| Step | Hyp | Ref | Expression | 
						
							| 1 |  | cantnfs.s | ⊢ 𝑆  =  dom  ( 𝐴  CNF  𝐵 ) | 
						
							| 2 |  | cantnfs.a | ⊢ ( 𝜑  →  𝐴  ∈  On ) | 
						
							| 3 |  | cantnfs.b | ⊢ ( 𝜑  →  𝐵  ∈  On ) | 
						
							| 4 |  | oemapval.t | ⊢ 𝑇  =  { 〈 𝑥 ,  𝑦 〉  ∣  ∃ 𝑧  ∈  𝐵 ( ( 𝑥 ‘ 𝑧 )  ∈  ( 𝑦 ‘ 𝑧 )  ∧  ∀ 𝑤  ∈  𝐵 ( 𝑧  ∈  𝑤  →  ( 𝑥 ‘ 𝑤 )  =  ( 𝑦 ‘ 𝑤 ) ) ) } | 
						
							| 5 |  | oemapval.f | ⊢ ( 𝜑  →  𝐹  ∈  𝑆 ) | 
						
							| 6 |  | oemapval.g | ⊢ ( 𝜑  →  𝐺  ∈  𝑆 ) | 
						
							| 7 |  | oemapvali.r | ⊢ ( 𝜑  →  𝐹 𝑇 𝐺 ) | 
						
							| 8 |  | oemapvali.x | ⊢ 𝑋  =  ∪  { 𝑐  ∈  𝐵  ∣  ( 𝐹 ‘ 𝑐 )  ∈  ( 𝐺 ‘ 𝑐 ) } | 
						
							| 9 |  | cantnflem1.o | ⊢ 𝑂  =  OrdIso (  E  ,  ( 𝐺  supp  ∅ ) ) | 
						
							| 10 |  | cantnflem1.h | ⊢ 𝐻  =  seqω ( ( 𝑘  ∈  V ,  𝑧  ∈  V  ↦  ( ( ( 𝐴  ↑o  ( 𝑂 ‘ 𝑘 ) )  ·o  ( 𝐺 ‘ ( 𝑂 ‘ 𝑘 ) ) )  +o  𝑧 ) ) ,  ∅ ) | 
						
							| 11 | 1 2 3 4 5 6 7 8 | oemapvali | ⊢ ( 𝜑  →  ( 𝑋  ∈  𝐵  ∧  ( 𝐹 ‘ 𝑋 )  ∈  ( 𝐺 ‘ 𝑋 )  ∧  ∀ 𝑤  ∈  𝐵 ( 𝑋  ∈  𝑤  →  ( 𝐹 ‘ 𝑤 )  =  ( 𝐺 ‘ 𝑤 ) ) ) ) | 
						
							| 12 | 11 | simp1d | ⊢ ( 𝜑  →  𝑋  ∈  𝐵 ) | 
						
							| 13 |  | onelon | ⊢ ( ( 𝐵  ∈  On  ∧  𝑋  ∈  𝐵 )  →  𝑋  ∈  On ) | 
						
							| 14 | 3 12 13 | syl2anc | ⊢ ( 𝜑  →  𝑋  ∈  On ) | 
						
							| 15 |  | oecl | ⊢ ( ( 𝐴  ∈  On  ∧  𝑋  ∈  On )  →  ( 𝐴  ↑o  𝑋 )  ∈  On ) | 
						
							| 16 | 2 14 15 | syl2anc | ⊢ ( 𝜑  →  ( 𝐴  ↑o  𝑋 )  ∈  On ) | 
						
							| 17 | 1 2 3 | cantnfs | ⊢ ( 𝜑  →  ( 𝐺  ∈  𝑆  ↔  ( 𝐺 : 𝐵 ⟶ 𝐴  ∧  𝐺  finSupp  ∅ ) ) ) | 
						
							| 18 | 6 17 | mpbid | ⊢ ( 𝜑  →  ( 𝐺 : 𝐵 ⟶ 𝐴  ∧  𝐺  finSupp  ∅ ) ) | 
						
							| 19 | 18 | simpld | ⊢ ( 𝜑  →  𝐺 : 𝐵 ⟶ 𝐴 ) | 
						
							| 20 | 19 12 | ffvelcdmd | ⊢ ( 𝜑  →  ( 𝐺 ‘ 𝑋 )  ∈  𝐴 ) | 
						
							| 21 |  | onelon | ⊢ ( ( 𝐴  ∈  On  ∧  ( 𝐺 ‘ 𝑋 )  ∈  𝐴 )  →  ( 𝐺 ‘ 𝑋 )  ∈  On ) | 
						
							| 22 | 2 20 21 | syl2anc | ⊢ ( 𝜑  →  ( 𝐺 ‘ 𝑋 )  ∈  On ) | 
						
							| 23 |  | omcl | ⊢ ( ( ( 𝐴  ↑o  𝑋 )  ∈  On  ∧  ( 𝐺 ‘ 𝑋 )  ∈  On )  →  ( ( 𝐴  ↑o  𝑋 )  ·o  ( 𝐺 ‘ 𝑋 ) )  ∈  On ) | 
						
							| 24 | 16 22 23 | syl2anc | ⊢ ( 𝜑  →  ( ( 𝐴  ↑o  𝑋 )  ·o  ( 𝐺 ‘ 𝑋 ) )  ∈  On ) | 
						
							| 25 |  | ovexd | ⊢ ( 𝜑  →  ( 𝐺  supp  ∅ )  ∈  V ) | 
						
							| 26 | 1 2 3 9 6 | cantnfcl | ⊢ ( 𝜑  →  (  E   We  ( 𝐺  supp  ∅ )  ∧  dom  𝑂  ∈  ω ) ) | 
						
