Step |
Hyp |
Ref |
Expression |
1 |
|
cantnfs.s |
⊢ 𝑆 = dom ( 𝐴 CNF 𝐵 ) |
2 |
|
cantnfs.a |
⊢ ( 𝜑 → 𝐴 ∈ On ) |
3 |
|
cantnfs.b |
⊢ ( 𝜑 → 𝐵 ∈ On ) |
4 |
|
oemapval.t |
⊢ 𝑇 = { 〈 𝑥 , 𝑦 〉 ∣ ∃ 𝑧 ∈ 𝐵 ( ( 𝑥 ‘ 𝑧 ) ∈ ( 𝑦 ‘ 𝑧 ) ∧ ∀ 𝑤 ∈ 𝐵 ( 𝑧 ∈ 𝑤 → ( 𝑥 ‘ 𝑤 ) = ( 𝑦 ‘ 𝑤 ) ) ) } |
5 |
|
oemapval.f |
⊢ ( 𝜑 → 𝐹 ∈ 𝑆 ) |
6 |
|
oemapval.g |
⊢ ( 𝜑 → 𝐺 ∈ 𝑆 ) |
7 |
|
oemapvali.r |
⊢ ( 𝜑 → 𝐹 𝑇 𝐺 ) |
8 |
|
oemapvali.x |
⊢ 𝑋 = ∪ { 𝑐 ∈ 𝐵 ∣ ( 𝐹 ‘ 𝑐 ) ∈ ( 𝐺 ‘ 𝑐 ) } |
9 |
|
cantnflem1.o |
⊢ 𝑂 = OrdIso ( E , ( 𝐺 supp ∅ ) ) |
10 |
|
cantnflem1.h |
⊢ 𝐻 = seqω ( ( 𝑘 ∈ V , 𝑧 ∈ V ↦ ( ( ( 𝐴 ↑o ( 𝑂 ‘ 𝑘 ) ) ·o ( 𝐺 ‘ ( 𝑂 ‘ 𝑘 ) ) ) +o 𝑧 ) ) , ∅ ) |
11 |
1 2 3 4 5 6 7 8
|
oemapvali |
⊢ ( 𝜑 → ( 𝑋 ∈ 𝐵 ∧ ( 𝐹 ‘ 𝑋 ) ∈ ( 𝐺 ‘ 𝑋 ) ∧ ∀ 𝑤 ∈ 𝐵 ( 𝑋 ∈ 𝑤 → ( 𝐹 ‘ 𝑤 ) = ( 𝐺 ‘ 𝑤 ) ) ) ) |
12 |
11
|
simp1d |
⊢ ( 𝜑 → 𝑋 ∈ 𝐵 ) |
13 |
|
onelon |
⊢ ( ( 𝐵 ∈ On ∧ 𝑋 ∈ 𝐵 ) → 𝑋 ∈ On ) |
14 |
3 12 13
|
syl2anc |
⊢ ( 𝜑 → 𝑋 ∈ On ) |
15 |
|
oecl |
⊢ ( ( 𝐴 ∈ On ∧ 𝑋 ∈ On ) → ( 𝐴 ↑o 𝑋 ) ∈ On ) |
16 |
2 14 15
|
syl2anc |
⊢ ( 𝜑 → ( 𝐴 ↑o 𝑋 ) ∈ On ) |
17 |
1 2 3
|
cantnfs |
⊢ ( 𝜑 → ( 𝐺 ∈ 𝑆 ↔ ( 𝐺 : 𝐵 ⟶ 𝐴 ∧ 𝐺 finSupp ∅ ) ) ) |
18 |
6 17
|
mpbid |
⊢ ( 𝜑 → ( 𝐺 : 𝐵 ⟶ 𝐴 ∧ 𝐺 finSupp ∅ ) ) |
19 |
18
|
simpld |
⊢ ( 𝜑 → 𝐺 : 𝐵 ⟶ 𝐴 ) |
20 |
19 12
|
ffvelrnd |
⊢ ( 𝜑 → ( 𝐺 ‘ 𝑋 ) ∈ 𝐴 ) |
21 |
|
onelon |
⊢ ( ( 𝐴 ∈ On ∧ ( 𝐺 ‘ 𝑋 ) ∈ 𝐴 ) → ( 𝐺 ‘ 𝑋 ) ∈ On ) |
22 |
2 20 21
|
syl2anc |
⊢ ( 𝜑 → ( 𝐺 ‘ 𝑋 ) ∈ On ) |
23 |
|
omcl |
⊢ ( ( ( 𝐴 ↑o 𝑋 ) ∈ On ∧ ( 𝐺 ‘ 𝑋 ) ∈ On ) → ( ( 𝐴 ↑o 𝑋 ) ·o ( 𝐺 ‘ 𝑋 ) ) ∈ On ) |
24 |
16 22 23
|
syl2anc |
⊢ ( 𝜑 → ( ( 𝐴 ↑o 𝑋 ) ·o ( 𝐺 ‘ 𝑋 ) ) ∈ On ) |
25 |
|
ovexd |
⊢ ( 𝜑 → ( 𝐺 supp ∅ ) ∈ V ) |
