| Step | Hyp | Ref | Expression | 
						
							| 1 |  | cantnfs.s | ⊢ 𝑆  =  dom  ( 𝐴  CNF  𝐵 ) | 
						
							| 2 |  | cantnfs.a | ⊢ ( 𝜑  →  𝐴  ∈  On ) | 
						
							| 3 |  | cantnfs.b | ⊢ ( 𝜑  →  𝐵  ∈  On ) | 
						
							| 4 |  | oemapval.t | ⊢ 𝑇  =  { 〈 𝑥 ,  𝑦 〉  ∣  ∃ 𝑧  ∈  𝐵 ( ( 𝑥 ‘ 𝑧 )  ∈  ( 𝑦 ‘ 𝑧 )  ∧  ∀ 𝑤  ∈  𝐵 ( 𝑧  ∈  𝑤  →  ( 𝑥 ‘ 𝑤 )  =  ( 𝑦 ‘ 𝑤 ) ) ) } | 
						
							| 5 |  | cantnf.c | ⊢ ( 𝜑  →  𝐶  ∈  ( 𝐴  ↑o  𝐵 ) ) | 
						
							| 6 |  | cantnf.s | ⊢ ( 𝜑  →  𝐶  ⊆  ran  ( 𝐴  CNF  𝐵 ) ) | 
						
							| 7 |  | cantnf.e | ⊢ ( 𝜑  →  ∅  ∈  𝐶 ) | 
						
							| 8 |  | cantnf.x | ⊢ 𝑋  =  ∪  ∩  { 𝑐  ∈  On  ∣  𝐶  ∈  ( 𝐴  ↑o  𝑐 ) } | 
						
							| 9 |  | cantnf.p | ⊢ 𝑃  =  ( ℩ 𝑑 ∃ 𝑎  ∈  On ∃ 𝑏  ∈  ( 𝐴  ↑o  𝑋 ) ( 𝑑  =  〈 𝑎 ,  𝑏 〉  ∧  ( ( ( 𝐴  ↑o  𝑋 )  ·o  𝑎 )  +o  𝑏 )  =  𝐶 ) ) | 
						
							| 10 |  | cantnf.y | ⊢ 𝑌  =  ( 1st  ‘ 𝑃 ) | 
						
							| 11 |  | cantnf.z | ⊢ 𝑍  =  ( 2nd  ‘ 𝑃 ) | 
						
							| 12 | 1 2 3 4 5 6 7 | cantnflem2 | ⊢ ( 𝜑  →  ( 𝐴  ∈  ( On  ∖  2o )  ∧  𝐶  ∈  ( On  ∖  1o ) ) ) | 
						
							| 13 |  | eqid | ⊢ 𝑋  =  𝑋 | 
						
							| 14 |  | eqid | ⊢ 𝑌  =  𝑌 | 
						
							| 15 |  | eqid | ⊢ 𝑍  =  𝑍 | 
						
							| 16 | 13 14 15 | 3pm3.2i | ⊢ ( 𝑋  =  𝑋  ∧  𝑌  =  𝑌  ∧  𝑍  =  𝑍 ) | 
						
							| 17 | 8 9 10 11 | oeeui | ⊢ ( ( 𝐴  ∈  ( On  ∖  2o )  ∧  𝐶  ∈  ( On  ∖  1o ) )  →  ( ( ( 𝑋  ∈  On  ∧  𝑌  ∈  ( 𝐴  ∖  1o )  ∧  𝑍  ∈  ( 𝐴  ↑o  𝑋 ) )  ∧  ( ( ( 𝐴  ↑o  𝑋 )  ·o  𝑌 )  +o  𝑍 )  =  𝐶 )  ↔  ( 𝑋  =  𝑋  ∧  𝑌  =  𝑌  ∧  𝑍  =  𝑍 ) ) ) | 
						
							| 18 | 16 17 | mpbiri | ⊢ ( ( 𝐴  ∈  ( On  ∖  2o )  ∧  𝐶  ∈  ( On  ∖  1o ) )  →  ( ( 𝑋  ∈  On  ∧  𝑌  ∈  ( 𝐴  ∖  1o )  ∧  𝑍  ∈  ( 𝐴  ↑o  𝑋 ) )  ∧  ( ( ( 𝐴  ↑o  𝑋 )  ·o  𝑌 )  +o  𝑍 )  =  𝐶 ) ) | 
						
							| 19 | 12 18 | syl | ⊢ ( 𝜑  →  ( ( 𝑋  ∈  On  ∧  𝑌  ∈  ( 𝐴  ∖  1o )  ∧  𝑍  ∈  ( 𝐴  ↑o  𝑋 ) )  ∧  ( ( ( 𝐴  ↑o  𝑋 )  ·o  𝑌 )  +o  𝑍 )  =  𝐶 ) ) | 
						
							| 20 | 19 | simpld | ⊢ ( 𝜑  →  ( 𝑋  ∈  On  ∧  𝑌  ∈  ( 𝐴  ∖  1o )  ∧  𝑍  ∈  ( 𝐴  ↑o  𝑋 ) ) ) | 
						