							| 27 | 26 | simpld | ⊢ ( 𝜑  →   E   We  ( 𝐺  supp  ∅ ) ) | 
						
							| 28 | 9 | oiiso | ⊢ ( ( ( 𝐺  supp  ∅ )  ∈  V  ∧   E   We  ( 𝐺  supp  ∅ ) )  →  𝑂  Isom   E  ,   E  ( dom  𝑂 ,  ( 𝐺  supp  ∅ ) ) ) | 
						
							| 29 | 25 27 28 | syl2anc | ⊢ ( 𝜑  →  𝑂  Isom   E  ,   E  ( dom  𝑂 ,  ( 𝐺  supp  ∅ ) ) ) | 
						
							| 30 |  | isof1o | ⊢ ( 𝑂  Isom   E  ,   E  ( dom  𝑂 ,  ( 𝐺  supp  ∅ ) )  →  𝑂 : dom  𝑂 –1-1-onto→ ( 𝐺  supp  ∅ ) ) | 
						
							| 31 | 29 30 | syl | ⊢ ( 𝜑  →  𝑂 : dom  𝑂 –1-1-onto→ ( 𝐺  supp  ∅ ) ) | 
						
							| 32 |  | f1ocnv | ⊢ ( 𝑂 : dom  𝑂 –1-1-onto→ ( 𝐺  supp  ∅ )  →  ◡ 𝑂 : ( 𝐺  supp  ∅ ) –1-1-onto→ dom  𝑂 ) | 
						
							| 33 |  | f1of | ⊢ ( ◡ 𝑂 : ( 𝐺  supp  ∅ ) –1-1-onto→ dom  𝑂  →  ◡ 𝑂 : ( 𝐺  supp  ∅ ) ⟶ dom  𝑂 ) | 
						
							| 34 | 31 32 33 | 3syl | ⊢ ( 𝜑  →  ◡ 𝑂 : ( 𝐺  supp  ∅ ) ⟶ dom  𝑂 ) | 
						
							| 35 | 1 2 3 4 5 6 7 8 | cantnflem1a | ⊢ ( 𝜑  →  𝑋  ∈  ( 𝐺  supp  ∅ ) ) | 
						
							| 36 | 34 35 | ffvelcdmd | ⊢ ( 𝜑  →  ( ◡ 𝑂 ‘ 𝑋 )  ∈  dom  𝑂 ) | 
						
							| 37 | 26 | simprd | ⊢ ( 𝜑  →  dom  𝑂  ∈  ω ) | 
						
							| 38 |  | elnn | ⊢ ( ( ( ◡ 𝑂 ‘ 𝑋 )  ∈  dom  𝑂  ∧  dom  𝑂  ∈  ω )  →  ( ◡ 𝑂 ‘ 𝑋 )  ∈  ω ) | 
						
							| 39 | 36 37 38 | syl2anc | ⊢ ( 𝜑  →  ( ◡ 𝑂 ‘ 𝑋 )  ∈  ω ) | 
						
							| 40 | 10 | cantnfvalf | ⊢ 𝐻 : ω ⟶ On | 
						
							| 41 | 40 | ffvelcdmi | ⊢ ( ( ◡ 𝑂 ‘ 𝑋 )  ∈  ω  →  ( 𝐻 ‘ ( ◡ 𝑂 ‘ 𝑋 ) )  ∈  On ) | 
						
							| 42 | 39 41 | syl | ⊢ ( 𝜑  →  ( 𝐻 ‘ ( ◡ 𝑂 ‘ 𝑋 ) )  ∈  On ) | 
						
							| 43 |  | oaword1 | ⊢ ( ( ( ( 𝐴  ↑o  𝑋 )  ·o  ( 𝐺 ‘ 𝑋 ) )  ∈  On  ∧  ( 𝐻 ‘ ( ◡ 𝑂 ‘ 𝑋 ) )  ∈  On )  →  ( ( 𝐴  ↑o  𝑋 )  ·o  ( 𝐺 ‘ 𝑋 ) )  ⊆  ( ( ( 𝐴  ↑o  𝑋 )  ·o  ( 𝐺 ‘ 𝑋 ) )  +o  ( 𝐻 ‘ ( ◡ 𝑂 ‘ 𝑋 ) ) ) ) | 
						
							| 44 | 24 42 43 | syl2anc | ⊢ ( 𝜑  →  ( ( 𝐴  ↑o  𝑋 )  ·o  ( 𝐺 ‘ 𝑋 ) )  ⊆  ( ( ( 𝐴  ↑o  𝑋 )  ·o  ( 𝐺 ‘ 𝑋 ) )  +o  ( 𝐻 ‘ ( ◡ 𝑂 ‘ 𝑋 ) ) ) ) | 
						
							| 45 | 1 2 3 9 6 10 | cantnfsuc | ⊢ ( ( 𝜑  ∧  ( ◡ 𝑂 ‘ 𝑋 )  ∈  ω )  →  ( 𝐻 ‘ suc  ( ◡ 𝑂 ‘ 𝑋 ) )  =  ( ( ( 𝐴  ↑o  ( 𝑂 ‘ ( ◡ 𝑂 ‘ 𝑋 ) ) )  ·o  ( 𝐺 ‘ ( 𝑂 ‘ ( ◡ 𝑂 ‘ 𝑋 ) ) ) )  +o  ( 𝐻 ‘ ( ◡ 𝑂 ‘ 𝑋 ) ) ) ) | 
						
