Step |
Hyp |
Ref |
Expression |
1 |
|
cantnfs.s |
⊢ 𝑆 = dom ( 𝐴 CNF 𝐵 ) |
2 |
|
cantnfs.a |
⊢ ( 𝜑 → 𝐴 ∈ On ) |
3 |
|
cantnfs.b |
⊢ ( 𝜑 → 𝐵 ∈ On ) |
4 |
|
oemapval.t |
⊢ 𝑇 = { 〈 𝑥 , 𝑦 〉 ∣ ∃ 𝑧 ∈ 𝐵 ( ( 𝑥 ‘ 𝑧 ) ∈ ( 𝑦 ‘ 𝑧 ) ∧ ∀ 𝑤 ∈ 𝐵 ( 𝑧 ∈ 𝑤 → ( 𝑥 ‘ 𝑤 ) = ( 𝑦 ‘ 𝑤 ) ) ) } |
5 |
|
oemapval.f |
⊢ ( 𝜑 → 𝐹 ∈ 𝑆 ) |
6 |
|
oemapval.g |
⊢ ( 𝜑 → 𝐺 ∈ 𝑆 ) |
7 |
|
oemapvali.r |
⊢ ( 𝜑 → 𝐹 𝑇 𝐺 ) |
8 |
|
oemapvali.x |
⊢ 𝑋 = ∪ { 𝑐 ∈ 𝐵 ∣ ( 𝐹 ‘ 𝑐 ) ∈ ( 𝐺 ‘ 𝑐 ) } |
9 |
|
cantnflem1.o |
⊢ 𝑂 = OrdIso ( E , ( 𝐺 supp ∅ ) ) |
10 |
|
simprr |
⊢ ( ( 𝜑 ∧ ( suc 𝑢 ∈ dom 𝑂 ∧ ( ◡ 𝑂 ‘ 𝑋 ) ⊆ 𝑢 ) ) → ( ◡ 𝑂 ‘ 𝑋 ) ⊆ 𝑢 ) |
11 |
9
|
oicl |
⊢ Ord dom 𝑂 |
12 |
|
ovexd |
⊢ ( 𝜑 → ( 𝐺 supp ∅ ) ∈ V ) |
13 |
1 2 3 9 6
|
cantnfcl |
⊢ ( 𝜑 → ( E We ( 𝐺 supp ∅ ) ∧ dom 𝑂 ∈ ω ) ) |
14 |
13
|
simpld |
⊢ ( 𝜑 → E We ( 𝐺 supp ∅ ) ) |
15 |
9
|
oiiso |
⊢ ( ( ( 𝐺 supp ∅ ) ∈ V ∧ E We ( 𝐺 supp ∅ ) ) → 𝑂 Isom E , E ( dom 𝑂 , ( 𝐺 supp ∅ ) ) ) |
16 |
12 14 15
|
syl2anc |
⊢ ( 𝜑 → 𝑂 Isom E , E ( dom 𝑂 , ( 𝐺 supp ∅ ) ) ) |
17 |
|
isof1o |
⊢ ( 𝑂 Isom E , E ( dom 𝑂 , ( 𝐺 supp ∅ ) ) → 𝑂 : dom 𝑂 –1-1-onto→ ( 𝐺 supp ∅ ) ) |
18 |
16 17
|
syl |
⊢ ( 𝜑 → 𝑂 : dom 𝑂 –1-1-onto→ ( 𝐺 supp ∅ ) ) |
19 |
|
f1ocnv |
⊢ ( 𝑂 : dom 𝑂 –1-1-onto→ ( 𝐺 supp ∅ ) → ◡ 𝑂 : ( 𝐺 supp ∅ ) –1-1-onto→ dom 𝑂 ) |
20 |
|
f1of |
⊢ ( ◡ 𝑂 : ( 𝐺 supp ∅ ) –1-1-onto→ dom 𝑂 → ◡ 𝑂 : ( 𝐺 supp ∅ ) ⟶ dom 𝑂 ) |
21 |
18 19 20
|
3syl |
⊢ ( 𝜑 → ◡ 𝑂 : ( 𝐺 supp ∅ ) ⟶ dom 𝑂 ) |
