| Step | Hyp | Ref | Expression | 
						
							| 1 |  | cantnfs.s | ⊢ 𝑆  =  dom  ( 𝐴  CNF  𝐵 ) | 
						
							| 2 |  | cantnfs.a | ⊢ ( 𝜑  →  𝐴  ∈  On ) | 
						
							| 3 |  | cantnfs.b | ⊢ ( 𝜑  →  𝐵  ∈  On ) | 
						
							| 4 |  | oemapval.t | ⊢ 𝑇  =  { 〈 𝑥 ,  𝑦 〉  ∣  ∃ 𝑧  ∈  𝐵 ( ( 𝑥 ‘ 𝑧 )  ∈  ( 𝑦 ‘ 𝑧 )  ∧  ∀ 𝑤  ∈  𝐵 ( 𝑧  ∈  𝑤  →  ( 𝑥 ‘ 𝑤 )  =  ( 𝑦 ‘ 𝑤 ) ) ) } | 
						
							| 5 |  | oemapval.f | ⊢ ( 𝜑  →  𝐹  ∈  𝑆 ) | 
						
							| 6 |  | oemapval.g | ⊢ ( 𝜑  →  𝐺  ∈  𝑆 ) | 
						
							| 7 |  | oemapvali.r | ⊢ ( 𝜑  →  𝐹 𝑇 𝐺 ) | 
						
							| 8 |  | oemapvali.x | ⊢ 𝑋  =  ∪  { 𝑐  ∈  𝐵  ∣  ( 𝐹 ‘ 𝑐 )  ∈  ( 𝐺 ‘ 𝑐 ) } | 
						
							| 9 |  | cantnflem1.o | ⊢ 𝑂  =  OrdIso (  E  ,  ( 𝐺  supp  ∅ ) ) | 
						
							| 10 | 3 | ad3antrrr | ⊢ ( ( ( ( 𝜑  ∧  ( suc  𝑢  ∈  dom  𝑂  ∧  ( ◡ 𝑂 ‘ 𝑋 )  ⊆  𝑢 ) )  ∧  𝑥  ∈  𝐵 )  ∧  ( ( 𝐹 ‘ 𝑥 )  ≠  ∅  ∧  ( 𝑂 ‘ 𝑢 )  ∈  𝑥 ) )  →  𝐵  ∈  On ) | 
						
							| 11 |  | simplr | ⊢ ( ( ( ( 𝜑  ∧  ( suc  𝑢  ∈  dom  𝑂  ∧  ( ◡ 𝑂 ‘ 𝑋 )  ⊆  𝑢 ) )  ∧  𝑥  ∈  𝐵 )  ∧  ( ( 𝐹 ‘ 𝑥 )  ≠  ∅  ∧  ( 𝑂 ‘ 𝑢 )  ∈  𝑥 ) )  →  𝑥  ∈  𝐵 ) | 
						
							| 12 | 1 2 3 | cantnfs | ⊢ ( 𝜑  →  ( 𝐺  ∈  𝑆  ↔  ( 𝐺 : 𝐵 ⟶ 𝐴  ∧  𝐺  finSupp  ∅ ) ) ) | 
						
							| 13 | 6 12 | mpbid | ⊢ ( 𝜑  →  ( 𝐺 : 𝐵 ⟶ 𝐴  ∧  𝐺  finSupp  ∅ ) ) | 
						
							| 14 | 13 | simpld | ⊢ ( 𝜑  →  𝐺 : 𝐵 ⟶ 𝐴 ) | 
						
							| 15 | 14 | ffnd | ⊢ ( 𝜑  →  𝐺  Fn  𝐵 ) | 
						
							| 16 | 15 | ad3antrrr | ⊢ ( ( ( ( 𝜑  ∧  ( suc  𝑢  ∈  dom  𝑂  ∧  ( ◡ 𝑂 ‘ 𝑋 )  ⊆  𝑢 ) )  ∧  𝑥  ∈  𝐵 )  ∧  ( ( 𝐹 ‘ 𝑥 )  ≠  ∅  ∧  ( 𝑂 ‘ 𝑢 )  ∈  𝑥 ) )  →  𝐺  Fn  𝐵 ) | 
						