							| 46 | 39 45 | mpdan | ⊢ ( 𝜑  →  ( 𝐻 ‘ suc  ( ◡ 𝑂 ‘ 𝑋 ) )  =  ( ( ( 𝐴  ↑o  ( 𝑂 ‘ ( ◡ 𝑂 ‘ 𝑋 ) ) )  ·o  ( 𝐺 ‘ ( 𝑂 ‘ ( ◡ 𝑂 ‘ 𝑋 ) ) ) )  +o  ( 𝐻 ‘ ( ◡ 𝑂 ‘ 𝑋 ) ) ) ) | 
						
							| 47 |  | f1ocnvfv2 | ⊢ ( ( 𝑂 : dom  𝑂 –1-1-onto→ ( 𝐺  supp  ∅ )  ∧  𝑋  ∈  ( 𝐺  supp  ∅ ) )  →  ( 𝑂 ‘ ( ◡ 𝑂 ‘ 𝑋 ) )  =  𝑋 ) | 
						
							| 48 | 31 35 47 | syl2anc | ⊢ ( 𝜑  →  ( 𝑂 ‘ ( ◡ 𝑂 ‘ 𝑋 ) )  =  𝑋 ) | 
						
							| 49 | 48 | oveq2d | ⊢ ( 𝜑  →  ( 𝐴  ↑o  ( 𝑂 ‘ ( ◡ 𝑂 ‘ 𝑋 ) ) )  =  ( 𝐴  ↑o  𝑋 ) ) | 
						
							| 50 | 48 | fveq2d | ⊢ ( 𝜑  →  ( 𝐺 ‘ ( 𝑂 ‘ ( ◡ 𝑂 ‘ 𝑋 ) ) )  =  ( 𝐺 ‘ 𝑋 ) ) | 
						
							| 51 | 49 50 | oveq12d | ⊢ ( 𝜑  →  ( ( 𝐴  ↑o  ( 𝑂 ‘ ( ◡ 𝑂 ‘ 𝑋 ) ) )  ·o  ( 𝐺 ‘ ( 𝑂 ‘ ( ◡ 𝑂 ‘ 𝑋 ) ) ) )  =  ( ( 𝐴  ↑o  𝑋 )  ·o  ( 𝐺 ‘ 𝑋 ) ) ) | 
						
							| 52 | 51 | oveq1d | ⊢ ( 𝜑  →  ( ( ( 𝐴  ↑o  ( 𝑂 ‘ ( ◡ 𝑂 ‘ 𝑋 ) ) )  ·o  ( 𝐺 ‘ ( 𝑂 ‘ ( ◡ 𝑂 ‘ 𝑋 ) ) ) )  +o  ( 𝐻 ‘ ( ◡ 𝑂 ‘ 𝑋 ) ) )  =  ( ( ( 𝐴  ↑o  𝑋 )  ·o  ( 𝐺 ‘ 𝑋 ) )  +o  ( 𝐻 ‘ ( ◡ 𝑂 ‘ 𝑋 ) ) ) ) | 
						
							| 53 | 46 52 | eqtrd | ⊢ ( 𝜑  →  ( 𝐻 ‘ suc  ( ◡ 𝑂 ‘ 𝑋 ) )  =  ( ( ( 𝐴  ↑o  𝑋 )  ·o  ( 𝐺 ‘ 𝑋 ) )  +o  ( 𝐻 ‘ ( ◡ 𝑂 ‘ 𝑋 ) ) ) ) | 
						
							| 54 | 44 53 | sseqtrrd | ⊢ ( 𝜑  →  ( ( 𝐴  ↑o  𝑋 )  ·o  ( 𝐺 ‘ 𝑋 ) )  ⊆  ( 𝐻 ‘ suc  ( ◡ 𝑂 ‘ 𝑋 ) ) ) | 
						
							| 55 |  | onss | ⊢ ( 𝐵  ∈  On  →  𝐵  ⊆  On ) | 
						
							| 56 | 3 55 | syl | ⊢ ( 𝜑  →  𝐵  ⊆  On ) | 
						
							| 57 | 56 | sselda | ⊢ ( ( 𝜑  ∧  𝑥  ∈  𝐵 )  →  𝑥  ∈  On ) | 
						
							| 58 | 14 | adantr | ⊢ ( ( 𝜑  ∧  𝑥  ∈  𝐵 )  →  𝑋  ∈  On ) | 
						
							| 59 |  | onsseleq | ⊢ ( ( 𝑥  ∈  On  ∧  𝑋  ∈  On )  →  ( 𝑥  ⊆  𝑋  ↔  ( 𝑥  ∈  𝑋  ∨  𝑥  =  𝑋 ) ) ) | 
						
							| 60 | 57 58 59 | syl2anc | ⊢ ( ( 𝜑  ∧  𝑥  ∈  𝐵 )  →  ( 𝑥  ⊆  𝑋  ↔  ( 𝑥  ∈  𝑋  ∨  𝑥  =  𝑋 ) ) ) | 
						
							| 61 |  | orcom | ⊢ ( ( 𝑥  ∈  𝑋  ∨  𝑥  =  𝑋 )  ↔  ( 𝑥  =  𝑋  ∨  𝑥  ∈  𝑋 ) ) | 
						
							| 62 | 60 61 | bitrdi | ⊢ ( ( 𝜑  ∧  𝑥  ∈  𝐵 )  →  ( 𝑥  ⊆  𝑋  ↔  ( 𝑥  =  𝑋  ∨  𝑥  ∈  𝑋 ) ) ) | 
						