22 |
1 2 3 4 5 6 7 8
|
cantnflem1a |
⊢ ( 𝜑 → 𝑋 ∈ ( 𝐺 supp ∅ ) ) |
23 |
21 22
|
ffvelrnd |
⊢ ( 𝜑 → ( ◡ 𝑂 ‘ 𝑋 ) ∈ dom 𝑂 ) |
24 |
|
ordelon |
⊢ ( ( Ord dom 𝑂 ∧ ( ◡ 𝑂 ‘ 𝑋 ) ∈ dom 𝑂 ) → ( ◡ 𝑂 ‘ 𝑋 ) ∈ On ) |
25 |
11 23 24
|
sylancr |
⊢ ( 𝜑 → ( ◡ 𝑂 ‘ 𝑋 ) ∈ On ) |
26 |
11
|
a1i |
⊢ ( 𝜑 → Ord dom 𝑂 ) |
27 |
|
ordelon |
⊢ ( ( Ord dom 𝑂 ∧ suc 𝑢 ∈ dom 𝑂 ) → suc 𝑢 ∈ On ) |
28 |
26 27
|
sylan |
⊢ ( ( 𝜑 ∧ suc 𝑢 ∈ dom 𝑂 ) → suc 𝑢 ∈ On ) |
29 |
|
sucelon |
⊢ ( 𝑢 ∈ On ↔ suc 𝑢 ∈ On ) |
30 |
28 29
|
sylibr |
⊢ ( ( 𝜑 ∧ suc 𝑢 ∈ dom 𝑂 ) → 𝑢 ∈ On ) |
31 |
30
|
adantrr |
⊢ ( ( 𝜑 ∧ ( suc 𝑢 ∈ dom 𝑂 ∧ ( ◡ 𝑂 ‘ 𝑋 ) ⊆ 𝑢 ) ) → 𝑢 ∈ On ) |
32 |
|
ontri1 |
⊢ ( ( ( ◡ 𝑂 ‘ 𝑋 ) ∈ On ∧ 𝑢 ∈ On ) → ( ( ◡ 𝑂 ‘ 𝑋 ) ⊆ 𝑢 ↔ ¬ 𝑢 ∈ ( ◡ 𝑂 ‘ 𝑋 ) ) ) |
33 |
25 31 32
|
syl2an2r |
⊢ ( ( 𝜑 ∧ ( suc 𝑢 ∈ dom 𝑂 ∧ ( ◡ 𝑂 ‘ 𝑋 ) ⊆ 𝑢 ) ) → ( ( ◡ 𝑂 ‘ 𝑋 ) ⊆ 𝑢 ↔ ¬ 𝑢 ∈ ( ◡ 𝑂 ‘ 𝑋 ) ) ) |
34 |
10 33
|
mpbid |
⊢ ( ( 𝜑 ∧ ( suc 𝑢 ∈ dom 𝑂 ∧ ( ◡ 𝑂 ‘ 𝑋 ) ⊆ 𝑢 ) ) → ¬ 𝑢 ∈ ( ◡ 𝑂 ‘ 𝑋 ) ) |
35 |
16
|
adantr |
⊢ ( ( 𝜑 ∧ ( suc 𝑢 ∈ dom 𝑂 ∧ ( ◡ 𝑂 ‘ 𝑋 ) ⊆ 𝑢 ) ) → 𝑂 Isom E , E ( dom 𝑂 , ( 𝐺 supp ∅ ) ) ) |
36 |
|
ordtr |
⊢ ( Ord dom 𝑂 → Tr dom 𝑂 ) |
37 |
11 36
|
mp1i |
⊢ ( ( 𝜑 ∧ ( suc 𝑢 ∈ dom 𝑂 ∧ ( ◡ 𝑂 ‘ 𝑋 ) ⊆ 𝑢 ) ) → Tr dom 𝑂 ) |
38 |
|
simprl |
⊢ ( ( 𝜑 ∧ ( suc 𝑢 ∈ dom 𝑂 ∧ ( ◡ 𝑂 ‘ 𝑋 ) ⊆ 𝑢 ) ) → suc 𝑢 ∈ dom 𝑂 ) |
39 |
|
trsuc |
⊢ ( ( Tr dom 𝑂 ∧ suc 𝑢 ∈ dom 𝑂 ) → 𝑢 ∈ dom 𝑂 ) |
40 |
37 38 39
|
syl2anc |
⊢ ( ( 𝜑 ∧ ( suc 𝑢 ∈ dom 𝑂 ∧ ( ◡ 𝑂 ‘ 𝑋 ) ⊆ 𝑢 ) ) → 𝑢 ∈ dom 𝑂 ) |
