Step |
Hyp |
Ref |
Expression |
1 |
|
cantnfs.s |
⊢ 𝑆 = dom ( 𝐴 CNF 𝐵 ) |
2 |
|
cantnfs.a |
⊢ ( 𝜑 → 𝐴 ∈ On ) |
3 |
|
cantnfs.b |
⊢ ( 𝜑 → 𝐵 ∈ On ) |
4 |
|
oemapval.t |
⊢ 𝑇 = { 〈 𝑥 , 𝑦 〉 ∣ ∃ 𝑧 ∈ 𝐵 ( ( 𝑥 ‘ 𝑧 ) ∈ ( 𝑦 ‘ 𝑧 ) ∧ ∀ 𝑤 ∈ 𝐵 ( 𝑧 ∈ 𝑤 → ( 𝑥 ‘ 𝑤 ) = ( 𝑦 ‘ 𝑤 ) ) ) } |
5 |
|
oemapval.f |
⊢ ( 𝜑 → 𝐹 ∈ 𝑆 ) |
6 |
|
oemapval.g |
⊢ ( 𝜑 → 𝐺 ∈ 𝑆 ) |
7 |
|
oemapvali.r |
⊢ ( 𝜑 → 𝐹 𝑇 𝐺 ) |
8 |
|
oemapvali.x |
⊢ 𝑋 = ∪ { 𝑐 ∈ 𝐵 ∣ ( 𝐹 ‘ 𝑐 ) ∈ ( 𝐺 ‘ 𝑐 ) } |
9 |
|
cantnflem1.o |
⊢ 𝑂 = OrdIso ( E , ( 𝐺 supp ∅ ) ) |
10 |
3
|
ad3antrrr |
⊢ ( ( ( ( 𝜑 ∧ ( suc 𝑢 ∈ dom 𝑂 ∧ ( ◡ 𝑂 ‘ 𝑋 ) ⊆ 𝑢 ) ) ∧ 𝑥 ∈ 𝐵 ) ∧ ( ( 𝐹 ‘ 𝑥 ) ≠ ∅ ∧ ( 𝑂 ‘ 𝑢 ) ∈ 𝑥 ) ) → 𝐵 ∈ On ) |
11 |
|
simplr |
⊢ ( ( ( ( 𝜑 ∧ ( suc 𝑢 ∈ dom 𝑂 ∧ ( ◡ 𝑂 ‘ 𝑋 ) ⊆ 𝑢 ) ) ∧ 𝑥 ∈ 𝐵 ) ∧ ( ( 𝐹 ‘ 𝑥 ) ≠ ∅ ∧ ( 𝑂 ‘ 𝑢 ) ∈ 𝑥 ) ) → 𝑥 ∈ 𝐵 ) |
12 |
1 2 3
|
cantnfs |
⊢ ( 𝜑 → ( 𝐺 ∈ 𝑆 ↔ ( 𝐺 : 𝐵 ⟶ 𝐴 ∧ 𝐺 finSupp ∅ ) ) ) |
13 |
6 12
|
mpbid |
⊢ ( 𝜑 → ( 𝐺 : 𝐵 ⟶ 𝐴 ∧ 𝐺 finSupp ∅ ) ) |
14 |
13
|
simpld |
⊢ ( 𝜑 → 𝐺 : 𝐵 ⟶ 𝐴 ) |
15 |
14
|
ffnd |
⊢ ( 𝜑 → 𝐺 Fn 𝐵 ) |
16 |
15
|
ad3antrrr |
⊢ ( ( ( ( 𝜑 ∧ ( suc 𝑢 ∈ dom 𝑂 ∧ ( ◡ 𝑂 ‘ 𝑋 ) ⊆ 𝑢 ) ) ∧ 𝑥 ∈ 𝐵 ) ∧ ( ( 𝐹 ‘ 𝑥 ) ≠ ∅ ∧ ( 𝑂 ‘ 𝑢 ) ∈ 𝑥 ) ) → 𝐺 Fn 𝐵 ) |
17 |
1 2 3 4 5 6 7 8 9
|
cantnflem1b |
⊢ ( ( 𝜑 ∧ ( suc 𝑢 ∈ dom 𝑂 ∧ ( ◡ 𝑂 ‘ 𝑋 ) ⊆ 𝑢 ) ) → 𝑋 ⊆ ( 𝑂 ‘ 𝑢 ) ) |
18 |
17
|
ad2antrr |
⊢ ( ( ( ( 𝜑 ∧ ( suc 𝑢 ∈ dom 𝑂 ∧ ( ◡ 𝑂 ‘ 𝑋 ) ⊆ 𝑢 ) ) ∧ 𝑥 ∈ 𝐵 ) ∧ ( ( 𝐹 ‘ 𝑥 ) ≠ ∅ ∧ ( 𝑂 ‘ 𝑢 ) ∈ 𝑥 ) ) → 𝑋 ⊆ ( 𝑂 ‘ 𝑢 ) ) |
