| Step | Hyp | Ref | Expression | 
						
							| 1 |  | cantnfs.s | ⊢ 𝑆  =  dom  ( 𝐴  CNF  𝐵 ) | 
						
							| 2 |  | cantnfs.a | ⊢ ( 𝜑  →  𝐴  ∈  On ) | 
						
							| 3 |  | cantnfs.b | ⊢ ( 𝜑  →  𝐵  ∈  On ) | 
						
							| 4 |  | oemapval.t | ⊢ 𝑇  =  { 〈 𝑥 ,  𝑦 〉  ∣  ∃ 𝑧  ∈  𝐵 ( ( 𝑥 ‘ 𝑧 )  ∈  ( 𝑦 ‘ 𝑧 )  ∧  ∀ 𝑤  ∈  𝐵 ( 𝑧  ∈  𝑤  →  ( 𝑥 ‘ 𝑤 )  =  ( 𝑦 ‘ 𝑤 ) ) ) } | 
						
							| 5 |  | oemapval.f | ⊢ ( 𝜑  →  𝐹  ∈  𝑆 ) | 
						
							| 6 |  | oemapval.g | ⊢ ( 𝜑  →  𝐺  ∈  𝑆 ) | 
						
							| 7 |  | oemapvali.r | ⊢ ( 𝜑  →  𝐹 𝑇 𝐺 ) | 
						
							| 8 |  | oemapvali.x | ⊢ 𝑋  =  ∪  { 𝑐  ∈  𝐵  ∣  ( 𝐹 ‘ 𝑐 )  ∈  ( 𝐺 ‘ 𝑐 ) } | 
						
							| 9 | 1 2 3 4 5 6 7 8 | oemapvali | ⊢ ( 𝜑  →  ( 𝑋  ∈  𝐵  ∧  ( 𝐹 ‘ 𝑋 )  ∈  ( 𝐺 ‘ 𝑋 )  ∧  ∀ 𝑤  ∈  𝐵 ( 𝑋  ∈  𝑤  →  ( 𝐹 ‘ 𝑤 )  =  ( 𝐺 ‘ 𝑤 ) ) ) ) | 
						
							| 10 | 9 | simp1d | ⊢ ( 𝜑  →  𝑋  ∈  𝐵 ) | 
						
							| 11 | 9 | simp2d | ⊢ ( 𝜑  →  ( 𝐹 ‘ 𝑋 )  ∈  ( 𝐺 ‘ 𝑋 ) ) | 
						
							| 12 | 11 | ne0d | ⊢ ( 𝜑  →  ( 𝐺 ‘ 𝑋 )  ≠  ∅ ) | 
						
							| 13 | 1 2 3 | cantnfs | ⊢ ( 𝜑  →  ( 𝐺  ∈  𝑆  ↔  ( 𝐺 : 𝐵 ⟶ 𝐴  ∧  𝐺  finSupp  ∅ ) ) ) | 
						
							| 14 | 6 13 | mpbid | ⊢ ( 𝜑  →  ( 𝐺 : 𝐵 ⟶ 𝐴  ∧  𝐺  finSupp  ∅ ) ) | 
						
							| 15 | 14 | simpld | ⊢ ( 𝜑  →  𝐺 : 𝐵 ⟶ 𝐴 ) | 
						
							| 16 | 15 | ffnd | ⊢ ( 𝜑  →  𝐺  Fn  𝐵 ) | 
						
							| 17 |  | 0ex | ⊢ ∅  ∈  V | 
						
							| 18 | 17 | a1i | ⊢ ( 𝜑  →  ∅  ∈  V ) | 
						
							| 19 |  | elsuppfn | ⊢ ( ( 𝐺  Fn  𝐵  ∧  𝐵  ∈  On  ∧  ∅  ∈  V )  →  ( 𝑋  ∈  ( 𝐺  supp  ∅ )  ↔  ( 𝑋  ∈  𝐵  ∧  ( 𝐺 ‘ 𝑋 )  ≠  ∅ ) ) ) | 
						
							| 20 | 16 3 18 19 | syl3anc | ⊢ ( 𝜑  →  ( 𝑋  ∈  ( 𝐺  supp  ∅ )  ↔  ( 𝑋  ∈  𝐵  ∧  ( 𝐺 ‘ 𝑋 )  ≠  ∅ ) ) ) | 
						
							| 21 | 10 12 20 | mpbir2and | ⊢ ( 𝜑  →  𝑋  ∈  ( 𝐺  supp  ∅ ) ) |