							| 21 | 20 | simp1d | ⊢ ( 𝜑  →  𝑋  ∈  On ) | 
						
							| 22 |  | oecl | ⊢ ( ( 𝐴  ∈  On  ∧  𝑋  ∈  On )  →  ( 𝐴  ↑o  𝑋 )  ∈  On ) | 
						
							| 23 | 2 21 22 | syl2anc | ⊢ ( 𝜑  →  ( 𝐴  ↑o  𝑋 )  ∈  On ) | 
						
							| 24 | 20 | simp2d | ⊢ ( 𝜑  →  𝑌  ∈  ( 𝐴  ∖  1o ) ) | 
						
							| 25 | 24 | eldifad | ⊢ ( 𝜑  →  𝑌  ∈  𝐴 ) | 
						
							| 26 |  | onelon | ⊢ ( ( 𝐴  ∈  On  ∧  𝑌  ∈  𝐴 )  →  𝑌  ∈  On ) | 
						
							| 27 | 2 25 26 | syl2anc | ⊢ ( 𝜑  →  𝑌  ∈  On ) | 
						
							| 28 |  | omcl | ⊢ ( ( ( 𝐴  ↑o  𝑋 )  ∈  On  ∧  𝑌  ∈  On )  →  ( ( 𝐴  ↑o  𝑋 )  ·o  𝑌 )  ∈  On ) | 
						
							| 29 | 23 27 28 | syl2anc | ⊢ ( 𝜑  →  ( ( 𝐴  ↑o  𝑋 )  ·o  𝑌 )  ∈  On ) | 
						
							| 30 | 20 | simp3d | ⊢ ( 𝜑  →  𝑍  ∈  ( 𝐴  ↑o  𝑋 ) ) | 
						
							| 31 |  | onelon | ⊢ ( ( ( 𝐴  ↑o  𝑋 )  ∈  On  ∧  𝑍  ∈  ( 𝐴  ↑o  𝑋 ) )  →  𝑍  ∈  On ) | 
						
							| 32 | 23 30 31 | syl2anc | ⊢ ( 𝜑  →  𝑍  ∈  On ) | 
						
							| 33 |  | oaword1 | ⊢ ( ( ( ( 𝐴  ↑o  𝑋 )  ·o  𝑌 )  ∈  On  ∧  𝑍  ∈  On )  →  ( ( 𝐴  ↑o  𝑋 )  ·o  𝑌 )  ⊆  ( ( ( 𝐴  ↑o  𝑋 )  ·o  𝑌 )  +o  𝑍 ) ) | 
						
							| 34 | 29 32 33 | syl2anc | ⊢ ( 𝜑  →  ( ( 𝐴  ↑o  𝑋 )  ·o  𝑌 )  ⊆  ( ( ( 𝐴  ↑o  𝑋 )  ·o  𝑌 )  +o  𝑍 ) ) | 
						
							| 35 |  | dif1o | ⊢ ( 𝑌  ∈  ( 𝐴  ∖  1o )  ↔  ( 𝑌  ∈  𝐴  ∧  𝑌  ≠  ∅ ) ) | 
						
							| 36 | 35 | simprbi | ⊢ ( 𝑌  ∈  ( 𝐴  ∖  1o )  →  𝑌  ≠  ∅ ) | 
						
							| 37 | 24 36 | syl | ⊢ ( 𝜑  →  𝑌  ≠  ∅ ) | 
						
							| 38 |  | on0eln0 | ⊢ ( 𝑌  ∈  On  →  ( ∅  ∈  𝑌  ↔  𝑌  ≠  ∅ ) ) | 
						
							| 39 | 27 38 | syl | ⊢ ( 𝜑  →  ( ∅  ∈  𝑌  ↔  𝑌  ≠  ∅ ) ) | 
						
							| 40 | 37 39 | mpbird | ⊢ ( 𝜑  →  ∅  ∈  𝑌 ) | 
						
							| 41 |  | omword1 | ⊢ ( ( ( ( 𝐴  ↑o  𝑋 )  ∈  On  ∧  𝑌  ∈  On )  ∧  ∅  ∈  𝑌 )  →  ( 𝐴  ↑o  𝑋 )  ⊆  ( ( 𝐴  ↑o  𝑋 )  ·o  𝑌 ) ) | 
						
							| 42 | 23 27 40 41 | syl21anc | ⊢ ( 𝜑  →  ( 𝐴  ↑o  𝑋 )  ⊆  ( ( 𝐴  ↑o  𝑋 )  ·o  𝑌 ) ) | 
						
