| Step | Hyp | Ref | Expression | 
						
							| 1 |  | cantnfs.s | ⊢ 𝑆  =  dom  ( 𝐴  CNF  𝐵 ) | 
						
							| 2 |  | cantnfs.a | ⊢ ( 𝜑  →  𝐴  ∈  On ) | 
						
							| 3 |  | cantnfs.b | ⊢ ( 𝜑  →  𝐵  ∈  On ) | 
						
							| 4 |  | oemapval.t | ⊢ 𝑇  =  { 〈 𝑥 ,  𝑦 〉  ∣  ∃ 𝑧  ∈  𝐵 ( ( 𝑥 ‘ 𝑧 )  ∈  ( 𝑦 ‘ 𝑧 )  ∧  ∀ 𝑤  ∈  𝐵 ( 𝑧  ∈  𝑤  →  ( 𝑥 ‘ 𝑤 )  =  ( 𝑦 ‘ 𝑤 ) ) ) } | 
						
							| 5 |  | oemapval.f | ⊢ ( 𝜑  →  𝐹  ∈  𝑆 ) | 
						
							| 6 |  | oemapval.g | ⊢ ( 𝜑  →  𝐺  ∈  𝑆 ) | 
						
							| 7 |  | oemapvali.r | ⊢ ( 𝜑  →  𝐹 𝑇 𝐺 ) | 
						
							| 8 |  | oemapvali.x | ⊢ 𝑋  =  ∪  { 𝑐  ∈  𝐵  ∣  ( 𝐹 ‘ 𝑐 )  ∈  ( 𝐺 ‘ 𝑐 ) } | 
						
							| 9 |  | cantnflem1.o | ⊢ 𝑂  =  OrdIso (  E  ,  ( 𝐺  supp  ∅ ) ) | 
						
							| 10 |  | simprr | ⊢ ( ( 𝜑  ∧  ( suc  𝑢  ∈  dom  𝑂  ∧  ( ◡ 𝑂 ‘ 𝑋 )  ⊆  𝑢 ) )  →  ( ◡ 𝑂 ‘ 𝑋 )  ⊆  𝑢 ) | 
						
							| 11 | 9 | oicl | ⊢ Ord  dom  𝑂 | 
						
							| 12 |  | ovexd | ⊢ ( 𝜑  →  ( 𝐺  supp  ∅ )  ∈  V ) | 
						
							| 13 | 1 2 3 9 6 | cantnfcl | ⊢ ( 𝜑  →  (  E   We  ( 𝐺  supp  ∅ )  ∧  dom  𝑂  ∈  ω ) ) | 
						
							| 14 | 13 | simpld | ⊢ ( 𝜑  →   E   We  ( 𝐺  supp  ∅ ) ) | 
						
							| 15 | 9 | oiiso | ⊢ ( ( ( 𝐺  supp  ∅ )  ∈  V  ∧   E   We  ( 𝐺  supp  ∅ ) )  →  𝑂  Isom   E  ,   E  ( dom  𝑂 ,  ( 𝐺  supp  ∅ ) ) ) | 
						
							| 16 | 12 14 15 | syl2anc | ⊢ ( 𝜑  →  𝑂  Isom   E  ,   E  ( dom  𝑂 ,  ( 𝐺  supp  ∅ ) ) ) | 
						
							| 17 |  | isof1o | ⊢ ( 𝑂  Isom   E  ,   E  ( dom  𝑂 ,  ( 𝐺  supp  ∅ ) )  →  𝑂 : dom  𝑂 –1-1-onto→ ( 𝐺  supp  ∅ ) ) | 
						
							| 18 | 16 17 | syl | ⊢ ( 𝜑  →  𝑂 : dom  𝑂 –1-1-onto→ ( 𝐺  supp  ∅ ) ) | 
						
							| 19 |  | f1ocnv | ⊢ ( 𝑂 : dom  𝑂 –1-1-onto→ ( 𝐺  supp  ∅ )  →  ◡ 𝑂 : ( 𝐺  supp  ∅ ) –1-1-onto→ dom  𝑂 ) | 
						
