Step |
Hyp |
Ref |
Expression |
1 |
|
cantnfs.s |
⊢ 𝑆 = dom ( 𝐴 CNF 𝐵 ) |
2 |
|
cantnfs.a |
⊢ ( 𝜑 → 𝐴 ∈ On ) |
3 |
|
cantnfs.b |
⊢ ( 𝜑 → 𝐵 ∈ On ) |
4 |
|
oemapval.t |
⊢ 𝑇 = { 〈 𝑥 , 𝑦 〉 ∣ ∃ 𝑧 ∈ 𝐵 ( ( 𝑥 ‘ 𝑧 ) ∈ ( 𝑦 ‘ 𝑧 ) ∧ ∀ 𝑤 ∈ 𝐵 ( 𝑧 ∈ 𝑤 → ( 𝑥 ‘ 𝑤 ) = ( 𝑦 ‘ 𝑤 ) ) ) } |
5 |
|
cantnf.c |
⊢ ( 𝜑 → 𝐶 ∈ ( 𝐴 ↑o 𝐵 ) ) |
6 |
|
cantnf.s |
⊢ ( 𝜑 → 𝐶 ⊆ ran ( 𝐴 CNF 𝐵 ) ) |
7 |
|
cantnf.e |
⊢ ( 𝜑 → ∅ ∈ 𝐶 ) |
8 |
|
cantnf.x |
⊢ 𝑋 = ∪ ∩ { 𝑐 ∈ On ∣ 𝐶 ∈ ( 𝐴 ↑o 𝑐 ) } |
9 |
|
cantnf.p |
⊢ 𝑃 = ( ℩ 𝑑 ∃ 𝑎 ∈ On ∃ 𝑏 ∈ ( 𝐴 ↑o 𝑋 ) ( 𝑑 = 〈 𝑎 , 𝑏 〉 ∧ ( ( ( 𝐴 ↑o 𝑋 ) ·o 𝑎 ) +o 𝑏 ) = 𝐶 ) ) |
10 |
|
cantnf.y |
⊢ 𝑌 = ( 1st ‘ 𝑃 ) |
11 |
|
cantnf.z |
⊢ 𝑍 = ( 2nd ‘ 𝑃 ) |
12 |
|
cantnf.g |
⊢ ( 𝜑 → 𝐺 ∈ 𝑆 ) |
13 |
|
cantnf.v |
⊢ ( 𝜑 → ( ( 𝐴 CNF 𝐵 ) ‘ 𝐺 ) = 𝑍 ) |
14 |
|
cantnf.f |
⊢ 𝐹 = ( 𝑡 ∈ 𝐵 ↦ if ( 𝑡 = 𝑋 , 𝑌 , ( 𝐺 ‘ 𝑡 ) ) ) |
15 |
1 2 3 4 5 6 7
|
cantnflem2 |
⊢ ( 𝜑 → ( 𝐴 ∈ ( On ∖ 2o ) ∧ 𝐶 ∈ ( On ∖ 1o ) ) ) |
16 |
|
eqid |
⊢ 𝑋 = 𝑋 |
17 |
|
eqid |
⊢ 𝑌 = 𝑌 |
18 |
|
eqid |
⊢ 𝑍 = 𝑍 |
19 |
16 17 18
|
3pm3.2i |
⊢ ( 𝑋 = 𝑋 ∧ 𝑌 = 𝑌 ∧ 𝑍 = 𝑍 ) |
20 |
8 9 10 11
|
oeeui |
⊢ ( ( 𝐴 ∈ ( On ∖ 2o ) ∧ 𝐶 ∈ ( On ∖ 1o ) ) → ( ( ( 𝑋 ∈ On ∧ 𝑌 ∈ ( 𝐴 ∖ 1o ) ∧ 𝑍 ∈ ( 𝐴 ↑o 𝑋 ) ) ∧ ( ( ( 𝐴 ↑o 𝑋 ) ·o 𝑌 ) +o 𝑍 ) = 𝐶 ) ↔ ( 𝑋 = 𝑋 ∧ 𝑌 = 𝑌 ∧ 𝑍 = 𝑍 ) ) ) |
21 |
19 20
|
mpbiri |
⊢ ( ( 𝐴 ∈ ( On ∖ 2o ) ∧ 𝐶 ∈ ( On ∖ 1o ) ) → ( ( 𝑋 ∈ On ∧ 𝑌 ∈ ( 𝐴 ∖ 1o ) ∧ 𝑍 ∈ ( 𝐴 ↑o 𝑋 ) ) ∧ ( ( ( 𝐴 ↑o 𝑋 ) ·o 𝑌 ) +o 𝑍 ) = 𝐶 ) ) |
22 |
15 21
|
syl |
⊢ ( 𝜑 → ( ( 𝑋 ∈ On ∧ 𝑌 ∈ ( 𝐴 ∖ 1o ) ∧ 𝑍 ∈ ( 𝐴 ↑o 𝑋 ) ) ∧ ( ( ( 𝐴 ↑o 𝑋 ) ·o 𝑌 ) +o 𝑍 ) = 𝐶 ) ) |
23 |
22
|
simpld |