26 |
1 2 3 9 6
|
cantnfcl |
⊢ ( 𝜑 → ( E We ( 𝐺 supp ∅ ) ∧ dom 𝑂 ∈ ω ) ) |
27 |
26
|
simpld |
⊢ ( 𝜑 → E We ( 𝐺 supp ∅ ) ) |
28 |
9
|
oiiso |
⊢ ( ( ( 𝐺 supp ∅ ) ∈ V ∧ E We ( 𝐺 supp ∅ ) ) → 𝑂 Isom E , E ( dom 𝑂 , ( 𝐺 supp ∅ ) ) ) |
29 |
25 27 28
|
syl2anc |
⊢ ( 𝜑 → 𝑂 Isom E , E ( dom 𝑂 , ( 𝐺 supp ∅ ) ) ) |
30 |
|
isof1o |
⊢ ( 𝑂 Isom E , E ( dom 𝑂 , ( 𝐺 supp ∅ ) ) → 𝑂 : dom 𝑂 –1-1-onto→ ( 𝐺 supp ∅ ) ) |
31 |
29 30
|
syl |
⊢ ( 𝜑 → 𝑂 : dom 𝑂 –1-1-onto→ ( 𝐺 supp ∅ ) ) |
32 |
|
f1ocnv |
⊢ ( 𝑂 : dom 𝑂 –1-1-onto→ ( 𝐺 supp ∅ ) → ◡ 𝑂 : ( 𝐺 supp ∅ ) –1-1-onto→ dom 𝑂 ) |
33 |
|
f1of |
⊢ ( ◡ 𝑂 : ( 𝐺 supp ∅ ) –1-1-onto→ dom 𝑂 → ◡ 𝑂 : ( 𝐺 supp ∅ ) ⟶ dom 𝑂 ) |
34 |
31 32 33
|
3syl |
⊢ ( 𝜑 → ◡ 𝑂 : ( 𝐺 supp ∅ ) ⟶ dom 𝑂 ) |
35 |
1 2 3 4 5 6 7 8
|
cantnflem1a |
⊢ ( 𝜑 → 𝑋 ∈ ( 𝐺 supp ∅ ) ) |
36 |
34 35
|
ffvelrnd |
⊢ ( 𝜑 → ( ◡ 𝑂 ‘ 𝑋 ) ∈ dom 𝑂 ) |
37 |
26
|
simprd |
⊢ ( 𝜑 → dom 𝑂 ∈ ω ) |
38 |
|
elnn |
⊢ ( ( ( ◡ 𝑂 ‘ 𝑋 ) ∈ dom 𝑂 ∧ dom 𝑂 ∈ ω ) → ( ◡ 𝑂 ‘ 𝑋 ) ∈ ω ) |
39 |
36 37 38
|
syl2anc |
⊢ ( 𝜑 → ( ◡ 𝑂 ‘ 𝑋 ) ∈ ω ) |
40 |
10
|
cantnfvalf |
⊢ 𝐻 : ω ⟶ On |
41 |
40
|
ffvelrni |
⊢ ( ( ◡ 𝑂 ‘ 𝑋 ) ∈ ω → ( 𝐻 ‘ ( ◡ 𝑂 ‘ 𝑋 ) ) ∈ On ) |
42 |
39 41
|
syl |
⊢ ( 𝜑 → ( 𝐻 ‘ ( ◡ 𝑂 ‘ 𝑋 ) ) ∈ On ) |
43 |
|
oaword1 |
⊢ ( ( ( ( 𝐴 ↑o 𝑋 ) ·o ( 𝐺 ‘ 𝑋 ) ) ∈ On ∧ ( 𝐻 ‘ ( ◡ 𝑂 ‘ 𝑋 ) ) ∈ On ) → ( ( 𝐴 ↑o 𝑋 ) ·o ( 𝐺 ‘ 𝑋 ) ) ⊆ ( ( ( 𝐴 ↑o 𝑋 ) ·o ( 𝐺 ‘ 𝑋 ) ) +o ( 𝐻 ‘ ( ◡ 𝑂 ‘ 𝑋 ) ) ) ) |
44 |
24 42 43
|
syl2anc |
⊢ ( 𝜑 → ( ( 𝐴 ↑o 𝑋 ) ·o ( 𝐺 ‘ 𝑋 ) ) ⊆ ( ( ( 𝐴 ↑o 𝑋 ) ·o ( 𝐺 ‘ 𝑋 ) ) +o ( 𝐻 ‘ ( ◡ 𝑂 ‘ 𝑋 ) ) ) ) |
45 |
1 2 3 9 6 10
|
cantnfsuc |