							| 63 | 62 | ifbid | ⊢ ( ( 𝜑  ∧  𝑥  ∈  𝐵 )  →  if ( 𝑥  ⊆  𝑋 ,  ( 𝐹 ‘ 𝑥 ) ,  ∅ )  =  if ( ( 𝑥  =  𝑋  ∨  𝑥  ∈  𝑋 ) ,  ( 𝐹 ‘ 𝑥 ) ,  ∅ ) ) | 
						
							| 64 | 63 | mpteq2dva | ⊢ ( 𝜑  →  ( 𝑥  ∈  𝐵  ↦  if ( 𝑥  ⊆  𝑋 ,  ( 𝐹 ‘ 𝑥 ) ,  ∅ ) )  =  ( 𝑥  ∈  𝐵  ↦  if ( ( 𝑥  =  𝑋  ∨  𝑥  ∈  𝑋 ) ,  ( 𝐹 ‘ 𝑥 ) ,  ∅ ) ) ) | 
						
							| 65 | 64 | fveq2d | ⊢ ( 𝜑  →  ( ( 𝐴  CNF  𝐵 ) ‘ ( 𝑥  ∈  𝐵  ↦  if ( 𝑥  ⊆  𝑋 ,  ( 𝐹 ‘ 𝑥 ) ,  ∅ ) ) )  =  ( ( 𝐴  CNF  𝐵 ) ‘ ( 𝑥  ∈  𝐵  ↦  if ( ( 𝑥  =  𝑋  ∨  𝑥  ∈  𝑋 ) ,  ( 𝐹 ‘ 𝑥 ) ,  ∅ ) ) ) ) | 
						
							| 66 | 1 2 3 | cantnfs | ⊢ ( 𝜑  →  ( 𝐹  ∈  𝑆  ↔  ( 𝐹 : 𝐵 ⟶ 𝐴  ∧  𝐹  finSupp  ∅ ) ) ) | 
						
							| 67 | 5 66 | mpbid | ⊢ ( 𝜑  →  ( 𝐹 : 𝐵 ⟶ 𝐴  ∧  𝐹  finSupp  ∅ ) ) | 
						
							| 68 | 67 | simpld | ⊢ ( 𝜑  →  𝐹 : 𝐵 ⟶ 𝐴 ) | 
						
							| 69 | 68 | ffvelcdmda | ⊢ ( ( 𝜑  ∧  𝑦  ∈  𝐵 )  →  ( 𝐹 ‘ 𝑦 )  ∈  𝐴 ) | 
						
							| 70 | 20 | ne0d | ⊢ ( 𝜑  →  𝐴  ≠  ∅ ) | 
						
							| 71 |  | on0eln0 | ⊢ ( 𝐴  ∈  On  →  ( ∅  ∈  𝐴  ↔  𝐴  ≠  ∅ ) ) | 
						
							| 72 | 2 71 | syl | ⊢ ( 𝜑  →  ( ∅  ∈  𝐴  ↔  𝐴  ≠  ∅ ) ) | 
						
							| 73 | 70 72 | mpbird | ⊢ ( 𝜑  →  ∅  ∈  𝐴 ) | 
						
							| 74 | 73 | adantr | ⊢ ( ( 𝜑  ∧  𝑦  ∈  𝐵 )  →  ∅  ∈  𝐴 ) | 
						
							| 75 | 69 74 | ifcld | ⊢ ( ( 𝜑  ∧  𝑦  ∈  𝐵 )  →  if ( 𝑦  ∈  𝑋 ,  ( 𝐹 ‘ 𝑦 ) ,  ∅ )  ∈  𝐴 ) | 
						
							| 76 | 75 | fmpttd | ⊢ ( 𝜑  →  ( 𝑦  ∈  𝐵  ↦  if ( 𝑦  ∈  𝑋 ,  ( 𝐹 ‘ 𝑦 ) ,  ∅ ) ) : 𝐵 ⟶ 𝐴 ) | 
						
							| 77 |  | 0ex | ⊢ ∅  ∈  V | 
						
							| 78 | 77 | a1i | ⊢ ( 𝜑  →  ∅  ∈  V ) | 
						
							| 79 | 67 | simprd | ⊢ ( 𝜑  →  𝐹  finSupp  ∅ ) | 
						
							| 80 | 68 3 78 79 | fsuppmptif | ⊢ ( 𝜑  →  ( 𝑦  ∈  𝐵  ↦  if ( 𝑦  ∈  𝑋 ,  ( 𝐹 ‘ 𝑦 ) ,  ∅ ) )  finSupp  ∅ ) | 
						
							| 81 | 1 2 3 | cantnfs | ⊢ ( 𝜑  →  ( ( 𝑦  ∈  𝐵  ↦  if ( 𝑦  ∈  𝑋 ,  ( 𝐹 ‘ 𝑦 ) ,  ∅ ) )  ∈  𝑆  ↔  ( ( 𝑦  ∈  𝐵  ↦  if ( 𝑦  ∈  𝑋 ,  ( 𝐹 ‘ 𝑦 ) ,  ∅ ) ) : 𝐵 ⟶ 𝐴  ∧  ( 𝑦  ∈  𝐵  ↦  if ( 𝑦  ∈  𝑋 ,  ( 𝐹 ‘ 𝑦 ) ,  ∅ ) )  finSupp  ∅ ) ) ) | 
						
							| 82 | 76 80 81 | mpbir2and | ⊢ ( 𝜑  →  ( 𝑦  ∈  𝐵  ↦  if ( 𝑦  ∈  𝑋 ,  ( 𝐹 ‘ 𝑦 ) ,  ∅ ) )  ∈  𝑆 ) | 
						