⊢ ( 𝜑 → ( 𝑋 ∈ On ∧ 𝑌 ∈ ( 𝐴 ∖ 1o ) ∧ 𝑍 ∈ ( 𝐴 ↑o 𝑋 ) ) ) |
24 |
23
|
simp1d |
⊢ ( 𝜑 → 𝑋 ∈ On ) |
25 |
|
oecl |
⊢ ( ( 𝐴 ∈ On ∧ 𝑋 ∈ On ) → ( 𝐴 ↑o 𝑋 ) ∈ On ) |
26 |
2 24 25
|
syl2anc |
⊢ ( 𝜑 → ( 𝐴 ↑o 𝑋 ) ∈ On ) |
27 |
23
|
simp2d |
⊢ ( 𝜑 → 𝑌 ∈ ( 𝐴 ∖ 1o ) ) |
28 |
27
|
eldifad |
⊢ ( 𝜑 → 𝑌 ∈ 𝐴 ) |
29 |
|
onelon |
⊢ ( ( 𝐴 ∈ On ∧ 𝑌 ∈ 𝐴 ) → 𝑌 ∈ On ) |
30 |
2 28 29
|
syl2anc |
⊢ ( 𝜑 → 𝑌 ∈ On ) |
31 |
|
dif1o |
⊢ ( 𝑌 ∈ ( 𝐴 ∖ 1o ) ↔ ( 𝑌 ∈ 𝐴 ∧ 𝑌 ≠ ∅ ) ) |
32 |
31
|
simprbi |
⊢ ( 𝑌 ∈ ( 𝐴 ∖ 1o ) → 𝑌 ≠ ∅ ) |
33 |
27 32
|
syl |
⊢ ( 𝜑 → 𝑌 ≠ ∅ ) |
34 |
|
on0eln0 |
⊢ ( 𝑌 ∈ On → ( ∅ ∈ 𝑌 ↔ 𝑌 ≠ ∅ ) ) |
35 |
30 34
|
syl |
⊢ ( 𝜑 → ( ∅ ∈ 𝑌 ↔ 𝑌 ≠ ∅ ) ) |
36 |
33 35
|
mpbird |
⊢ ( 𝜑 → ∅ ∈ 𝑌 ) |
37 |
|
omword1 |
⊢ ( ( ( ( 𝐴 ↑o 𝑋 ) ∈ On ∧ 𝑌 ∈ On ) ∧ ∅ ∈ 𝑌 ) → ( 𝐴 ↑o 𝑋 ) ⊆ ( ( 𝐴 ↑o 𝑋 ) ·o 𝑌 ) ) |
38 |
26 30 36 37
|
syl21anc |
⊢ ( 𝜑 → ( 𝐴 ↑o 𝑋 ) ⊆ ( ( 𝐴 ↑o 𝑋 ) ·o 𝑌 ) ) |
39 |
|
omcl |
⊢ ( ( ( 𝐴 ↑o 𝑋 ) ∈ On ∧ 𝑌 ∈ On ) → ( ( 𝐴 ↑o 𝑋 ) ·o 𝑌 ) ∈ On ) |
40 |
26 30 39
|
syl2anc |
⊢ ( 𝜑 → ( ( 𝐴 ↑o 𝑋 ) ·o 𝑌 ) ∈ On ) |
41 |
23
|
simp3d |
⊢ ( 𝜑 → 𝑍 ∈ ( 𝐴 ↑o 𝑋 ) ) |
42 |
|
onelon |
⊢ ( ( ( 𝐴 ↑o 𝑋 ) ∈ On ∧ 𝑍 ∈ ( 𝐴 ↑o 𝑋 ) ) → 𝑍 ∈ On ) |
43 |
26 41 42
|
syl2anc |
⊢ ( 𝜑 → 𝑍 ∈ On ) |
44 |
|
oaword1 |
⊢ ( ( ( ( 𝐴 ↑o 𝑋 ) ·o 𝑌 ) ∈ On ∧ 𝑍 ∈ On ) → ( ( 𝐴 ↑o 𝑋 ) ·o 𝑌 ) ⊆ ( ( ( 𝐴 ↑o 𝑋 ) ·o 𝑌 ) +o 𝑍 ) ) |
45 |
40 43 44
|
syl2anc |
⊢ ( 𝜑 → ( ( 𝐴 ↑o 𝑋 ) ·o 𝑌 ) ⊆ ( ( ( 𝐴 ↑o 𝑋 ) ·o 𝑌 ) +o 𝑍 ) ) |
46 |
22
|
simprd |
⊢ ( 𝜑 → ( ( ( 𝐴 ↑o 𝑋 ) ·o 𝑌 ) +o 𝑍 ) = 𝐶 ) |
47 |
45 46
|
sseqtrd |
⊢ ( 𝜑 → ( ( 𝐴 ↑o 𝑋 ) ·o 𝑌 ) ⊆ 𝐶 ) |