⊢ ( ( 𝜑 ∧ ( ◡ 𝑂 ‘ 𝑋 ) ∈ ω ) → ( 𝐻 ‘ suc ( ◡ 𝑂 ‘ 𝑋 ) ) = ( ( ( 𝐴 ↑o ( 𝑂 ‘ ( ◡ 𝑂 ‘ 𝑋 ) ) ) ·o ( 𝐺 ‘ ( 𝑂 ‘ ( ◡ 𝑂 ‘ 𝑋 ) ) ) ) +o ( 𝐻 ‘ ( ◡ 𝑂 ‘ 𝑋 ) ) ) ) |
46 |
39 45
|
mpdan |
⊢ ( 𝜑 → ( 𝐻 ‘ suc ( ◡ 𝑂 ‘ 𝑋 ) ) = ( ( ( 𝐴 ↑o ( 𝑂 ‘ ( ◡ 𝑂 ‘ 𝑋 ) ) ) ·o ( 𝐺 ‘ ( 𝑂 ‘ ( ◡ 𝑂 ‘ 𝑋 ) ) ) ) +o ( 𝐻 ‘ ( ◡ 𝑂 ‘ 𝑋 ) ) ) ) |
47 |
|
f1ocnvfv2 |
⊢ ( ( 𝑂 : dom 𝑂 –1-1-onto→ ( 𝐺 supp ∅ ) ∧ 𝑋 ∈ ( 𝐺 supp ∅ ) ) → ( 𝑂 ‘ ( ◡ 𝑂 ‘ 𝑋 ) ) = 𝑋 ) |
48 |
31 35 47
|
syl2anc |
⊢ ( 𝜑 → ( 𝑂 ‘ ( ◡ 𝑂 ‘ 𝑋 ) ) = 𝑋 ) |
49 |
48
|
oveq2d |
⊢ ( 𝜑 → ( 𝐴 ↑o ( 𝑂 ‘ ( ◡ 𝑂 ‘ 𝑋 ) ) ) = ( 𝐴 ↑o 𝑋 ) ) |
50 |
48
|
fveq2d |
⊢ ( 𝜑 → ( 𝐺 ‘ ( 𝑂 ‘ ( ◡ 𝑂 ‘ 𝑋 ) ) ) = ( 𝐺 ‘ 𝑋 ) ) |
51 |
49 50
|
oveq12d |
⊢ ( 𝜑 → ( ( 𝐴 ↑o ( 𝑂 ‘ ( ◡ 𝑂 ‘ 𝑋 ) ) ) ·o ( 𝐺 ‘ ( 𝑂 ‘ ( ◡ 𝑂 ‘ 𝑋 ) ) ) ) = ( ( 𝐴 ↑o 𝑋 ) ·o ( 𝐺 ‘ 𝑋 ) ) ) |
52 |
51
|
oveq1d |
⊢ ( 𝜑 → ( ( ( 𝐴 ↑o ( 𝑂 ‘ ( ◡ 𝑂 ‘ 𝑋 ) ) ) ·o ( 𝐺 ‘ ( 𝑂 ‘ ( ◡ 𝑂 ‘ 𝑋 ) ) ) ) +o ( 𝐻 ‘ ( ◡ 𝑂 ‘ 𝑋 ) ) ) = ( ( ( 𝐴 ↑o 𝑋 ) ·o ( 𝐺 ‘ 𝑋 ) ) +o ( 𝐻 ‘ ( ◡ 𝑂 ‘ 𝑋 ) ) ) ) |
53 |
46 52
|
eqtrd |
⊢ ( 𝜑 → ( 𝐻 ‘ suc ( ◡ 𝑂 ‘ 𝑋 ) ) = ( ( ( 𝐴 ↑o 𝑋 ) ·o ( 𝐺 ‘ 𝑋 ) ) +o ( 𝐻 ‘ ( ◡ 𝑂 ‘ 𝑋 ) ) ) ) |
54 |
44 53
|
sseqtrrd |
⊢ ( 𝜑 → ( ( 𝐴 ↑o 𝑋 ) ·o ( 𝐺 ‘ 𝑋 ) ) ⊆ ( 𝐻 ‘ suc ( ◡ 𝑂 ‘ 𝑋 ) ) ) |
55 |
|
onss |
⊢ ( 𝐵 ∈ On → 𝐵 ⊆ On ) |
56 |
3 55
|
syl |
⊢ ( 𝜑 → 𝐵 ⊆ On ) |
57 |
56
|
sselda |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐵 ) → 𝑥 ∈ On ) |
58 |
14
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐵 ) → 𝑋 ∈ On ) |
59 |
|
onsseleq |
⊢ ( ( 𝑥 ∈ On ∧ 𝑋 ∈ On ) → ( 𝑥 ⊆ 𝑋 ↔ ( 𝑥 ∈ 𝑋 ∨ 𝑥 = 𝑋 ) ) ) |
60 |
57 58 59
|
syl2anc |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐵 ) → ( 𝑥 ⊆ 𝑋 ↔ ( 𝑥 ∈ 𝑋 ∨ 𝑥 = 𝑋 ) ) ) |