							| 17 | 1 2 3 4 5 6 7 8 9 | cantnflem1b | ⊢ ( ( 𝜑  ∧  ( suc  𝑢  ∈  dom  𝑂  ∧  ( ◡ 𝑂 ‘ 𝑋 )  ⊆  𝑢 ) )  →  𝑋  ⊆  ( 𝑂 ‘ 𝑢 ) ) | 
						
							| 18 | 17 | ad2antrr | ⊢ ( ( ( ( 𝜑  ∧  ( suc  𝑢  ∈  dom  𝑂  ∧  ( ◡ 𝑂 ‘ 𝑋 )  ⊆  𝑢 ) )  ∧  𝑥  ∈  𝐵 )  ∧  ( ( 𝐹 ‘ 𝑥 )  ≠  ∅  ∧  ( 𝑂 ‘ 𝑢 )  ∈  𝑥 ) )  →  𝑋  ⊆  ( 𝑂 ‘ 𝑢 ) ) | 
						
							| 19 |  | simprr | ⊢ ( ( ( ( 𝜑  ∧  ( suc  𝑢  ∈  dom  𝑂  ∧  ( ◡ 𝑂 ‘ 𝑋 )  ⊆  𝑢 ) )  ∧  𝑥  ∈  𝐵 )  ∧  ( ( 𝐹 ‘ 𝑥 )  ≠  ∅  ∧  ( 𝑂 ‘ 𝑢 )  ∈  𝑥 ) )  →  ( 𝑂 ‘ 𝑢 )  ∈  𝑥 ) | 
						
							| 20 | 1 2 3 4 5 6 7 8 | oemapvali | ⊢ ( 𝜑  →  ( 𝑋  ∈  𝐵  ∧  ( 𝐹 ‘ 𝑋 )  ∈  ( 𝐺 ‘ 𝑋 )  ∧  ∀ 𝑤  ∈  𝐵 ( 𝑋  ∈  𝑤  →  ( 𝐹 ‘ 𝑤 )  =  ( 𝐺 ‘ 𝑤 ) ) ) ) | 
						
							| 21 | 20 | simp1d | ⊢ ( 𝜑  →  𝑋  ∈  𝐵 ) | 
						
							| 22 |  | onelon | ⊢ ( ( 𝐵  ∈  On  ∧  𝑋  ∈  𝐵 )  →  𝑋  ∈  On ) | 
						
							| 23 | 3 21 22 | syl2anc | ⊢ ( 𝜑  →  𝑋  ∈  On ) | 
						
							| 24 | 23 | ad3antrrr | ⊢ ( ( ( ( 𝜑  ∧  ( suc  𝑢  ∈  dom  𝑂  ∧  ( ◡ 𝑂 ‘ 𝑋 )  ⊆  𝑢 ) )  ∧  𝑥  ∈  𝐵 )  ∧  ( ( 𝐹 ‘ 𝑥 )  ≠  ∅  ∧  ( 𝑂 ‘ 𝑢 )  ∈  𝑥 ) )  →  𝑋  ∈  On ) | 
						
							| 25 |  | onss | ⊢ ( 𝐵  ∈  On  →  𝐵  ⊆  On ) | 
						
							| 26 | 3 25 | syl | ⊢ ( 𝜑  →  𝐵  ⊆  On ) | 
						
							| 27 | 26 | sselda | ⊢ ( ( 𝜑  ∧  𝑥  ∈  𝐵 )  →  𝑥  ∈  On ) | 
						
							| 28 | 27 | ad4ant13 | ⊢ ( ( ( ( 𝜑  ∧  ( suc  𝑢  ∈  dom  𝑂  ∧  ( ◡ 𝑂 ‘ 𝑋 )  ⊆  𝑢 ) )  ∧  𝑥  ∈  𝐵 )  ∧  ( ( 𝐹 ‘ 𝑥 )  ≠  ∅  ∧  ( 𝑂 ‘ 𝑢 )  ∈  𝑥 ) )  →  𝑥  ∈  On ) | 
						