							| 20 |  | f1of | ⊢ ( ◡ 𝑂 : ( 𝐺  supp  ∅ ) –1-1-onto→ dom  𝑂  →  ◡ 𝑂 : ( 𝐺  supp  ∅ ) ⟶ dom  𝑂 ) | 
						
							| 21 | 18 19 20 | 3syl | ⊢ ( 𝜑  →  ◡ 𝑂 : ( 𝐺  supp  ∅ ) ⟶ dom  𝑂 ) | 
						
							| 22 | 1 2 3 4 5 6 7 8 | cantnflem1a | ⊢ ( 𝜑  →  𝑋  ∈  ( 𝐺  supp  ∅ ) ) | 
						
							| 23 | 21 22 | ffvelcdmd | ⊢ ( 𝜑  →  ( ◡ 𝑂 ‘ 𝑋 )  ∈  dom  𝑂 ) | 
						
							| 24 |  | ordelon | ⊢ ( ( Ord  dom  𝑂  ∧  ( ◡ 𝑂 ‘ 𝑋 )  ∈  dom  𝑂 )  →  ( ◡ 𝑂 ‘ 𝑋 )  ∈  On ) | 
						
							| 25 | 11 23 24 | sylancr | ⊢ ( 𝜑  →  ( ◡ 𝑂 ‘ 𝑋 )  ∈  On ) | 
						
							| 26 | 11 | a1i | ⊢ ( 𝜑  →  Ord  dom  𝑂 ) | 
						
							| 27 |  | ordelon | ⊢ ( ( Ord  dom  𝑂  ∧  suc  𝑢  ∈  dom  𝑂 )  →  suc  𝑢  ∈  On ) | 
						
							| 28 | 26 27 | sylan | ⊢ ( ( 𝜑  ∧  suc  𝑢  ∈  dom  𝑂 )  →  suc  𝑢  ∈  On ) | 
						
							| 29 |  | onsucb | ⊢ ( 𝑢  ∈  On  ↔  suc  𝑢  ∈  On ) | 
						
							| 30 | 28 29 | sylibr | ⊢ ( ( 𝜑  ∧  suc  𝑢  ∈  dom  𝑂 )  →  𝑢  ∈  On ) | 
						
							| 31 | 30 | adantrr | ⊢ ( ( 𝜑  ∧  ( suc  𝑢  ∈  dom  𝑂  ∧  ( ◡ 𝑂 ‘ 𝑋 )  ⊆  𝑢 ) )  →  𝑢  ∈  On ) | 
						
							| 32 |  | ontri1 | ⊢ ( ( ( ◡ 𝑂 ‘ 𝑋 )  ∈  On  ∧  𝑢  ∈  On )  →  ( ( ◡ 𝑂 ‘ 𝑋 )  ⊆  𝑢  ↔  ¬  𝑢  ∈  ( ◡ 𝑂 ‘ 𝑋 ) ) ) | 
						
							| 33 | 25 31 32 | syl2an2r | ⊢ ( ( 𝜑  ∧  ( suc  𝑢  ∈  dom  𝑂  ∧  ( ◡ 𝑂 ‘ 𝑋 )  ⊆  𝑢 ) )  →  ( ( ◡ 𝑂 ‘ 𝑋 )  ⊆  𝑢  ↔  ¬  𝑢  ∈  ( ◡ 𝑂 ‘ 𝑋 ) ) ) | 
						
							| 34 | 10 33 | mpbid | ⊢ ( ( 𝜑  ∧  ( suc  𝑢  ∈  dom  𝑂  ∧  ( ◡ 𝑂 ‘ 𝑋 )  ⊆  𝑢 ) )  →  ¬  𝑢  ∈  ( ◡ 𝑂 ‘ 𝑋 ) ) | 
						