							| 83 | 68 12 | ffvelcdmd | ⊢ ( 𝜑  →  ( 𝐹 ‘ 𝑋 )  ∈  𝐴 ) | 
						
							| 84 |  | eldifn | ⊢ ( 𝑦  ∈  ( 𝐵  ∖  𝑋 )  →  ¬  𝑦  ∈  𝑋 ) | 
						
							| 85 | 84 | adantl | ⊢ ( ( 𝜑  ∧  𝑦  ∈  ( 𝐵  ∖  𝑋 ) )  →  ¬  𝑦  ∈  𝑋 ) | 
						
							| 86 | 85 | iffalsed | ⊢ ( ( 𝜑  ∧  𝑦  ∈  ( 𝐵  ∖  𝑋 ) )  →  if ( 𝑦  ∈  𝑋 ,  ( 𝐹 ‘ 𝑦 ) ,  ∅ )  =  ∅ ) | 
						
							| 87 | 86 3 | suppss2 | ⊢ ( 𝜑  →  ( ( 𝑦  ∈  𝐵  ↦  if ( 𝑦  ∈  𝑋 ,  ( 𝐹 ‘ 𝑦 ) ,  ∅ ) )  supp  ∅ )  ⊆  𝑋 ) | 
						
							| 88 |  | ifor | ⊢ if ( ( 𝑥  =  𝑋  ∨  𝑥  ∈  𝑋 ) ,  ( 𝐹 ‘ 𝑥 ) ,  ∅ )  =  if ( 𝑥  =  𝑋 ,  ( 𝐹 ‘ 𝑥 ) ,  if ( 𝑥  ∈  𝑋 ,  ( 𝐹 ‘ 𝑥 ) ,  ∅ ) ) | 
						
							| 89 |  | fveq2 | ⊢ ( 𝑥  =  𝑋  →  ( 𝐹 ‘ 𝑥 )  =  ( 𝐹 ‘ 𝑋 ) ) | 
						
							| 90 | 89 | adantl | ⊢ ( ( 𝑥  ∈  𝐵  ∧  𝑥  =  𝑋 )  →  ( 𝐹 ‘ 𝑥 )  =  ( 𝐹 ‘ 𝑋 ) ) | 
						
							| 91 | 90 | ifeq1da | ⊢ ( 𝑥  ∈  𝐵  →  if ( 𝑥  =  𝑋 ,  ( 𝐹 ‘ 𝑥 ) ,  ( ( 𝑦  ∈  𝐵  ↦  if ( 𝑦  ∈  𝑋 ,  ( 𝐹 ‘ 𝑦 ) ,  ∅ ) ) ‘ 𝑥 ) )  =  if ( 𝑥  =  𝑋 ,  ( 𝐹 ‘ 𝑋 ) ,  ( ( 𝑦  ∈  𝐵  ↦  if ( 𝑦  ∈  𝑋 ,  ( 𝐹 ‘ 𝑦 ) ,  ∅ ) ) ‘ 𝑥 ) ) ) | 
						
							| 92 |  | eleq1w | ⊢ ( 𝑦  =  𝑥  →  ( 𝑦  ∈  𝑋  ↔  𝑥  ∈  𝑋 ) ) | 
						
							| 93 |  | fveq2 | ⊢ ( 𝑦  =  𝑥  →  ( 𝐹 ‘ 𝑦 )  =  ( 𝐹 ‘ 𝑥 ) ) | 
						
							| 94 | 92 93 | ifbieq1d | ⊢ ( 𝑦  =  𝑥  →  if ( 𝑦  ∈  𝑋 ,  ( 𝐹 ‘ 𝑦 ) ,  ∅ )  =  if ( 𝑥  ∈  𝑋 ,  ( 𝐹 ‘ 𝑥 ) ,  ∅ ) ) | 
						
							| 95 |  | eqid | ⊢ ( 𝑦  ∈  𝐵  ↦  if ( 𝑦  ∈  𝑋 ,  ( 𝐹 ‘ 𝑦 ) ,  ∅ ) )  =  ( 𝑦  ∈  𝐵  ↦  if ( 𝑦  ∈  𝑋 ,  ( 𝐹 ‘ 𝑦 ) ,  ∅ ) ) | 
						
							| 96 |  | fvex | ⊢ ( 𝐹 ‘ 𝑥 )  ∈  V | 
						
							| 97 | 96 77 | ifex | ⊢ if ( 𝑥  ∈  𝑋 ,  ( 𝐹 ‘ 𝑥 ) ,  ∅ )  ∈  V | 
						
							| 98 | 94 95 97 | fvmpt | ⊢ ( 𝑥  ∈  𝐵  →  ( ( 𝑦  ∈  𝐵  ↦  if ( 𝑦  ∈  𝑋 ,  ( 𝐹 ‘ 𝑦 ) ,  ∅ ) ) ‘ 𝑥 )  =  if ( 𝑥  ∈  𝑋 ,  ( 𝐹 ‘ 𝑥 ) ,  ∅ ) ) | 
						
							| 99 | 98 | ifeq2d | ⊢ ( 𝑥  ∈  𝐵  →  if ( 𝑥  =  𝑋 ,  ( 𝐹 ‘ 𝑥 ) ,  ( ( 𝑦  ∈  𝐵  ↦  if ( 𝑦  ∈  𝑋 ,  ( 𝐹 ‘ 𝑦 ) ,  ∅ ) ) ‘ 𝑥 ) )  =  if ( 𝑥  =  𝑋 ,  ( 𝐹 ‘ 𝑥 ) ,  if ( 𝑥  ∈  𝑋 ,  ( 𝐹 ‘ 𝑥 ) ,  ∅ ) ) ) | 
						