41 |
23
|
adantr |
⊢ ( ( 𝜑 ∧ ( suc 𝑢 ∈ dom 𝑂 ∧ ( ◡ 𝑂 ‘ 𝑋 ) ⊆ 𝑢 ) ) → ( ◡ 𝑂 ‘ 𝑋 ) ∈ dom 𝑂 ) |
42 |
|
isorel |
⊢ ( ( 𝑂 Isom E , E ( dom 𝑂 , ( 𝐺 supp ∅ ) ) ∧ ( 𝑢 ∈ dom 𝑂 ∧ ( ◡ 𝑂 ‘ 𝑋 ) ∈ dom 𝑂 ) ) → ( 𝑢 E ( ◡ 𝑂 ‘ 𝑋 ) ↔ ( 𝑂 ‘ 𝑢 ) E ( 𝑂 ‘ ( ◡ 𝑂 ‘ 𝑋 ) ) ) ) |
43 |
35 40 41 42
|
syl12anc |
⊢ ( ( 𝜑 ∧ ( suc 𝑢 ∈ dom 𝑂 ∧ ( ◡ 𝑂 ‘ 𝑋 ) ⊆ 𝑢 ) ) → ( 𝑢 E ( ◡ 𝑂 ‘ 𝑋 ) ↔ ( 𝑂 ‘ 𝑢 ) E ( 𝑂 ‘ ( ◡ 𝑂 ‘ 𝑋 ) ) ) ) |
44 |
|
fvex |
⊢ ( ◡ 𝑂 ‘ 𝑋 ) ∈ V |
45 |
44
|
epeli |
⊢ ( 𝑢 E ( ◡ 𝑂 ‘ 𝑋 ) ↔ 𝑢 ∈ ( ◡ 𝑂 ‘ 𝑋 ) ) |
46 |
|
fvex |
⊢ ( 𝑂 ‘ ( ◡ 𝑂 ‘ 𝑋 ) ) ∈ V |
47 |
46
|
epeli |
⊢ ( ( 𝑂 ‘ 𝑢 ) E ( 𝑂 ‘ ( ◡ 𝑂 ‘ 𝑋 ) ) ↔ ( 𝑂 ‘ 𝑢 ) ∈ ( 𝑂 ‘ ( ◡ 𝑂 ‘ 𝑋 ) ) ) |
48 |
43 45 47
|
3bitr3g |
⊢ ( ( 𝜑 ∧ ( suc 𝑢 ∈ dom 𝑂 ∧ ( ◡ 𝑂 ‘ 𝑋 ) ⊆ 𝑢 ) ) → ( 𝑢 ∈ ( ◡ 𝑂 ‘ 𝑋 ) ↔ ( 𝑂 ‘ 𝑢 ) ∈ ( 𝑂 ‘ ( ◡ 𝑂 ‘ 𝑋 ) ) ) ) |
49 |
|
f1ocnvfv2 |
⊢ ( ( 𝑂 : dom 𝑂 –1-1-onto→ ( 𝐺 supp ∅ ) ∧ 𝑋 ∈ ( 𝐺 supp ∅ ) ) → ( 𝑂 ‘ ( ◡ 𝑂 ‘ 𝑋 ) ) = 𝑋 ) |
50 |
18 22 49
|
syl2anc |
⊢ ( 𝜑 → ( 𝑂 ‘ ( ◡ 𝑂 ‘ 𝑋 ) ) = 𝑋 ) |
51 |
50
|
adantr |
⊢ ( ( 𝜑 ∧ ( suc 𝑢 ∈ dom 𝑂 ∧ ( ◡ 𝑂 ‘ 𝑋 ) ⊆ 𝑢 ) ) → ( 𝑂 ‘ ( ◡ 𝑂 ‘ 𝑋 ) ) = 𝑋 ) |
52 |
51
|
eleq2d |
⊢ ( ( 𝜑 ∧ ( suc 𝑢 ∈ dom 𝑂 ∧ ( ◡ 𝑂 ‘ 𝑋 ) ⊆ 𝑢 ) ) → ( ( 𝑂 ‘ 𝑢 ) ∈ ( 𝑂 ‘ ( ◡ 𝑂 ‘ 𝑋 ) ) ↔ ( 𝑂 ‘ 𝑢 ) ∈ 𝑋 ) ) |
53 |
48 52
|
bitrd |
⊢ ( ( 𝜑 ∧ ( suc 𝑢 ∈ dom 𝑂 ∧ ( ◡ 𝑂 ‘ 𝑋 ) ⊆ 𝑢 ) ) → ( 𝑢 ∈ ( ◡ 𝑂 ‘ 𝑋 ) ↔ ( 𝑂 ‘ 𝑢 ) ∈ 𝑋 ) ) |
54 |
34 53
|
mtbid |
⊢ ( ( 𝜑 ∧ ( suc 𝑢 ∈ dom 𝑂 ∧ ( ◡ 𝑂 ‘ 𝑋 ) ⊆ 𝑢 ) ) → ¬ ( 𝑂 ‘ 𝑢 ) ∈ 𝑋 ) |