							| 35 | 16 | adantr | ⊢ ( ( 𝜑  ∧  ( suc  𝑢  ∈  dom  𝑂  ∧  ( ◡ 𝑂 ‘ 𝑋 )  ⊆  𝑢 ) )  →  𝑂  Isom   E  ,   E  ( dom  𝑂 ,  ( 𝐺  supp  ∅ ) ) ) | 
						
							| 36 |  | ordtr | ⊢ ( Ord  dom  𝑂  →  Tr  dom  𝑂 ) | 
						
							| 37 | 11 36 | mp1i | ⊢ ( ( 𝜑  ∧  ( suc  𝑢  ∈  dom  𝑂  ∧  ( ◡ 𝑂 ‘ 𝑋 )  ⊆  𝑢 ) )  →  Tr  dom  𝑂 ) | 
						
							| 38 |  | simprl | ⊢ ( ( 𝜑  ∧  ( suc  𝑢  ∈  dom  𝑂  ∧  ( ◡ 𝑂 ‘ 𝑋 )  ⊆  𝑢 ) )  →  suc  𝑢  ∈  dom  𝑂 ) | 
						
							| 39 |  | trsuc | ⊢ ( ( Tr  dom  𝑂  ∧  suc  𝑢  ∈  dom  𝑂 )  →  𝑢  ∈  dom  𝑂 ) | 
						
							| 40 | 37 38 39 | syl2anc | ⊢ ( ( 𝜑  ∧  ( suc  𝑢  ∈  dom  𝑂  ∧  ( ◡ 𝑂 ‘ 𝑋 )  ⊆  𝑢 ) )  →  𝑢  ∈  dom  𝑂 ) | 
						
							| 41 | 23 | adantr | ⊢ ( ( 𝜑  ∧  ( suc  𝑢  ∈  dom  𝑂  ∧  ( ◡ 𝑂 ‘ 𝑋 )  ⊆  𝑢 ) )  →  ( ◡ 𝑂 ‘ 𝑋 )  ∈  dom  𝑂 ) | 
						
							| 42 |  | isorel | ⊢ ( ( 𝑂  Isom   E  ,   E  ( dom  𝑂 ,  ( 𝐺  supp  ∅ ) )  ∧  ( 𝑢  ∈  dom  𝑂  ∧  ( ◡ 𝑂 ‘ 𝑋 )  ∈  dom  𝑂 ) )  →  ( 𝑢  E  ( ◡ 𝑂 ‘ 𝑋 )  ↔  ( 𝑂 ‘ 𝑢 )  E  ( 𝑂 ‘ ( ◡ 𝑂 ‘ 𝑋 ) ) ) ) | 
						
							| 43 | 35 40 41 42 | syl12anc | ⊢ ( ( 𝜑  ∧  ( suc  𝑢  ∈  dom  𝑂  ∧  ( ◡ 𝑂 ‘ 𝑋 )  ⊆  𝑢 ) )  →  ( 𝑢  E  ( ◡ 𝑂 ‘ 𝑋 )  ↔  ( 𝑂 ‘ 𝑢 )  E  ( 𝑂 ‘ ( ◡ 𝑂 ‘ 𝑋 ) ) ) ) | 
						
							| 44 |  | fvex | ⊢ ( ◡ 𝑂 ‘ 𝑋 )  ∈  V | 
						
							| 45 | 44 | epeli | ⊢ ( 𝑢  E  ( ◡ 𝑂 ‘ 𝑋 )  ↔  𝑢  ∈  ( ◡ 𝑂 ‘ 𝑋 ) ) | 
						
							| 46 |  | fvex | ⊢ ( 𝑂 ‘ ( ◡ 𝑂 ‘ 𝑋 ) )  ∈  V | 
						
							| 47 | 46 | epeli | ⊢ ( ( 𝑂 ‘ 𝑢 )  E  ( 𝑂 ‘ ( ◡ 𝑂 ‘ 𝑋 ) )  ↔  ( 𝑂 ‘ 𝑢 )  ∈  ( 𝑂 ‘ ( ◡ 𝑂 ‘ 𝑋 ) ) ) | 
						