61 |
|
orcom |
⊢ ( ( 𝑥 ∈ 𝑋 ∨ 𝑥 = 𝑋 ) ↔ ( 𝑥 = 𝑋 ∨ 𝑥 ∈ 𝑋 ) ) |
62 |
60 61
|
bitrdi |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐵 ) → ( 𝑥 ⊆ 𝑋 ↔ ( 𝑥 = 𝑋 ∨ 𝑥 ∈ 𝑋 ) ) ) |
63 |
62
|
ifbid |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐵 ) → if ( 𝑥 ⊆ 𝑋 , ( 𝐹 ‘ 𝑥 ) , ∅ ) = if ( ( 𝑥 = 𝑋 ∨ 𝑥 ∈ 𝑋 ) , ( 𝐹 ‘ 𝑥 ) , ∅ ) ) |
64 |
63
|
mpteq2dva |
⊢ ( 𝜑 → ( 𝑥 ∈ 𝐵 ↦ if ( 𝑥 ⊆ 𝑋 , ( 𝐹 ‘ 𝑥 ) , ∅ ) ) = ( 𝑥 ∈ 𝐵 ↦ if ( ( 𝑥 = 𝑋 ∨ 𝑥 ∈ 𝑋 ) , ( 𝐹 ‘ 𝑥 ) , ∅ ) ) ) |
65 |
64
|
fveq2d |
⊢ ( 𝜑 → ( ( 𝐴 CNF 𝐵 ) ‘ ( 𝑥 ∈ 𝐵 ↦ if ( 𝑥 ⊆ 𝑋 , ( 𝐹 ‘ 𝑥 ) , ∅ ) ) ) = ( ( 𝐴 CNF 𝐵 ) ‘ ( 𝑥 ∈ 𝐵 ↦ if ( ( 𝑥 = 𝑋 ∨ 𝑥 ∈ 𝑋 ) , ( 𝐹 ‘ 𝑥 ) , ∅ ) ) ) ) |
66 |
1 2 3
|
cantnfs |
⊢ ( 𝜑 → ( 𝐹 ∈ 𝑆 ↔ ( 𝐹 : 𝐵 ⟶ 𝐴 ∧ 𝐹 finSupp ∅ ) ) ) |
67 |
5 66
|
mpbid |
⊢ ( 𝜑 → ( 𝐹 : 𝐵 ⟶ 𝐴 ∧ 𝐹 finSupp ∅ ) ) |
68 |
67
|
simpld |
⊢ ( 𝜑 → 𝐹 : 𝐵 ⟶ 𝐴 ) |
69 |
68
|
ffvelrnda |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ 𝐵 ) → ( 𝐹 ‘ 𝑦 ) ∈ 𝐴 ) |
70 |
20
|
ne0d |
⊢ ( 𝜑 → 𝐴 ≠ ∅ ) |
71 |
|
on0eln0 |
⊢ ( 𝐴 ∈ On → ( ∅ ∈ 𝐴 ↔ 𝐴 ≠ ∅ ) ) |
72 |
2 71
|
syl |
⊢ ( 𝜑 → ( ∅ ∈ 𝐴 ↔ 𝐴 ≠ ∅ ) ) |
73 |
70 72
|
mpbird |
⊢ ( 𝜑 → ∅ ∈ 𝐴 ) |
74 |
73
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ 𝐵 ) → ∅ ∈ 𝐴 ) |
75 |
69 74
|
ifcld |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ 𝐵 ) → if ( 𝑦 ∈ 𝑋 , ( 𝐹 ‘ 𝑦 ) , ∅ ) ∈ 𝐴 ) |
76 |
75
|
fmpttd |
⊢ ( 𝜑 → ( 𝑦 ∈ 𝐵 ↦ if ( 𝑦 ∈ 𝑋 , ( 𝐹 ‘ 𝑦 ) , ∅ ) ) : 𝐵 ⟶ 𝐴 ) |
77 |
|
0ex |
⊢ ∅ ∈ V |
78 |
77
|
a1i |
⊢ ( 𝜑 → ∅ ∈ V ) |
79 |
67
|
simprd |
⊢ ( 𝜑 → 𝐹 finSupp ∅ ) |
80 |
68 3 78 79
|
fsuppmptif |
⊢ ( 𝜑 → ( 𝑦 ∈ 𝐵 ↦ if ( 𝑦 ∈ 𝑋 , ( 𝐹 ‘ 𝑦 ) , ∅ ) ) finSupp ∅ ) |