55 |
1 2 3 4 5 6 7 8
|
oemapvali |
⊢ ( 𝜑 → ( 𝑋 ∈ 𝐵 ∧ ( 𝐹 ‘ 𝑋 ) ∈ ( 𝐺 ‘ 𝑋 ) ∧ ∀ 𝑤 ∈ 𝐵 ( 𝑋 ∈ 𝑤 → ( 𝐹 ‘ 𝑤 ) = ( 𝐺 ‘ 𝑤 ) ) ) ) |
56 |
55
|
simp1d |
⊢ ( 𝜑 → 𝑋 ∈ 𝐵 ) |
57 |
|
onelon |
⊢ ( ( 𝐵 ∈ On ∧ 𝑋 ∈ 𝐵 ) → 𝑋 ∈ On ) |
58 |
3 56 57
|
syl2anc |
⊢ ( 𝜑 → 𝑋 ∈ On ) |
59 |
|
suppssdm |
⊢ ( 𝐺 supp ∅ ) ⊆ dom 𝐺 |
60 |
1 2 3
|
cantnfs |
⊢ ( 𝜑 → ( 𝐺 ∈ 𝑆 ↔ ( 𝐺 : 𝐵 ⟶ 𝐴 ∧ 𝐺 finSupp ∅ ) ) ) |
61 |
6 60
|
mpbid |
⊢ ( 𝜑 → ( 𝐺 : 𝐵 ⟶ 𝐴 ∧ 𝐺 finSupp ∅ ) ) |
62 |
61
|
simpld |
⊢ ( 𝜑 → 𝐺 : 𝐵 ⟶ 𝐴 ) |
63 |
59 62
|
fssdm |
⊢ ( 𝜑 → ( 𝐺 supp ∅ ) ⊆ 𝐵 ) |
64 |
63
|
adantr |
⊢ ( ( 𝜑 ∧ ( suc 𝑢 ∈ dom 𝑂 ∧ ( ◡ 𝑂 ‘ 𝑋 ) ⊆ 𝑢 ) ) → ( 𝐺 supp ∅ ) ⊆ 𝐵 ) |
65 |
9
|
oif |
⊢ 𝑂 : dom 𝑂 ⟶ ( 𝐺 supp ∅ ) |
66 |
65
|
ffvelrni |
⊢ ( 𝑢 ∈ dom 𝑂 → ( 𝑂 ‘ 𝑢 ) ∈ ( 𝐺 supp ∅ ) ) |
67 |
40 66
|
syl |
⊢ ( ( 𝜑 ∧ ( suc 𝑢 ∈ dom 𝑂 ∧ ( ◡ 𝑂 ‘ 𝑋 ) ⊆ 𝑢 ) ) → ( 𝑂 ‘ 𝑢 ) ∈ ( 𝐺 supp ∅ ) ) |
68 |
64 67
|
sseldd |
⊢ ( ( 𝜑 ∧ ( suc 𝑢 ∈ dom 𝑂 ∧ ( ◡ 𝑂 ‘ 𝑋 ) ⊆ 𝑢 ) ) → ( 𝑂 ‘ 𝑢 ) ∈ 𝐵 ) |
69 |
|
onelon |
⊢ ( ( 𝐵 ∈ On ∧ ( 𝑂 ‘ 𝑢 ) ∈ 𝐵 ) → ( 𝑂 ‘ 𝑢 ) ∈ On ) |
70 |
3 68 69
|
syl2an2r |
⊢ ( ( 𝜑 ∧ ( suc 𝑢 ∈ dom 𝑂 ∧ ( ◡ 𝑂 ‘ 𝑋 ) ⊆ 𝑢 ) ) → ( 𝑂 ‘ 𝑢 ) ∈ On ) |
71 |
|
ontri1 |
⊢ ( ( 𝑋 ∈ On ∧ ( 𝑂 ‘ 𝑢 ) ∈ On ) → ( 𝑋 ⊆ ( 𝑂 ‘ 𝑢 ) ↔ ¬ ( 𝑂 ‘ 𝑢 ) ∈ 𝑋 ) ) |
72 |
58 70 71
|
syl2an2r |
⊢ ( ( 𝜑 ∧ ( suc 𝑢 ∈ dom 𝑂 ∧ ( ◡ 𝑂 ‘ 𝑋 ) ⊆ 𝑢 ) ) → ( 𝑋 ⊆ ( 𝑂 ‘ 𝑢 ) ↔ ¬ ( 𝑂 ‘ 𝑢 ) ∈ 𝑋 ) ) |
73 |
54 72
|
mpbird |
⊢ ( ( 𝜑 ∧ ( suc 𝑢 ∈ dom 𝑂 ∧ ( ◡ 𝑂 ‘ 𝑋 ) ⊆ 𝑢 ) ) → 𝑋 ⊆ ( 𝑂 ‘ 𝑢 ) ) |