							| 100 | 91 99 | eqtr3d | ⊢ ( 𝑥  ∈  𝐵  →  if ( 𝑥  =  𝑋 ,  ( 𝐹 ‘ 𝑋 ) ,  ( ( 𝑦  ∈  𝐵  ↦  if ( 𝑦  ∈  𝑋 ,  ( 𝐹 ‘ 𝑦 ) ,  ∅ ) ) ‘ 𝑥 ) )  =  if ( 𝑥  =  𝑋 ,  ( 𝐹 ‘ 𝑥 ) ,  if ( 𝑥  ∈  𝑋 ,  ( 𝐹 ‘ 𝑥 ) ,  ∅ ) ) ) | 
						
							| 101 | 88 100 | eqtr4id | ⊢ ( 𝑥  ∈  𝐵  →  if ( ( 𝑥  =  𝑋  ∨  𝑥  ∈  𝑋 ) ,  ( 𝐹 ‘ 𝑥 ) ,  ∅ )  =  if ( 𝑥  =  𝑋 ,  ( 𝐹 ‘ 𝑋 ) ,  ( ( 𝑦  ∈  𝐵  ↦  if ( 𝑦  ∈  𝑋 ,  ( 𝐹 ‘ 𝑦 ) ,  ∅ ) ) ‘ 𝑥 ) ) ) | 
						
							| 102 | 101 | mpteq2ia | ⊢ ( 𝑥  ∈  𝐵  ↦  if ( ( 𝑥  =  𝑋  ∨  𝑥  ∈  𝑋 ) ,  ( 𝐹 ‘ 𝑥 ) ,  ∅ ) )  =  ( 𝑥  ∈  𝐵  ↦  if ( 𝑥  =  𝑋 ,  ( 𝐹 ‘ 𝑋 ) ,  ( ( 𝑦  ∈  𝐵  ↦  if ( 𝑦  ∈  𝑋 ,  ( 𝐹 ‘ 𝑦 ) ,  ∅ ) ) ‘ 𝑥 ) ) ) | 
						
							| 103 | 1 2 3 82 12 83 87 102 | cantnfp1 | ⊢ ( 𝜑  →  ( ( 𝑥  ∈  𝐵  ↦  if ( ( 𝑥  =  𝑋  ∨  𝑥  ∈  𝑋 ) ,  ( 𝐹 ‘ 𝑥 ) ,  ∅ ) )  ∈  𝑆  ∧  ( ( 𝐴  CNF  𝐵 ) ‘ ( 𝑥  ∈  𝐵  ↦  if ( ( 𝑥  =  𝑋  ∨  𝑥  ∈  𝑋 ) ,  ( 𝐹 ‘ 𝑥 ) ,  ∅ ) ) )  =  ( ( ( 𝐴  ↑o  𝑋 )  ·o  ( 𝐹 ‘ 𝑋 ) )  +o  ( ( 𝐴  CNF  𝐵 ) ‘ ( 𝑦  ∈  𝐵  ↦  if ( 𝑦  ∈  𝑋 ,  ( 𝐹 ‘ 𝑦 ) ,  ∅ ) ) ) ) ) ) | 
						
							| 104 | 103 | simprd | ⊢ ( 𝜑  →  ( ( 𝐴  CNF  𝐵 ) ‘ ( 𝑥  ∈  𝐵  ↦  if ( ( 𝑥  =  𝑋  ∨  𝑥  ∈  𝑋 ) ,  ( 𝐹 ‘ 𝑥 ) ,  ∅ ) ) )  =  ( ( ( 𝐴  ↑o  𝑋 )  ·o  ( 𝐹 ‘ 𝑋 ) )  +o  ( ( 𝐴  CNF  𝐵 ) ‘ ( 𝑦  ∈  𝐵  ↦  if ( 𝑦  ∈  𝑋 ,  ( 𝐹 ‘ 𝑦 ) ,  ∅ ) ) ) ) ) | 
						
							| 105 | 65 104 | eqtrd | ⊢ ( 𝜑  →  ( ( 𝐴  CNF  𝐵 ) ‘ ( 𝑥  ∈  𝐵  ↦  if ( 𝑥  ⊆  𝑋 ,  ( 𝐹 ‘ 𝑥 ) ,  ∅ ) ) )  =  ( ( ( 𝐴  ↑o  𝑋 )  ·o  ( 𝐹 ‘ 𝑋 ) )  +o  ( ( 𝐴  CNF  𝐵 ) ‘ ( 𝑦  ∈  𝐵  ↦  if ( 𝑦  ∈  𝑋 ,  ( 𝐹 ‘ 𝑦 ) ,  ∅ ) ) ) ) ) | 
						
							| 106 |  | onelon | ⊢ ( ( 𝐴  ∈  On  ∧  ( 𝐹 ‘ 𝑋 )  ∈  𝐴 )  →  ( 𝐹 ‘ 𝑋 )  ∈  On ) | 
						
							| 107 | 2 83 106 | syl2anc | ⊢ ( 𝜑  →  ( 𝐹 ‘ 𝑋 )  ∈  On ) | 
						
							| 108 |  | omsuc | ⊢ ( ( ( 𝐴  ↑o  𝑋 )  ∈  On  ∧  ( 𝐹 ‘ 𝑋 )  ∈  On )  →  ( ( 𝐴  ↑o  𝑋 )  ·o  suc  ( 𝐹 ‘ 𝑋 ) )  =  ( ( ( 𝐴  ↑o  𝑋 )  ·o  ( 𝐹 ‘ 𝑋 ) )  +o  ( 𝐴  ↑o  𝑋 ) ) ) | 
						