81 |
1 2 3
|
cantnfs |
⊢ ( 𝜑 → ( ( 𝑦 ∈ 𝐵 ↦ if ( 𝑦 ∈ 𝑋 , ( 𝐹 ‘ 𝑦 ) , ∅ ) ) ∈ 𝑆 ↔ ( ( 𝑦 ∈ 𝐵 ↦ if ( 𝑦 ∈ 𝑋 , ( 𝐹 ‘ 𝑦 ) , ∅ ) ) : 𝐵 ⟶ 𝐴 ∧ ( 𝑦 ∈ 𝐵 ↦ if ( 𝑦 ∈ 𝑋 , ( 𝐹 ‘ 𝑦 ) , ∅ ) ) finSupp ∅ ) ) ) |
82 |
76 80 81
|
mpbir2and |
⊢ ( 𝜑 → ( 𝑦 ∈ 𝐵 ↦ if ( 𝑦 ∈ 𝑋 , ( 𝐹 ‘ 𝑦 ) , ∅ ) ) ∈ 𝑆 ) |
83 |
68 12
|
ffvelrnd |
⊢ ( 𝜑 → ( 𝐹 ‘ 𝑋 ) ∈ 𝐴 ) |
84 |
|
eldifn |
⊢ ( 𝑦 ∈ ( 𝐵 ∖ 𝑋 ) → ¬ 𝑦 ∈ 𝑋 ) |
85 |
84
|
adantl |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ ( 𝐵 ∖ 𝑋 ) ) → ¬ 𝑦 ∈ 𝑋 ) |
86 |
85
|
iffalsed |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ ( 𝐵 ∖ 𝑋 ) ) → if ( 𝑦 ∈ 𝑋 , ( 𝐹 ‘ 𝑦 ) , ∅ ) = ∅ ) |
87 |
86 3
|
suppss2 |
⊢ ( 𝜑 → ( ( 𝑦 ∈ 𝐵 ↦ if ( 𝑦 ∈ 𝑋 , ( 𝐹 ‘ 𝑦 ) , ∅ ) ) supp ∅ ) ⊆ 𝑋 ) |
88 |
|
ifor |
⊢ if ( ( 𝑥 = 𝑋 ∨ 𝑥 ∈ 𝑋 ) , ( 𝐹 ‘ 𝑥 ) , ∅ ) = if ( 𝑥 = 𝑋 , ( 𝐹 ‘ 𝑥 ) , if ( 𝑥 ∈ 𝑋 , ( 𝐹 ‘ 𝑥 ) , ∅ ) ) |
89 |
|
fveq2 |
⊢ ( 𝑥 = 𝑋 → ( 𝐹 ‘ 𝑥 ) = ( 𝐹 ‘ 𝑋 ) ) |
90 |
89
|
adantl |
⊢ ( ( 𝑥 ∈ 𝐵 ∧ 𝑥 = 𝑋 ) → ( 𝐹 ‘ 𝑥 ) = ( 𝐹 ‘ 𝑋 ) ) |
91 |
90
|
ifeq1da |
⊢ ( 𝑥 ∈ 𝐵 → if ( 𝑥 = 𝑋 , ( 𝐹 ‘ 𝑥 ) , ( ( 𝑦 ∈ 𝐵 ↦ if ( 𝑦 ∈ 𝑋 , ( 𝐹 ‘ 𝑦 ) , ∅ ) ) ‘ 𝑥 ) ) = if ( 𝑥 = 𝑋 , ( 𝐹 ‘ 𝑋 ) , ( ( 𝑦 ∈ 𝐵 ↦ if ( 𝑦 ∈ 𝑋 , ( 𝐹 ‘ 𝑦 ) , ∅ ) ) ‘ 𝑥 ) ) ) |
92 |
|
eleq1w |
⊢ ( 𝑦 = 𝑥 → ( 𝑦 ∈ 𝑋 ↔ 𝑥 ∈ 𝑋 ) ) |
93 |
|
fveq2 |
⊢ ( 𝑦 = 𝑥 → ( 𝐹 ‘ 𝑦 ) = ( 𝐹 ‘ 𝑥 ) ) |
94 |
92 93
|
ifbieq1d |
⊢ ( 𝑦 = 𝑥 → if ( 𝑦 ∈ 𝑋 , ( 𝐹 ‘ 𝑦 ) , ∅ ) = if ( 𝑥 ∈ 𝑋 , ( 𝐹 ‘ 𝑥 ) , ∅ ) ) |
95 |
|
eqid |
⊢ ( 𝑦 ∈ 𝐵 ↦ if ( 𝑦 ∈ 𝑋 , ( 𝐹 ‘ 𝑦 ) , ∅ ) ) = ( 𝑦 ∈ 𝐵 ↦ if ( 𝑦 ∈ 𝑋 , ( 𝐹 ‘ 𝑦 ) , ∅ ) ) |
96 |
|
fvex |
⊢ ( 𝐹 ‘ 𝑥 ) ∈ V |
97 |
96 77
|
ifex |
⊢ if ( 𝑥 ∈ 𝑋 , ( 𝐹 ‘ 𝑥 ) , ∅ ) ∈ V |
98 |