48 |
38 47
|
sstrd |
⊢ ( 𝜑 → ( 𝐴 ↑o 𝑋 ) ⊆ 𝐶 ) |
49 |
|
oecl |
⊢ ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ) → ( 𝐴 ↑o 𝐵 ) ∈ On ) |
50 |
2 3 49
|
syl2anc |
⊢ ( 𝜑 → ( 𝐴 ↑o 𝐵 ) ∈ On ) |
51 |
|
ontr2 |
⊢ ( ( ( 𝐴 ↑o 𝑋 ) ∈ On ∧ ( 𝐴 ↑o 𝐵 ) ∈ On ) → ( ( ( 𝐴 ↑o 𝑋 ) ⊆ 𝐶 ∧ 𝐶 ∈ ( 𝐴 ↑o 𝐵 ) ) → ( 𝐴 ↑o 𝑋 ) ∈ ( 𝐴 ↑o 𝐵 ) ) ) |
52 |
26 50 51
|
syl2anc |
⊢ ( 𝜑 → ( ( ( 𝐴 ↑o 𝑋 ) ⊆ 𝐶 ∧ 𝐶 ∈ ( 𝐴 ↑o 𝐵 ) ) → ( 𝐴 ↑o 𝑋 ) ∈ ( 𝐴 ↑o 𝐵 ) ) ) |
53 |
48 5 52
|
mp2and |
⊢ ( 𝜑 → ( 𝐴 ↑o 𝑋 ) ∈ ( 𝐴 ↑o 𝐵 ) ) |
54 |
15
|
simpld |
⊢ ( 𝜑 → 𝐴 ∈ ( On ∖ 2o ) ) |
55 |
|
oeord |
⊢ ( ( 𝑋 ∈ On ∧ 𝐵 ∈ On ∧ 𝐴 ∈ ( On ∖ 2o ) ) → ( 𝑋 ∈ 𝐵 ↔ ( 𝐴 ↑o 𝑋 ) ∈ ( 𝐴 ↑o 𝐵 ) ) ) |
56 |
24 3 54 55
|
syl3anc |
⊢ ( 𝜑 → ( 𝑋 ∈ 𝐵 ↔ ( 𝐴 ↑o 𝑋 ) ∈ ( 𝐴 ↑o 𝐵 ) ) ) |
57 |
53 56
|
mpbird |
⊢ ( 𝜑 → 𝑋 ∈ 𝐵 ) |
58 |
2
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐺 supp ∅ ) ) → 𝐴 ∈ On ) |
59 |
3
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐺 supp ∅ ) ) → 𝐵 ∈ On ) |
60 |
|
suppssdm |
⊢ ( 𝐺 supp ∅ ) ⊆ dom 𝐺 |
61 |
1 2 3
|
cantnfs |
⊢ ( 𝜑 → ( 𝐺 ∈ 𝑆 ↔ ( 𝐺 : 𝐵 ⟶ 𝐴 ∧ 𝐺 finSupp ∅ ) ) ) |
62 |
12 61
|
mpbid |
⊢ ( 𝜑 → ( 𝐺 : 𝐵 ⟶ 𝐴 ∧ 𝐺 finSupp ∅ ) ) |
63 |
62
|
simpld |
⊢ ( 𝜑 → 𝐺 : 𝐵 ⟶ 𝐴 ) |
64 |
60 63
|
fssdm |
⊢ ( 𝜑 → ( 𝐺 supp ∅ ) ⊆ 𝐵 ) |
65 |
64
|
sselda |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐺 supp ∅ ) ) → 𝑥 ∈ 𝐵 ) |
66 |
|
onelon |
⊢ ( ( 𝐵 ∈ On ∧ 𝑥 ∈ 𝐵 ) → 𝑥 ∈ On ) |
67 |
59 65 66
|
syl2anc |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐺 supp ∅ ) ) → 𝑥 ∈ On ) |
68 |
|
oecl |
⊢ ( ( 𝐴 ∈ On ∧ 𝑥 ∈ On ) → ( 𝐴 ↑o 𝑥 ) ∈ On ) |