							| 109 | 16 107 108 | syl2anc | ⊢ ( 𝜑  →  ( ( 𝐴  ↑o  𝑋 )  ·o  suc  ( 𝐹 ‘ 𝑋 ) )  =  ( ( ( 𝐴  ↑o  𝑋 )  ·o  ( 𝐹 ‘ 𝑋 ) )  +o  ( 𝐴  ↑o  𝑋 ) ) ) | 
						
							| 110 |  | eloni | ⊢ ( ( 𝐺 ‘ 𝑋 )  ∈  On  →  Ord  ( 𝐺 ‘ 𝑋 ) ) | 
						
							| 111 | 22 110 | syl | ⊢ ( 𝜑  →  Ord  ( 𝐺 ‘ 𝑋 ) ) | 
						
							| 112 | 11 | simp2d | ⊢ ( 𝜑  →  ( 𝐹 ‘ 𝑋 )  ∈  ( 𝐺 ‘ 𝑋 ) ) | 
						
							| 113 |  | ordsucss | ⊢ ( Ord  ( 𝐺 ‘ 𝑋 )  →  ( ( 𝐹 ‘ 𝑋 )  ∈  ( 𝐺 ‘ 𝑋 )  →  suc  ( 𝐹 ‘ 𝑋 )  ⊆  ( 𝐺 ‘ 𝑋 ) ) ) | 
						
							| 114 | 111 112 113 | sylc | ⊢ ( 𝜑  →  suc  ( 𝐹 ‘ 𝑋 )  ⊆  ( 𝐺 ‘ 𝑋 ) ) | 
						
							| 115 |  | onsuc | ⊢ ( ( 𝐹 ‘ 𝑋 )  ∈  On  →  suc  ( 𝐹 ‘ 𝑋 )  ∈  On ) | 
						
							| 116 | 107 115 | syl | ⊢ ( 𝜑  →  suc  ( 𝐹 ‘ 𝑋 )  ∈  On ) | 
						
							| 117 |  | omwordi | ⊢ ( ( suc  ( 𝐹 ‘ 𝑋 )  ∈  On  ∧  ( 𝐺 ‘ 𝑋 )  ∈  On  ∧  ( 𝐴  ↑o  𝑋 )  ∈  On )  →  ( suc  ( 𝐹 ‘ 𝑋 )  ⊆  ( 𝐺 ‘ 𝑋 )  →  ( ( 𝐴  ↑o  𝑋 )  ·o  suc  ( 𝐹 ‘ 𝑋 ) )  ⊆  ( ( 𝐴  ↑o  𝑋 )  ·o  ( 𝐺 ‘ 𝑋 ) ) ) ) | 
						
							| 118 | 116 22 16 117 | syl3anc | ⊢ ( 𝜑  →  ( suc  ( 𝐹 ‘ 𝑋 )  ⊆  ( 𝐺 ‘ 𝑋 )  →  ( ( 𝐴  ↑o  𝑋 )  ·o  suc  ( 𝐹 ‘ 𝑋 ) )  ⊆  ( ( 𝐴  ↑o  𝑋 )  ·o  ( 𝐺 ‘ 𝑋 ) ) ) ) | 
						
							| 119 | 114 118 | mpd | ⊢ ( 𝜑  →  ( ( 𝐴  ↑o  𝑋 )  ·o  suc  ( 𝐹 ‘ 𝑋 ) )  ⊆  ( ( 𝐴  ↑o  𝑋 )  ·o  ( 𝐺 ‘ 𝑋 ) ) ) | 
						
							| 120 | 109 119 | eqsstrrd | ⊢ ( 𝜑  →  ( ( ( 𝐴  ↑o  𝑋 )  ·o  ( 𝐹 ‘ 𝑋 ) )  +o  ( 𝐴  ↑o  𝑋 ) )  ⊆  ( ( 𝐴  ↑o  𝑋 )  ·o  ( 𝐺 ‘ 𝑋 ) ) ) | 
						
							| 121 | 1 2 3 82 73 14 87 | cantnflt2 | ⊢ ( 𝜑  →  ( ( 𝐴  CNF  𝐵 ) ‘ ( 𝑦  ∈  𝐵  ↦  if ( 𝑦  ∈  𝑋 ,  ( 𝐹 ‘ 𝑦 ) ,  ∅ ) ) )  ∈  ( 𝐴  ↑o  𝑋 ) ) | 
						
							| 122 |  | onelon | ⊢ ( ( ( 𝐴  ↑o  𝑋 )  ∈  On  ∧  ( ( 𝐴  CNF  𝐵 ) ‘ ( 𝑦  ∈  𝐵  ↦  if ( 𝑦  ∈  𝑋 ,  ( 𝐹 ‘ 𝑦 ) ,  ∅ ) ) )  ∈  ( 𝐴  ↑o  𝑋 ) )  →  ( ( 𝐴  CNF  𝐵 ) ‘ ( 𝑦  ∈  𝐵  ↦  if ( 𝑦  ∈  𝑋 ,  ( 𝐹 ‘ 𝑦 ) ,  ∅ ) ) )  ∈  On ) | 
						