94 95 97
|
fvmpt |
⊢ ( 𝑥 ∈ 𝐵 → ( ( 𝑦 ∈ 𝐵 ↦ if ( 𝑦 ∈ 𝑋 , ( 𝐹 ‘ 𝑦 ) , ∅ ) ) ‘ 𝑥 ) = if ( 𝑥 ∈ 𝑋 , ( 𝐹 ‘ 𝑥 ) , ∅ ) ) |
99 |
98
|
ifeq2d |
⊢ ( 𝑥 ∈ 𝐵 → if ( 𝑥 = 𝑋 , ( 𝐹 ‘ 𝑥 ) , ( ( 𝑦 ∈ 𝐵 ↦ if ( 𝑦 ∈ 𝑋 , ( 𝐹 ‘ 𝑦 ) , ∅ ) ) ‘ 𝑥 ) ) = if ( 𝑥 = 𝑋 , ( 𝐹 ‘ 𝑥 ) , if ( 𝑥 ∈ 𝑋 , ( 𝐹 ‘ 𝑥 ) , ∅ ) ) ) |
100 |
91 99
|
eqtr3d |
⊢ ( 𝑥 ∈ 𝐵 → if ( 𝑥 = 𝑋 , ( 𝐹 ‘ 𝑋 ) , ( ( 𝑦 ∈ 𝐵 ↦ if ( 𝑦 ∈ 𝑋 , ( 𝐹 ‘ 𝑦 ) , ∅ ) ) ‘ 𝑥 ) ) = if ( 𝑥 = 𝑋 , ( 𝐹 ‘ 𝑥 ) , if ( 𝑥 ∈ 𝑋 , ( 𝐹 ‘ 𝑥 ) , ∅ ) ) ) |
101 |
88 100
|
eqtr4id |
⊢ ( 𝑥 ∈ 𝐵 → if ( ( 𝑥 = 𝑋 ∨ 𝑥 ∈ 𝑋 ) , ( 𝐹 ‘ 𝑥 ) , ∅ ) = if ( 𝑥 = 𝑋 , ( 𝐹 ‘ 𝑋 ) , ( ( 𝑦 ∈ 𝐵 ↦ if ( 𝑦 ∈ 𝑋 , ( 𝐹 ‘ 𝑦 ) , ∅ ) ) ‘ 𝑥 ) ) ) |
102 |
101
|
mpteq2ia |
⊢ ( 𝑥 ∈ 𝐵 ↦ if ( ( 𝑥 = 𝑋 ∨ 𝑥 ∈ 𝑋 ) , ( 𝐹 ‘ 𝑥 ) , ∅ ) ) = ( 𝑥 ∈ 𝐵 ↦ if ( 𝑥 = 𝑋 , ( 𝐹 ‘ 𝑋 ) , ( ( 𝑦 ∈ 𝐵 ↦ if ( 𝑦 ∈ 𝑋 , ( 𝐹 ‘ 𝑦 ) , ∅ ) ) ‘ 𝑥 ) ) ) |
103 |
1 2 3 82 12 83 87 102
|
cantnfp1 |
⊢ ( 𝜑 → ( ( 𝑥 ∈ 𝐵 ↦ if ( ( 𝑥 = 𝑋 ∨ 𝑥 ∈ 𝑋 ) , ( 𝐹 ‘ 𝑥 ) , ∅ ) ) ∈ 𝑆 ∧ ( ( 𝐴 CNF 𝐵 ) ‘ ( 𝑥 ∈ 𝐵 ↦ if ( ( 𝑥 = 𝑋 ∨ 𝑥 ∈ 𝑋 ) , ( 𝐹 ‘ 𝑥 ) , ∅ ) ) ) = ( ( ( 𝐴 ↑o 𝑋 ) ·o ( 𝐹 ‘ 𝑋 ) ) +o ( ( 𝐴 CNF 𝐵 ) ‘ ( 𝑦 ∈ 𝐵 ↦ if ( 𝑦 ∈ 𝑋 , ( 𝐹 ‘ 𝑦 ) , ∅ ) ) ) ) ) ) |
104 |
103
|
simprd |
⊢ ( 𝜑 → ( ( 𝐴 CNF 𝐵 ) ‘ ( 𝑥 ∈ 𝐵 ↦ if ( ( 𝑥 = 𝑋 ∨ 𝑥 ∈ 𝑋 ) , ( 𝐹 ‘ 𝑥 ) , ∅ ) ) ) = ( ( ( 𝐴 ↑o 𝑋 ) ·o ( 𝐹 ‘ 𝑋 ) ) +o ( ( 𝐴 CNF 𝐵 ) ‘ ( 𝑦 ∈ 𝐵 ↦ if ( 𝑦 ∈ 𝑋 , ( 𝐹 ‘ 𝑦 ) , ∅ ) ) ) ) ) |
105 |
65 104
|
eqtrd |
⊢ ( 𝜑 → ( ( 𝐴 CNF 𝐵 ) ‘ ( 𝑥 ∈ 𝐵 ↦ if ( 𝑥 ⊆ 𝑋 , ( 𝐹 ‘ 𝑥 ) , ∅ ) ) ) = ( ( ( 𝐴 ↑o 𝑋 ) ·o ( 𝐹 ‘ 𝑋 ) ) +o ( ( 𝐴 CNF 𝐵 ) ‘ ( 𝑦 ∈ 𝐵 ↦ if ( 𝑦 ∈ 𝑋 , ( 𝐹 ‘ 𝑦 ) , ∅ ) ) ) ) ) |
106 |
|
onelon |
⊢ ( ( 𝐴 ∈ On ∧ ( 𝐹 ‘ 𝑋 ) ∈ 𝐴 ) → ( 𝐹 ‘ 𝑋 ) ∈ On ) |
107 |