19 |
|
simprr |
⊢ ( ( ( ( 𝜑 ∧ ( suc 𝑢 ∈ dom 𝑂 ∧ ( ◡ 𝑂 ‘ 𝑋 ) ⊆ 𝑢 ) ) ∧ 𝑥 ∈ 𝐵 ) ∧ ( ( 𝐹 ‘ 𝑥 ) ≠ ∅ ∧ ( 𝑂 ‘ 𝑢 ) ∈ 𝑥 ) ) → ( 𝑂 ‘ 𝑢 ) ∈ 𝑥 ) |
20 |
1 2 3 4 5 6 7 8
|
oemapvali |
⊢ ( 𝜑 → ( 𝑋 ∈ 𝐵 ∧ ( 𝐹 ‘ 𝑋 ) ∈ ( 𝐺 ‘ 𝑋 ) ∧ ∀ 𝑤 ∈ 𝐵 ( 𝑋 ∈ 𝑤 → ( 𝐹 ‘ 𝑤 ) = ( 𝐺 ‘ 𝑤 ) ) ) ) |
21 |
20
|
simp1d |
⊢ ( 𝜑 → 𝑋 ∈ 𝐵 ) |
22 |
|
onelon |
⊢ ( ( 𝐵 ∈ On ∧ 𝑋 ∈ 𝐵 ) → 𝑋 ∈ On ) |
23 |
3 21 22
|
syl2anc |
⊢ ( 𝜑 → 𝑋 ∈ On ) |
24 |
23
|
ad3antrrr |
⊢ ( ( ( ( 𝜑 ∧ ( suc 𝑢 ∈ dom 𝑂 ∧ ( ◡ 𝑂 ‘ 𝑋 ) ⊆ 𝑢 ) ) ∧ 𝑥 ∈ 𝐵 ) ∧ ( ( 𝐹 ‘ 𝑥 ) ≠ ∅ ∧ ( 𝑂 ‘ 𝑢 ) ∈ 𝑥 ) ) → 𝑋 ∈ On ) |
25 |
|
onss |
⊢ ( 𝐵 ∈ On → 𝐵 ⊆ On ) |
26 |
3 25
|
syl |
⊢ ( 𝜑 → 𝐵 ⊆ On ) |
27 |
26
|
sselda |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐵 ) → 𝑥 ∈ On ) |
28 |
27
|
ad4ant13 |
⊢ ( ( ( ( 𝜑 ∧ ( suc 𝑢 ∈ dom 𝑂 ∧ ( ◡ 𝑂 ‘ 𝑋 ) ⊆ 𝑢 ) ) ∧ 𝑥 ∈ 𝐵 ) ∧ ( ( 𝐹 ‘ 𝑥 ) ≠ ∅ ∧ ( 𝑂 ‘ 𝑢 ) ∈ 𝑥 ) ) → 𝑥 ∈ On ) |
29 |
|
ontr2 |
⊢ ( ( 𝑋 ∈ On ∧ 𝑥 ∈ On ) → ( ( 𝑋 ⊆ ( 𝑂 ‘ 𝑢 ) ∧ ( 𝑂 ‘ 𝑢 ) ∈ 𝑥 ) → 𝑋 ∈ 𝑥 ) ) |
30 |
24 28 29
|
syl2anc |
⊢ ( ( ( ( 𝜑 ∧ ( suc 𝑢 ∈ dom 𝑂 ∧ ( ◡ 𝑂 ‘ 𝑋 ) ⊆ 𝑢 ) ) ∧ 𝑥 ∈ 𝐵 ) ∧ ( ( 𝐹 ‘ 𝑥 ) ≠ ∅ ∧ ( 𝑂 ‘ 𝑢 ) ∈ 𝑥 ) ) → ( ( 𝑋 ⊆ ( 𝑂 ‘ 𝑢 ) ∧ ( 𝑂 ‘ 𝑢 ) ∈ 𝑥 ) → 𝑋 ∈ 𝑥 ) ) |
31 |
18 19 30
|
mp2and |
⊢ ( ( ( ( 𝜑 ∧ ( suc 𝑢 ∈ dom 𝑂 ∧ ( ◡ 𝑂 ‘ 𝑋 ) ⊆ 𝑢 ) ) ∧ 𝑥 ∈ 𝐵 ) ∧ ( ( 𝐹 ‘ 𝑥 ) ≠ ∅ ∧ ( 𝑂 ‘ 𝑢 ) ∈ 𝑥 ) ) → 𝑋 ∈ 𝑥 ) |
32 |
|
eleq2w |
⊢ ( 𝑤 = 𝑥 → ( 𝑋 ∈ 𝑤 ↔ 𝑋 ∈ 𝑥 ) ) |
33 |
|
fveq2 |
⊢ ( 𝑤 = 𝑥 → ( 𝐹 ‘ 𝑤 ) = ( 𝐹 ‘ 𝑥 ) ) |