							| 48 | 43 45 47 | 3bitr3g | ⊢ ( ( 𝜑  ∧  ( suc  𝑢  ∈  dom  𝑂  ∧  ( ◡ 𝑂 ‘ 𝑋 )  ⊆  𝑢 ) )  →  ( 𝑢  ∈  ( ◡ 𝑂 ‘ 𝑋 )  ↔  ( 𝑂 ‘ 𝑢 )  ∈  ( 𝑂 ‘ ( ◡ 𝑂 ‘ 𝑋 ) ) ) ) | 
						
							| 49 |  | f1ocnvfv2 | ⊢ ( ( 𝑂 : dom  𝑂 –1-1-onto→ ( 𝐺  supp  ∅ )  ∧  𝑋  ∈  ( 𝐺  supp  ∅ ) )  →  ( 𝑂 ‘ ( ◡ 𝑂 ‘ 𝑋 ) )  =  𝑋 ) | 
						
							| 50 | 18 22 49 | syl2anc | ⊢ ( 𝜑  →  ( 𝑂 ‘ ( ◡ 𝑂 ‘ 𝑋 ) )  =  𝑋 ) | 
						
							| 51 | 50 | adantr | ⊢ ( ( 𝜑  ∧  ( suc  𝑢  ∈  dom  𝑂  ∧  ( ◡ 𝑂 ‘ 𝑋 )  ⊆  𝑢 ) )  →  ( 𝑂 ‘ ( ◡ 𝑂 ‘ 𝑋 ) )  =  𝑋 ) | 
						
							| 52 | 51 | eleq2d | ⊢ ( ( 𝜑  ∧  ( suc  𝑢  ∈  dom  𝑂  ∧  ( ◡ 𝑂 ‘ 𝑋 )  ⊆  𝑢 ) )  →  ( ( 𝑂 ‘ 𝑢 )  ∈  ( 𝑂 ‘ ( ◡ 𝑂 ‘ 𝑋 ) )  ↔  ( 𝑂 ‘ 𝑢 )  ∈  𝑋 ) ) | 
						
							| 53 | 48 52 | bitrd | ⊢ ( ( 𝜑  ∧  ( suc  𝑢  ∈  dom  𝑂  ∧  ( ◡ 𝑂 ‘ 𝑋 )  ⊆  𝑢 ) )  →  ( 𝑢  ∈  ( ◡ 𝑂 ‘ 𝑋 )  ↔  ( 𝑂 ‘ 𝑢 )  ∈  𝑋 ) ) | 
						
							| 54 | 34 53 | mtbid | ⊢ ( ( 𝜑  ∧  ( suc  𝑢  ∈  dom  𝑂  ∧  ( ◡ 𝑂 ‘ 𝑋 )  ⊆  𝑢 ) )  →  ¬  ( 𝑂 ‘ 𝑢 )  ∈  𝑋 ) | 
						
							| 55 | 1 2 3 4 5 6 7 8 | oemapvali | ⊢ ( 𝜑  →  ( 𝑋  ∈  𝐵  ∧  ( 𝐹 ‘ 𝑋 )  ∈  ( 𝐺 ‘ 𝑋 )  ∧  ∀ 𝑤  ∈  𝐵 ( 𝑋  ∈  𝑤  →  ( 𝐹 ‘ 𝑤 )  =  ( 𝐺 ‘ 𝑤 ) ) ) ) | 
						
							| 56 | 55 | simp1d | ⊢ ( 𝜑  →  𝑋  ∈  𝐵 ) | 
						
							| 57 |  | onelon | ⊢ ( ( 𝐵  ∈  On  ∧  𝑋  ∈  𝐵 )  →  𝑋  ∈  On ) | 
						
							| 58 | 3 56 57 | syl2anc | ⊢ ( 𝜑  →  𝑋  ∈  On ) | 
						
							| 59 |  | suppssdm | ⊢ ( 𝐺  supp  ∅ )  ⊆  dom  𝐺 | 
						
							| 60 | 1 2 3 | cantnfs | ⊢ ( 𝜑  →  ( 𝐺  ∈  𝑆  ↔  ( 𝐺 : 𝐵 ⟶ 𝐴  ∧  𝐺  finSupp  ∅ ) ) ) | 
						