2 83 106
|
syl2anc |
⊢ ( 𝜑 → ( 𝐹 ‘ 𝑋 ) ∈ On ) |
108 |
|
omsuc |
⊢ ( ( ( 𝐴 ↑o 𝑋 ) ∈ On ∧ ( 𝐹 ‘ 𝑋 ) ∈ On ) → ( ( 𝐴 ↑o 𝑋 ) ·o suc ( 𝐹 ‘ 𝑋 ) ) = ( ( ( 𝐴 ↑o 𝑋 ) ·o ( 𝐹 ‘ 𝑋 ) ) +o ( 𝐴 ↑o 𝑋 ) ) ) |
109 |
16 107 108
|
syl2anc |
⊢ ( 𝜑 → ( ( 𝐴 ↑o 𝑋 ) ·o suc ( 𝐹 ‘ 𝑋 ) ) = ( ( ( 𝐴 ↑o 𝑋 ) ·o ( 𝐹 ‘ 𝑋 ) ) +o ( 𝐴 ↑o 𝑋 ) ) ) |
110 |
|
eloni |
⊢ ( ( 𝐺 ‘ 𝑋 ) ∈ On → Ord ( 𝐺 ‘ 𝑋 ) ) |
111 |
22 110
|
syl |
⊢ ( 𝜑 → Ord ( 𝐺 ‘ 𝑋 ) ) |
112 |
11
|
simp2d |
⊢ ( 𝜑 → ( 𝐹 ‘ 𝑋 ) ∈ ( 𝐺 ‘ 𝑋 ) ) |
113 |
|
ordsucss |
⊢ ( Ord ( 𝐺 ‘ 𝑋 ) → ( ( 𝐹 ‘ 𝑋 ) ∈ ( 𝐺 ‘ 𝑋 ) → suc ( 𝐹 ‘ 𝑋 ) ⊆ ( 𝐺 ‘ 𝑋 ) ) ) |
114 |
111 112 113
|
sylc |
⊢ ( 𝜑 → suc ( 𝐹 ‘ 𝑋 ) ⊆ ( 𝐺 ‘ 𝑋 ) ) |
115 |
|
suceloni |
⊢ ( ( 𝐹 ‘ 𝑋 ) ∈ On → suc ( 𝐹 ‘ 𝑋 ) ∈ On ) |
116 |
107 115
|
syl |
⊢ ( 𝜑 → suc ( 𝐹 ‘ 𝑋 ) ∈ On ) |
117 |
|
omwordi |
⊢ ( ( suc ( 𝐹 ‘ 𝑋 ) ∈ On ∧ ( 𝐺 ‘ 𝑋 ) ∈ On ∧ ( 𝐴 ↑o 𝑋 ) ∈ On ) → ( suc ( 𝐹 ‘ 𝑋 ) ⊆ ( 𝐺 ‘ 𝑋 ) → ( ( 𝐴 ↑o 𝑋 ) ·o suc ( 𝐹 ‘ 𝑋 ) ) ⊆ ( ( 𝐴 ↑o 𝑋 ) ·o ( 𝐺 ‘ 𝑋 ) ) ) ) |
118 |
116 22 16 117
|
syl3anc |
⊢ ( 𝜑 → ( suc ( 𝐹 ‘ 𝑋 ) ⊆ ( 𝐺 ‘ 𝑋 ) → ( ( 𝐴 ↑o 𝑋 ) ·o suc ( 𝐹 ‘ 𝑋 ) ) ⊆ ( ( 𝐴 ↑o 𝑋 ) ·o ( 𝐺 ‘ 𝑋 ) ) ) ) |
119 |
114 118
|
mpd |
⊢ ( 𝜑 → ( ( 𝐴 ↑o 𝑋 ) ·o suc ( 𝐹 ‘ 𝑋 ) ) ⊆ ( ( 𝐴 ↑o 𝑋 ) ·o ( 𝐺 ‘ 𝑋 ) ) ) |
120 |
109 119
|
eqsstrrd |
⊢ ( 𝜑 → ( ( ( 𝐴 ↑o 𝑋 ) ·o ( 𝐹 ‘ 𝑋 ) ) +o ( 𝐴 ↑o 𝑋 ) ) ⊆ ( ( 𝐴 ↑o 𝑋 ) ·o ( 𝐺 ‘ 𝑋 ) ) ) |
121 |
1 2 3 82 73 14 87
|
cantnflt2 |
⊢ ( 𝜑 → ( ( 𝐴 CNF 𝐵 ) ‘ ( 𝑦 ∈ 𝐵 ↦ if ( 𝑦 ∈ 𝑋 , ( 𝐹 ‘ 𝑦 ) , ∅ ) ) ) ∈ ( 𝐴 ↑o 𝑋 ) ) |
122 |
|
onelon |
⊢ ( ( ( 𝐴 ↑o 𝑋 ) ∈ On ∧ ( ( 𝐴 CNF 𝐵 ) ‘ ( 𝑦 ∈ 𝐵 ↦ if ( 𝑦 ∈ 𝑋 , ( 𝐹 ‘ 𝑦 ) , ∅ ) ) ) ∈ ( 𝐴 ↑o 𝑋 ) ) → ( ( 𝐴 CNF 𝐵 ) ‘ ( 𝑦 ∈ 𝐵 ↦ if ( 𝑦 ∈ 𝑋 , ( 𝐹 ‘ 𝑦 ) , ∅ ) ) ) ∈ On ) |