							| 43 | 42 30 | sseldd | ⊢ ( 𝜑  →  𝑍  ∈  ( ( 𝐴  ↑o  𝑋 )  ·o  𝑌 ) ) | 
						
							| 44 | 34 43 | sseldd | ⊢ ( 𝜑  →  𝑍  ∈  ( ( ( 𝐴  ↑o  𝑋 )  ·o  𝑌 )  +o  𝑍 ) ) | 
						
							| 45 | 19 | simprd | ⊢ ( 𝜑  →  ( ( ( 𝐴  ↑o  𝑋 )  ·o  𝑌 )  +o  𝑍 )  =  𝐶 ) | 
						
							| 46 | 44 45 | eleqtrd | ⊢ ( 𝜑  →  𝑍  ∈  𝐶 ) | 
						
							| 47 | 6 46 | sseldd | ⊢ ( 𝜑  →  𝑍  ∈  ran  ( 𝐴  CNF  𝐵 ) ) | 
						
							| 48 | 1 2 3 | cantnff | ⊢ ( 𝜑  →  ( 𝐴  CNF  𝐵 ) : 𝑆 ⟶ ( 𝐴  ↑o  𝐵 ) ) | 
						
							| 49 |  | ffn | ⊢ ( ( 𝐴  CNF  𝐵 ) : 𝑆 ⟶ ( 𝐴  ↑o  𝐵 )  →  ( 𝐴  CNF  𝐵 )  Fn  𝑆 ) | 
						
							| 50 |  | fvelrnb | ⊢ ( ( 𝐴  CNF  𝐵 )  Fn  𝑆  →  ( 𝑍  ∈  ran  ( 𝐴  CNF  𝐵 )  ↔  ∃ 𝑔  ∈  𝑆 ( ( 𝐴  CNF  𝐵 ) ‘ 𝑔 )  =  𝑍 ) ) | 
						
							| 51 | 48 49 50 | 3syl | ⊢ ( 𝜑  →  ( 𝑍  ∈  ran  ( 𝐴  CNF  𝐵 )  ↔  ∃ 𝑔  ∈  𝑆 ( ( 𝐴  CNF  𝐵 ) ‘ 𝑔 )  =  𝑍 ) ) | 
						
							| 52 | 47 51 | mpbid | ⊢ ( 𝜑  →  ∃ 𝑔  ∈  𝑆 ( ( 𝐴  CNF  𝐵 ) ‘ 𝑔 )  =  𝑍 ) | 
						
							| 53 | 2 | adantr | ⊢ ( ( 𝜑  ∧  ( 𝑔  ∈  𝑆  ∧  ( ( 𝐴  CNF  𝐵 ) ‘ 𝑔 )  =  𝑍 ) )  →  𝐴  ∈  On ) | 
						
							| 54 | 3 | adantr | ⊢ ( ( 𝜑  ∧  ( 𝑔  ∈  𝑆  ∧  ( ( 𝐴  CNF  𝐵 ) ‘ 𝑔 )  =  𝑍 ) )  →  𝐵  ∈  On ) | 
						
							| 55 | 5 | adantr | ⊢ ( ( 𝜑  ∧  ( 𝑔  ∈  𝑆  ∧  ( ( 𝐴  CNF  𝐵 ) ‘ 𝑔 )  =  𝑍 ) )  →  𝐶  ∈  ( 𝐴  ↑o  𝐵 ) ) | 
						
							| 56 | 6 | adantr | ⊢ ( ( 𝜑  ∧  ( 𝑔  ∈  𝑆  ∧  ( ( 𝐴  CNF  𝐵 ) ‘ 𝑔 )  =  𝑍 ) )  →  𝐶  ⊆  ran  ( 𝐴  CNF  𝐵 ) ) | 
						
							| 57 | 7 | adantr | ⊢ ( ( 𝜑  ∧  ( 𝑔  ∈  𝑆  ∧  ( ( 𝐴  CNF  𝐵 ) ‘ 𝑔 )  =  𝑍 ) )  →  ∅  ∈  𝐶 ) | 
						
							| 58 |  | simprl | ⊢ ( ( 𝜑  ∧  ( 𝑔  ∈  𝑆  ∧  ( ( 𝐴  CNF  𝐵 ) ‘ 𝑔 )  =  𝑍 ) )  →  𝑔  ∈  𝑆 ) | 
						
							| 59 |  | simprr | ⊢ ( ( 𝜑  ∧  ( 𝑔  ∈  𝑆  ∧  ( ( 𝐴  CNF  𝐵 ) ‘ 𝑔 )  =  𝑍 ) )  →  ( ( 𝐴  CNF  𝐵 ) ‘ 𝑔 )  =  𝑍 ) | 
						
							| 60 |  | eqid | ⊢ ( 𝑡  ∈  𝐵  ↦  if ( 𝑡  =  𝑋 ,  𝑌 ,  ( 𝑔 ‘ 𝑡 ) ) )  =  ( 𝑡  ∈  𝐵  ↦  if ( 𝑡  =  𝑋 ,  𝑌 ,  ( 𝑔 ‘ 𝑡 ) ) ) | 
						
							| 61 | 1 53 54 4 55 56 57 8 9 10 11 58 59 60 | cantnflem3 | ⊢ ( ( 𝜑  ∧  ( 𝑔  ∈  𝑆  ∧  ( ( 𝐴  CNF  𝐵 ) ‘ 𝑔 )  =  𝑍 ) )  →  𝐶  ∈  ran  ( 𝐴  CNF  𝐵 ) ) | 
						
							| 62 | 52 61 | rexlimddv | ⊢ ( 𝜑  →  𝐶  ∈  ran  ( 𝐴  CNF  𝐵 ) ) |