							| 123 | 16 121 122 | syl2anc | ⊢ ( 𝜑  →  ( ( 𝐴  CNF  𝐵 ) ‘ ( 𝑦  ∈  𝐵  ↦  if ( 𝑦  ∈  𝑋 ,  ( 𝐹 ‘ 𝑦 ) ,  ∅ ) ) )  ∈  On ) | 
						
							| 124 |  | omcl | ⊢ ( ( ( 𝐴  ↑o  𝑋 )  ∈  On  ∧  ( 𝐹 ‘ 𝑋 )  ∈  On )  →  ( ( 𝐴  ↑o  𝑋 )  ·o  ( 𝐹 ‘ 𝑋 ) )  ∈  On ) | 
						
							| 125 | 16 107 124 | syl2anc | ⊢ ( 𝜑  →  ( ( 𝐴  ↑o  𝑋 )  ·o  ( 𝐹 ‘ 𝑋 ) )  ∈  On ) | 
						
							| 126 |  | oaord | ⊢ ( ( ( ( 𝐴  CNF  𝐵 ) ‘ ( 𝑦  ∈  𝐵  ↦  if ( 𝑦  ∈  𝑋 ,  ( 𝐹 ‘ 𝑦 ) ,  ∅ ) ) )  ∈  On  ∧  ( 𝐴  ↑o  𝑋 )  ∈  On  ∧  ( ( 𝐴  ↑o  𝑋 )  ·o  ( 𝐹 ‘ 𝑋 ) )  ∈  On )  →  ( ( ( 𝐴  CNF  𝐵 ) ‘ ( 𝑦  ∈  𝐵  ↦  if ( 𝑦  ∈  𝑋 ,  ( 𝐹 ‘ 𝑦 ) ,  ∅ ) ) )  ∈  ( 𝐴  ↑o  𝑋 )  ↔  ( ( ( 𝐴  ↑o  𝑋 )  ·o  ( 𝐹 ‘ 𝑋 ) )  +o  ( ( 𝐴  CNF  𝐵 ) ‘ ( 𝑦  ∈  𝐵  ↦  if ( 𝑦  ∈  𝑋 ,  ( 𝐹 ‘ 𝑦 ) ,  ∅ ) ) ) )  ∈  ( ( ( 𝐴  ↑o  𝑋 )  ·o  ( 𝐹 ‘ 𝑋 ) )  +o  ( 𝐴  ↑o  𝑋 ) ) ) ) | 
						
							| 127 | 123 16 125 126 | syl3anc | ⊢ ( 𝜑  →  ( ( ( 𝐴  CNF  𝐵 ) ‘ ( 𝑦  ∈  𝐵  ↦  if ( 𝑦  ∈  𝑋 ,  ( 𝐹 ‘ 𝑦 ) ,  ∅ ) ) )  ∈  ( 𝐴  ↑o  𝑋 )  ↔  ( ( ( 𝐴  ↑o  𝑋 )  ·o  ( 𝐹 ‘ 𝑋 ) )  +o  ( ( 𝐴  CNF  𝐵 ) ‘ ( 𝑦  ∈  𝐵  ↦  if ( 𝑦  ∈  𝑋 ,  ( 𝐹 ‘ 𝑦 ) ,  ∅ ) ) ) )  ∈  ( ( ( 𝐴  ↑o  𝑋 )  ·o  ( 𝐹 ‘ 𝑋 ) )  +o  ( 𝐴  ↑o  𝑋 ) ) ) ) | 
						
							| 128 | 121 127 | mpbid | ⊢ ( 𝜑  →  ( ( ( 𝐴  ↑o  𝑋 )  ·o  ( 𝐹 ‘ 𝑋 ) )  +o  ( ( 𝐴  CNF  𝐵 ) ‘ ( 𝑦  ∈  𝐵  ↦  if ( 𝑦  ∈  𝑋 ,  ( 𝐹 ‘ 𝑦 ) ,  ∅ ) ) ) )  ∈  ( ( ( 𝐴  ↑o  𝑋 )  ·o  ( 𝐹 ‘ 𝑋 ) )  +o  ( 𝐴  ↑o  𝑋 ) ) ) | 
						
							| 129 | 120 128 | sseldd | ⊢ ( 𝜑  →  ( ( ( 𝐴  ↑o  𝑋 )  ·o  ( 𝐹 ‘ 𝑋 ) )  +o  ( ( 𝐴  CNF  𝐵 ) ‘ ( 𝑦  ∈  𝐵  ↦  if ( 𝑦  ∈  𝑋 ,  ( 𝐹 ‘ 𝑦 ) ,  ∅ ) ) ) )  ∈  ( ( 𝐴  ↑o  𝑋 )  ·o  ( 𝐺 ‘ 𝑋 ) ) ) | 
						
							| 130 | 105 129 | eqeltrd | ⊢ ( 𝜑  →  ( ( 𝐴  CNF  𝐵 ) ‘ ( 𝑥  ∈  𝐵  ↦  if ( 𝑥  ⊆  𝑋 ,  ( 𝐹 ‘ 𝑥 ) ,  ∅ ) ) )  ∈  ( ( 𝐴  ↑o  𝑋 )  ·o  ( 𝐺 ‘ 𝑋 ) ) ) | 
						
							| 131 | 54 130 | sseldd | ⊢ ( 𝜑  →  ( ( 𝐴  CNF  𝐵 ) ‘ ( 𝑥  ∈  𝐵  ↦  if ( 𝑥  ⊆  𝑋 ,  ( 𝐹 ‘ 𝑥 ) ,  ∅ ) ) )  ∈  ( 𝐻 ‘ suc  ( ◡ 𝑂 ‘ 𝑋 ) ) ) |