							| 61 | 6 60 | mpbid | ⊢ ( 𝜑  →  ( 𝐺 : 𝐵 ⟶ 𝐴  ∧  𝐺  finSupp  ∅ ) ) | 
						
							| 62 | 61 | simpld | ⊢ ( 𝜑  →  𝐺 : 𝐵 ⟶ 𝐴 ) | 
						
							| 63 | 59 62 | fssdm | ⊢ ( 𝜑  →  ( 𝐺  supp  ∅ )  ⊆  𝐵 ) | 
						
							| 64 | 63 | adantr | ⊢ ( ( 𝜑  ∧  ( suc  𝑢  ∈  dom  𝑂  ∧  ( ◡ 𝑂 ‘ 𝑋 )  ⊆  𝑢 ) )  →  ( 𝐺  supp  ∅ )  ⊆  𝐵 ) | 
						
							| 65 | 9 | oif | ⊢ 𝑂 : dom  𝑂 ⟶ ( 𝐺  supp  ∅ ) | 
						
							| 66 | 65 | ffvelcdmi | ⊢ ( 𝑢  ∈  dom  𝑂  →  ( 𝑂 ‘ 𝑢 )  ∈  ( 𝐺  supp  ∅ ) ) | 
						
							| 67 | 40 66 | syl | ⊢ ( ( 𝜑  ∧  ( suc  𝑢  ∈  dom  𝑂  ∧  ( ◡ 𝑂 ‘ 𝑋 )  ⊆  𝑢 ) )  →  ( 𝑂 ‘ 𝑢 )  ∈  ( 𝐺  supp  ∅ ) ) | 
						
							| 68 | 64 67 | sseldd | ⊢ ( ( 𝜑  ∧  ( suc  𝑢  ∈  dom  𝑂  ∧  ( ◡ 𝑂 ‘ 𝑋 )  ⊆  𝑢 ) )  →  ( 𝑂 ‘ 𝑢 )  ∈  𝐵 ) | 
						
							| 69 |  | onelon | ⊢ ( ( 𝐵  ∈  On  ∧  ( 𝑂 ‘ 𝑢 )  ∈  𝐵 )  →  ( 𝑂 ‘ 𝑢 )  ∈  On ) | 
						
							| 70 | 3 68 69 | syl2an2r | ⊢ ( ( 𝜑  ∧  ( suc  𝑢  ∈  dom  𝑂  ∧  ( ◡ 𝑂 ‘ 𝑋 )  ⊆  𝑢 ) )  →  ( 𝑂 ‘ 𝑢 )  ∈  On ) | 
						
							| 71 |  | ontri1 | ⊢ ( ( 𝑋  ∈  On  ∧  ( 𝑂 ‘ 𝑢 )  ∈  On )  →  ( 𝑋  ⊆  ( 𝑂 ‘ 𝑢 )  ↔  ¬  ( 𝑂 ‘ 𝑢 )  ∈  𝑋 ) ) | 
						
							| 72 | 58 70 71 | syl2an2r | ⊢ ( ( 𝜑  ∧  ( suc  𝑢  ∈  dom  𝑂  ∧  ( ◡ 𝑂 ‘ 𝑋 )  ⊆  𝑢 ) )  →  ( 𝑋  ⊆  ( 𝑂 ‘ 𝑢 )  ↔  ¬  ( 𝑂 ‘ 𝑢 )  ∈  𝑋 ) ) | 
						
							| 73 | 54 72 | mpbird | ⊢ ( ( 𝜑  ∧  ( suc  𝑢  ∈  dom  𝑂  ∧  ( ◡ 𝑂 ‘ 𝑋 )  ⊆  𝑢 ) )  →  𝑋  ⊆  ( 𝑂 ‘ 𝑢 ) ) |