							| 29 |  | ontr2 | ⊢ ( ( 𝑋  ∈  On  ∧  𝑥  ∈  On )  →  ( ( 𝑋  ⊆  ( 𝑂 ‘ 𝑢 )  ∧  ( 𝑂 ‘ 𝑢 )  ∈  𝑥 )  →  𝑋  ∈  𝑥 ) ) | 
						
							| 30 | 24 28 29 | syl2anc | ⊢ ( ( ( ( 𝜑  ∧  ( suc  𝑢  ∈  dom  𝑂  ∧  ( ◡ 𝑂 ‘ 𝑋 )  ⊆  𝑢 ) )  ∧  𝑥  ∈  𝐵 )  ∧  ( ( 𝐹 ‘ 𝑥 )  ≠  ∅  ∧  ( 𝑂 ‘ 𝑢 )  ∈  𝑥 ) )  →  ( ( 𝑋  ⊆  ( 𝑂 ‘ 𝑢 )  ∧  ( 𝑂 ‘ 𝑢 )  ∈  𝑥 )  →  𝑋  ∈  𝑥 ) ) | 
						
							| 31 | 18 19 30 | mp2and | ⊢ ( ( ( ( 𝜑  ∧  ( suc  𝑢  ∈  dom  𝑂  ∧  ( ◡ 𝑂 ‘ 𝑋 )  ⊆  𝑢 ) )  ∧  𝑥  ∈  𝐵 )  ∧  ( ( 𝐹 ‘ 𝑥 )  ≠  ∅  ∧  ( 𝑂 ‘ 𝑢 )  ∈  𝑥 ) )  →  𝑋  ∈  𝑥 ) | 
						
							| 32 |  | eleq2w | ⊢ ( 𝑤  =  𝑥  →  ( 𝑋  ∈  𝑤  ↔  𝑋  ∈  𝑥 ) ) | 
						
							| 33 |  | fveq2 | ⊢ ( 𝑤  =  𝑥  →  ( 𝐹 ‘ 𝑤 )  =  ( 𝐹 ‘ 𝑥 ) ) | 
						
							| 34 |  | fveq2 | ⊢ ( 𝑤  =  𝑥  →  ( 𝐺 ‘ 𝑤 )  =  ( 𝐺 ‘ 𝑥 ) ) | 
						
							| 35 | 33 34 | eqeq12d | ⊢ ( 𝑤  =  𝑥  →  ( ( 𝐹 ‘ 𝑤 )  =  ( 𝐺 ‘ 𝑤 )  ↔  ( 𝐹 ‘ 𝑥 )  =  ( 𝐺 ‘ 𝑥 ) ) ) | 
						
							| 36 | 32 35 | imbi12d | ⊢ ( 𝑤  =  𝑥  →  ( ( 𝑋  ∈  𝑤  →  ( 𝐹 ‘ 𝑤 )  =  ( 𝐺 ‘ 𝑤 ) )  ↔  ( 𝑋  ∈  𝑥  →  ( 𝐹 ‘ 𝑥 )  =  ( 𝐺 ‘ 𝑥 ) ) ) ) | 
						
							| 37 | 20 | simp3d | ⊢ ( 𝜑  →  ∀ 𝑤  ∈  𝐵 ( 𝑋  ∈  𝑤  →  ( 𝐹 ‘ 𝑤 )  =  ( 𝐺 ‘ 𝑤 ) ) ) | 
						