69 |
58 67 68
|
syl2anc |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐺 supp ∅ ) ) → ( 𝐴 ↑o 𝑥 ) ∈ On ) |
70 |
63
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐺 supp ∅ ) ) → 𝐺 : 𝐵 ⟶ 𝐴 ) |
71 |
70 65
|
ffvelrnd |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐺 supp ∅ ) ) → ( 𝐺 ‘ 𝑥 ) ∈ 𝐴 ) |
72 |
|
onelon |
⊢ ( ( 𝐴 ∈ On ∧ ( 𝐺 ‘ 𝑥 ) ∈ 𝐴 ) → ( 𝐺 ‘ 𝑥 ) ∈ On ) |
73 |
58 71 72
|
syl2anc |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐺 supp ∅ ) ) → ( 𝐺 ‘ 𝑥 ) ∈ On ) |
74 |
63
|
ffnd |
⊢ ( 𝜑 → 𝐺 Fn 𝐵 ) |
75 |
7
|
elexd |
⊢ ( 𝜑 → ∅ ∈ V ) |
76 |
|
elsuppfn |
⊢ ( ( 𝐺 Fn 𝐵 ∧ 𝐵 ∈ On ∧ ∅ ∈ V ) → ( 𝑥 ∈ ( 𝐺 supp ∅ ) ↔ ( 𝑥 ∈ 𝐵 ∧ ( 𝐺 ‘ 𝑥 ) ≠ ∅ ) ) ) |
77 |
74 3 75 76
|
syl3anc |
⊢ ( 𝜑 → ( 𝑥 ∈ ( 𝐺 supp ∅ ) ↔ ( 𝑥 ∈ 𝐵 ∧ ( 𝐺 ‘ 𝑥 ) ≠ ∅ ) ) ) |
78 |
77
|
simplbda |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐺 supp ∅ ) ) → ( 𝐺 ‘ 𝑥 ) ≠ ∅ ) |
79 |
|
on0eln0 |
⊢ ( ( 𝐺 ‘ 𝑥 ) ∈ On → ( ∅ ∈ ( 𝐺 ‘ 𝑥 ) ↔ ( 𝐺 ‘ 𝑥 ) ≠ ∅ ) ) |
80 |
73 79
|
syl |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐺 supp ∅ ) ) → ( ∅ ∈ ( 𝐺 ‘ 𝑥 ) ↔ ( 𝐺 ‘ 𝑥 ) ≠ ∅ ) ) |
81 |
78 80
|
mpbird |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐺 supp ∅ ) ) → ∅ ∈ ( 𝐺 ‘ 𝑥 ) ) |
82 |
|
omword1 |
⊢ ( ( ( ( 𝐴 ↑o 𝑥 ) ∈ On ∧ ( 𝐺 ‘ 𝑥 ) ∈ On ) ∧ ∅ ∈ ( 𝐺 ‘ 𝑥 ) ) → ( 𝐴 ↑o 𝑥 ) ⊆ ( ( 𝐴 ↑o 𝑥 ) ·o ( 𝐺 ‘ 𝑥 ) ) ) |
83 |
69 73 81 82
|
syl21anc |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐺 supp ∅ ) ) → ( 𝐴 ↑o 𝑥 ) ⊆ ( ( 𝐴 ↑o 𝑥 ) ·o ( 𝐺 ‘ 𝑥 ) ) ) |
84 |
|
eqid |