123 |
16 121 122
|
syl2anc |
⊢ ( 𝜑 → ( ( 𝐴 CNF 𝐵 ) ‘ ( 𝑦 ∈ 𝐵 ↦ if ( 𝑦 ∈ 𝑋 , ( 𝐹 ‘ 𝑦 ) , ∅ ) ) ) ∈ On ) |
124 |
|
omcl |
⊢ ( ( ( 𝐴 ↑o 𝑋 ) ∈ On ∧ ( 𝐹 ‘ 𝑋 ) ∈ On ) → ( ( 𝐴 ↑o 𝑋 ) ·o ( 𝐹 ‘ 𝑋 ) ) ∈ On ) |
125 |
16 107 124
|
syl2anc |
⊢ ( 𝜑 → ( ( 𝐴 ↑o 𝑋 ) ·o ( 𝐹 ‘ 𝑋 ) ) ∈ On ) |
126 |
|
oaord |
⊢ ( ( ( ( 𝐴 CNF 𝐵 ) ‘ ( 𝑦 ∈ 𝐵 ↦ if ( 𝑦 ∈ 𝑋 , ( 𝐹 ‘ 𝑦 ) , ∅ ) ) ) ∈ On ∧ ( 𝐴 ↑o 𝑋 ) ∈ On ∧ ( ( 𝐴 ↑o 𝑋 ) ·o ( 𝐹 ‘ 𝑋 ) ) ∈ On ) → ( ( ( 𝐴 CNF 𝐵 ) ‘ ( 𝑦 ∈ 𝐵 ↦ if ( 𝑦 ∈ 𝑋 , ( 𝐹 ‘ 𝑦 ) , ∅ ) ) ) ∈ ( 𝐴 ↑o 𝑋 ) ↔ ( ( ( 𝐴 ↑o 𝑋 ) ·o ( 𝐹 ‘ 𝑋 ) ) +o ( ( 𝐴 CNF 𝐵 ) ‘ ( 𝑦 ∈ 𝐵 ↦ if ( 𝑦 ∈ 𝑋 , ( 𝐹 ‘ 𝑦 ) , ∅ ) ) ) ) ∈ ( ( ( 𝐴 ↑o 𝑋 ) ·o ( 𝐹 ‘ 𝑋 ) ) +o ( 𝐴 ↑o 𝑋 ) ) ) ) |
127 |
123 16 125 126
|
syl3anc |
⊢ ( 𝜑 → ( ( ( 𝐴 CNF 𝐵 ) ‘ ( 𝑦 ∈ 𝐵 ↦ if ( 𝑦 ∈ 𝑋 , ( 𝐹 ‘ 𝑦 ) , ∅ ) ) ) ∈ ( 𝐴 ↑o 𝑋 ) ↔ ( ( ( 𝐴 ↑o 𝑋 ) ·o ( 𝐹 ‘ 𝑋 ) ) +o ( ( 𝐴 CNF 𝐵 ) ‘ ( 𝑦 ∈ 𝐵 ↦ if ( 𝑦 ∈ 𝑋 , ( 𝐹 ‘ 𝑦 ) , ∅ ) ) ) ) ∈ ( ( ( 𝐴 ↑o 𝑋 ) ·o ( 𝐹 ‘ 𝑋 ) ) +o ( 𝐴 ↑o 𝑋 ) ) ) ) |
128 |
121 127
|
mpbid |
⊢ ( 𝜑 → ( ( ( 𝐴 ↑o 𝑋 ) ·o ( 𝐹 ‘ 𝑋 ) ) +o ( ( 𝐴 CNF 𝐵 ) ‘ ( 𝑦 ∈ 𝐵 ↦ if ( 𝑦 ∈ 𝑋 , ( 𝐹 ‘ 𝑦 ) , ∅ ) ) ) ) ∈ ( ( ( 𝐴 ↑o 𝑋 ) ·o ( 𝐹 ‘ 𝑋 ) ) +o ( 𝐴 ↑o 𝑋 ) ) ) |
129 |
120 128
|
sseldd |
⊢ ( 𝜑 → ( ( ( 𝐴 ↑o 𝑋 ) ·o ( 𝐹 ‘ 𝑋 ) ) +o ( ( 𝐴 CNF 𝐵 ) ‘ ( 𝑦 ∈ 𝐵 ↦ if ( 𝑦 ∈ 𝑋 , ( 𝐹 ‘ 𝑦 ) , ∅ ) ) ) ) ∈ ( ( 𝐴 ↑o 𝑋 ) ·o ( 𝐺 ‘ 𝑋 ) ) ) |
130 |
105 129
|
eqeltrd |
⊢ ( 𝜑 → ( ( 𝐴 CNF 𝐵 ) ‘ ( 𝑥 ∈ 𝐵 ↦ if ( 𝑥 ⊆ 𝑋 , ( 𝐹 ‘ 𝑥 ) , ∅ ) ) ) ∈ ( ( 𝐴 ↑o 𝑋 ) ·o ( 𝐺 ‘ 𝑋 ) ) ) |
131 |
54 130
|
sseldd |
⊢ ( 𝜑 → ( ( 𝐴 CNF 𝐵 ) ‘ ( 𝑥 ∈ 𝐵 ↦ if ( 𝑥 ⊆ 𝑋 , ( 𝐹 ‘ 𝑥 ) , ∅ ) ) ) ∈ ( 𝐻 ‘ suc ( ◡ 𝑂 ‘ 𝑋 ) ) ) |