							| 38 | 37 | ad3antrrr | ⊢ ( ( ( ( 𝜑  ∧  ( suc  𝑢  ∈  dom  𝑂  ∧  ( ◡ 𝑂 ‘ 𝑋 )  ⊆  𝑢 ) )  ∧  𝑥  ∈  𝐵 )  ∧  ( ( 𝐹 ‘ 𝑥 )  ≠  ∅  ∧  ( 𝑂 ‘ 𝑢 )  ∈  𝑥 ) )  →  ∀ 𝑤  ∈  𝐵 ( 𝑋  ∈  𝑤  →  ( 𝐹 ‘ 𝑤 )  =  ( 𝐺 ‘ 𝑤 ) ) ) | 
						
							| 39 | 36 38 11 | rspcdva | ⊢ ( ( ( ( 𝜑  ∧  ( suc  𝑢  ∈  dom  𝑂  ∧  ( ◡ 𝑂 ‘ 𝑋 )  ⊆  𝑢 ) )  ∧  𝑥  ∈  𝐵 )  ∧  ( ( 𝐹 ‘ 𝑥 )  ≠  ∅  ∧  ( 𝑂 ‘ 𝑢 )  ∈  𝑥 ) )  →  ( 𝑋  ∈  𝑥  →  ( 𝐹 ‘ 𝑥 )  =  ( 𝐺 ‘ 𝑥 ) ) ) | 
						
							| 40 | 31 39 | mpd | ⊢ ( ( ( ( 𝜑  ∧  ( suc  𝑢  ∈  dom  𝑂  ∧  ( ◡ 𝑂 ‘ 𝑋 )  ⊆  𝑢 ) )  ∧  𝑥  ∈  𝐵 )  ∧  ( ( 𝐹 ‘ 𝑥 )  ≠  ∅  ∧  ( 𝑂 ‘ 𝑢 )  ∈  𝑥 ) )  →  ( 𝐹 ‘ 𝑥 )  =  ( 𝐺 ‘ 𝑥 ) ) | 
						
							| 41 |  | simprl | ⊢ ( ( ( ( 𝜑  ∧  ( suc  𝑢  ∈  dom  𝑂  ∧  ( ◡ 𝑂 ‘ 𝑋 )  ⊆  𝑢 ) )  ∧  𝑥  ∈  𝐵 )  ∧  ( ( 𝐹 ‘ 𝑥 )  ≠  ∅  ∧  ( 𝑂 ‘ 𝑢 )  ∈  𝑥 ) )  →  ( 𝐹 ‘ 𝑥 )  ≠  ∅ ) | 
						
							| 42 | 40 41 | eqnetrrd | ⊢ ( ( ( ( 𝜑  ∧  ( suc  𝑢  ∈  dom  𝑂  ∧  ( ◡ 𝑂 ‘ 𝑋 )  ⊆  𝑢 ) )  ∧  𝑥  ∈  𝐵 )  ∧  ( ( 𝐹 ‘ 𝑥 )  ≠  ∅  ∧  ( 𝑂 ‘ 𝑢 )  ∈  𝑥 ) )  →  ( 𝐺 ‘ 𝑥 )  ≠  ∅ ) | 
						
							| 43 |  | fvn0elsupp | ⊢ ( ( ( 𝐵  ∈  On  ∧  𝑥  ∈  𝐵 )  ∧  ( 𝐺  Fn  𝐵  ∧  ( 𝐺 ‘ 𝑥 )  ≠  ∅ ) )  →  𝑥  ∈  ( 𝐺  supp  ∅ ) ) | 
						
							| 44 | 10 11 16 42 43 | syl22anc | ⊢ ( ( ( ( 𝜑  ∧  ( suc  𝑢  ∈  dom  𝑂  ∧  ( ◡ 𝑂 ‘ 𝑋 )  ⊆  𝑢 ) )  ∧  𝑥  ∈  𝐵 )  ∧  ( ( 𝐹 ‘ 𝑥 )  ≠  ∅  ∧  ( 𝑂 ‘ 𝑢 )  ∈  𝑥 ) )  →  𝑥  ∈  ( 𝐺  supp  ∅ ) ) |