34 |
|
fveq2 |
⊢ ( 𝑤 = 𝑥 → ( 𝐺 ‘ 𝑤 ) = ( 𝐺 ‘ 𝑥 ) ) |
35 |
33 34
|
eqeq12d |
⊢ ( 𝑤 = 𝑥 → ( ( 𝐹 ‘ 𝑤 ) = ( 𝐺 ‘ 𝑤 ) ↔ ( 𝐹 ‘ 𝑥 ) = ( 𝐺 ‘ 𝑥 ) ) ) |
36 |
32 35
|
imbi12d |
⊢ ( 𝑤 = 𝑥 → ( ( 𝑋 ∈ 𝑤 → ( 𝐹 ‘ 𝑤 ) = ( 𝐺 ‘ 𝑤 ) ) ↔ ( 𝑋 ∈ 𝑥 → ( 𝐹 ‘ 𝑥 ) = ( 𝐺 ‘ 𝑥 ) ) ) ) |
37 |
20
|
simp3d |
⊢ ( 𝜑 → ∀ 𝑤 ∈ 𝐵 ( 𝑋 ∈ 𝑤 → ( 𝐹 ‘ 𝑤 ) = ( 𝐺 ‘ 𝑤 ) ) ) |
38 |
37
|
ad3antrrr |
⊢ ( ( ( ( 𝜑 ∧ ( suc 𝑢 ∈ dom 𝑂 ∧ ( ◡ 𝑂 ‘ 𝑋 ) ⊆ 𝑢 ) ) ∧ 𝑥 ∈ 𝐵 ) ∧ ( ( 𝐹 ‘ 𝑥 ) ≠ ∅ ∧ ( 𝑂 ‘ 𝑢 ) ∈ 𝑥 ) ) → ∀ 𝑤 ∈ 𝐵 ( 𝑋 ∈ 𝑤 → ( 𝐹 ‘ 𝑤 ) = ( 𝐺 ‘ 𝑤 ) ) ) |
39 |
36 38 11
|
rspcdva |
⊢ ( ( ( ( 𝜑 ∧ ( suc 𝑢 ∈ dom 𝑂 ∧ ( ◡ 𝑂 ‘ 𝑋 ) ⊆ 𝑢 ) ) ∧ 𝑥 ∈ 𝐵 ) ∧ ( ( 𝐹 ‘ 𝑥 ) ≠ ∅ ∧ ( 𝑂 ‘ 𝑢 ) ∈ 𝑥 ) ) → ( 𝑋 ∈ 𝑥 → ( 𝐹 ‘ 𝑥 ) = ( 𝐺 ‘ 𝑥 ) ) ) |
40 |
31 39
|
mpd |
⊢ ( ( ( ( 𝜑 ∧ ( suc 𝑢 ∈ dom 𝑂 ∧ ( ◡ 𝑂 ‘ 𝑋 ) ⊆ 𝑢 ) ) ∧ 𝑥 ∈ 𝐵 ) ∧ ( ( 𝐹 ‘ 𝑥 ) ≠ ∅ ∧ ( 𝑂 ‘ 𝑢 ) ∈ 𝑥 ) ) → ( 𝐹 ‘ 𝑥 ) = ( 𝐺 ‘ 𝑥 ) ) |
41 |
|
simprl |
⊢ ( ( ( ( 𝜑 ∧ ( suc 𝑢 ∈ dom 𝑂 ∧ ( ◡ 𝑂 ‘ 𝑋 ) ⊆ 𝑢 ) ) ∧ 𝑥 ∈ 𝐵 ) ∧ ( ( 𝐹 ‘ 𝑥 ) ≠ ∅ ∧ ( 𝑂 ‘ 𝑢 ) ∈ 𝑥 ) ) → ( 𝐹 ‘ 𝑥 ) ≠ ∅ ) |
42 |
40 41
|
eqnetrrd |
⊢ ( ( ( ( 𝜑 ∧ ( suc 𝑢 ∈ dom 𝑂 ∧ ( ◡ 𝑂 ‘ 𝑋 ) ⊆ 𝑢 ) ) ∧ 𝑥 ∈ 𝐵 ) ∧ ( ( 𝐹 ‘ 𝑥 ) ≠ ∅ ∧ ( 𝑂 ‘ 𝑢 ) ∈ 𝑥 ) ) → ( 𝐺 ‘ 𝑥 ) ≠ ∅ ) |
43 |
|
fvn0elsupp |
⊢ ( ( ( 𝐵 ∈ On ∧ 𝑥 ∈ 𝐵 ) ∧ ( 𝐺 Fn 𝐵 ∧ ( 𝐺 ‘ 𝑥 ) ≠ ∅ ) ) → 𝑥 ∈ ( 𝐺 supp ∅ ) ) |
44 |
10 11 16 42 43
|
syl22anc |
⊢ ( ( ( ( 𝜑 ∧ ( suc 𝑢 ∈ dom 𝑂 ∧ ( ◡ 𝑂 ‘ 𝑋 ) ⊆ 𝑢 ) ) ∧ 𝑥 ∈ 𝐵 ) ∧ ( ( 𝐹 ‘ 𝑥 ) ≠ ∅ ∧ ( 𝑂 ‘ 𝑢 ) ∈ 𝑥 ) ) → 𝑥 ∈ ( 𝐺 supp ∅ ) ) |