⊢ OrdIso ( E , ( 𝐺 supp ∅ ) ) = OrdIso ( E , ( 𝐺 supp ∅ ) ) |
85 |
12
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐺 supp ∅ ) ) → 𝐺 ∈ 𝑆 ) |
86 |
|
eqid |
⊢ seqω ( ( 𝑘 ∈ V , 𝑧 ∈ V ↦ ( ( ( 𝐴 ↑o ( OrdIso ( E , ( 𝐺 supp ∅ ) ) ‘ 𝑘 ) ) ·o ( 𝐺 ‘ ( OrdIso ( E , ( 𝐺 supp ∅ ) ) ‘ 𝑘 ) ) ) +o 𝑧 ) ) , ∅ ) = seqω ( ( 𝑘 ∈ V , 𝑧 ∈ V ↦ ( ( ( 𝐴 ↑o ( OrdIso ( E , ( 𝐺 supp ∅ ) ) ‘ 𝑘 ) ) ·o ( 𝐺 ‘ ( OrdIso ( E , ( 𝐺 supp ∅ ) ) ‘ 𝑘 ) ) ) +o 𝑧 ) ) , ∅ ) |
87 |
1 58 59 84 85 86 65
|
cantnfle |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐺 supp ∅ ) ) → ( ( 𝐴 ↑o 𝑥 ) ·o ( 𝐺 ‘ 𝑥 ) ) ⊆ ( ( 𝐴 CNF 𝐵 ) ‘ 𝐺 ) ) |
88 |
13
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐺 supp ∅ ) ) → ( ( 𝐴 CNF 𝐵 ) ‘ 𝐺 ) = 𝑍 ) |
89 |
87 88
|
sseqtrd |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐺 supp ∅ ) ) → ( ( 𝐴 ↑o 𝑥 ) ·o ( 𝐺 ‘ 𝑥 ) ) ⊆ 𝑍 ) |
90 |
83 89
|
sstrd |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐺 supp ∅ ) ) → ( 𝐴 ↑o 𝑥 ) ⊆ 𝑍 ) |
91 |
41
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐺 supp ∅ ) ) → 𝑍 ∈ ( 𝐴 ↑o 𝑋 ) ) |
92 |
26
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐺 supp ∅ ) ) → ( 𝐴 ↑o 𝑋 ) ∈ On ) |
93 |
|
ontr2 |
⊢ ( ( ( 𝐴 ↑o 𝑥 ) ∈ On ∧ ( 𝐴 ↑o 𝑋 ) ∈ On ) → ( ( ( 𝐴 ↑o 𝑥 ) ⊆ 𝑍 ∧ 𝑍 ∈ ( 𝐴 ↑o 𝑋 ) ) → ( 𝐴 ↑o 𝑥 ) ∈ ( 𝐴 ↑o 𝑋 ) ) ) |
94 |
69 92 93
|
syl2anc |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐺 supp ∅ ) ) → ( ( ( 𝐴 ↑o 𝑥 ) ⊆ 𝑍 ∧ 𝑍 ∈ ( 𝐴 ↑o 𝑋 ) ) → ( 𝐴 ↑o 𝑥 ) ∈ ( 𝐴 ↑o 𝑋 ) ) ) |
95 |
90 91 94
|
