ ( 𝜑  →  ( ( 𝐴  CNF  𝐵 ) ‘ 𝐹 )  =  ( ( 𝐴  CNF  𝐵 ) ‘ ( 𝑥  ∈  𝐵  ↦  if ( 𝑥  ⊆  ( 𝑂 ‘ ∪  dom  𝑂 ) ,  ( 𝐹 ‘ 𝑥 ) ,  ∅ ) ) ) ) | 
						
							| 514 | 1 2 3 9 6 10 | cantnfval | ⊢ ( 𝜑  →  ( ( 𝐴  CNF  𝐵 ) ‘ 𝐺 )  =  ( 𝐻 ‘ dom  𝑂 ) ) | 
						
							| 515 | 44 | fveq2d | ⊢ ( 𝜑  →  ( 𝐻 ‘ dom  𝑂 )  =  ( 𝐻 ‘ suc  ∪  dom  𝑂 ) ) | 
						
							| 516 | 514 515 | eqtrd | ⊢ ( 𝜑  →  ( ( 𝐴  CNF  𝐵 ) ‘ 𝐺 )  =  ( 𝐻 ‘ suc  ∪  dom  𝑂 ) ) | 
						
							| 517 | 427 513 516 | 3eltr4d | ⊢ ( 𝜑  →  ( ( 𝐴  CNF  𝐵 ) ‘ 𝐹 )  ∈  ( ( 𝐴  CNF  𝐵 ) ‘ 𝐺 ) ) |