mp2and |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐺 supp ∅ ) ) → ( 𝐴 ↑o 𝑥 ) ∈ ( 𝐴 ↑o 𝑋 ) ) |
96 |
24
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐺 supp ∅ ) ) → 𝑋 ∈ On ) |
97 |
54
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐺 supp ∅ ) ) → 𝐴 ∈ ( On ∖ 2o ) ) |
98 |
|
oeord |
⊢ ( ( 𝑥 ∈ On ∧ 𝑋 ∈ On ∧ 𝐴 ∈ ( On ∖ 2o ) ) → ( 𝑥 ∈ 𝑋 ↔ ( 𝐴 ↑o 𝑥 ) ∈ ( 𝐴 ↑o 𝑋 ) ) ) |
99 |
67 96 97 98
|
syl3anc |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐺 supp ∅ ) ) → ( 𝑥 ∈ 𝑋 ↔ ( 𝐴 ↑o 𝑥 ) ∈ ( 𝐴 ↑o 𝑋 ) ) ) |
100 |
95 99
|
mpbird |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐺 supp ∅ ) ) → 𝑥 ∈ 𝑋 ) |
101 |
100
|
ex |
⊢ ( 𝜑 → ( 𝑥 ∈ ( 𝐺 supp ∅ ) → 𝑥 ∈ 𝑋 ) ) |
102 |
101
|
ssrdv |
⊢ ( 𝜑 → ( 𝐺 supp ∅ ) ⊆ 𝑋 ) |
103 |
1 2 3 12 57 28 102 14
|
cantnfp1 |
⊢ ( 𝜑 → ( 𝐹 ∈ 𝑆 ∧ ( ( 𝐴 CNF 𝐵 ) ‘ 𝐹 ) = ( ( ( 𝐴 ↑o 𝑋 ) ·o 𝑌 ) +o ( ( 𝐴 CNF 𝐵 ) ‘ 𝐺 ) ) ) ) |
104 |
103
|
simprd |
⊢ ( 𝜑 → ( ( 𝐴 CNF 𝐵 ) ‘ 𝐹 ) = ( ( ( 𝐴 ↑o 𝑋 ) ·o 𝑌 ) +o ( ( 𝐴 CNF 𝐵 ) ‘ 𝐺 ) ) ) |
105 |
13
|
oveq2d |
⊢ ( 𝜑 → ( ( ( 𝐴 ↑o 𝑋 ) ·o 𝑌 ) +o ( ( 𝐴 CNF 𝐵 ) ‘ 𝐺 ) ) = ( ( ( 𝐴 ↑o 𝑋 ) ·o 𝑌 ) +o 𝑍 ) ) |
106 |
104 105 46
|
3eqtrd |
⊢ ( 𝜑 → ( ( 𝐴 CNF 𝐵 ) ‘ 𝐹 ) = 𝐶 ) |
107 |
1 2 3
|
cantnff |
⊢ ( 𝜑 → ( 𝐴 CNF 𝐵 ) : 𝑆 ⟶ ( 𝐴 ↑o 𝐵 ) ) |
108 |
107
|
ffnd |
⊢ ( 𝜑 → ( 𝐴 CNF 𝐵 ) Fn 𝑆 ) |
109 |
103
|
simpld |
⊢ ( 𝜑 → 𝐹 ∈ 𝑆 ) |
110 |
|
fnfvelrn |
⊢ ( ( ( 𝐴 CNF 𝐵 ) Fn 𝑆 ∧ 𝐹 ∈ 𝑆 ) → ( ( 𝐴 CNF 𝐵 ) ‘ 𝐹 ) ∈ ran ( 𝐴 CNF 𝐵 ) ) |
111 |
108 109 110
|
syl2anc |
⊢ ( 𝜑 → ( ( 𝐴 CNF 𝐵 ) ‘ 𝐹 ) ∈ ran ( 𝐴 CNF 𝐵 ) ) |
112 |
106 111
|
eqeltrrd |
⊢ ( 𝜑 → 𝐶 ∈ ran ( 𝐴 CNF 𝐵 ) ) |