Step |
Hyp |
Ref |
Expression |
1 |
|
cantnfs.s |
⊢ 𝑆 = dom ( 𝐴 CNF 𝐵 ) |
2 |
|
cantnfs.a |
⊢ ( 𝜑 → 𝐴 ∈ On ) |
3 |
|
cantnfs.b |
⊢ ( 𝜑 → 𝐵 ∈ On ) |
4 |
|
cantnfcl.g |
⊢ 𝐺 = OrdIso ( E , ( 𝐹 supp ∅ ) ) |
5 |
|
cantnfcl.f |
⊢ ( 𝜑 → 𝐹 ∈ 𝑆 ) |
6 |
|
cantnfval.h |
⊢ 𝐻 = seqω ( ( 𝑘 ∈ V , 𝑧 ∈ V ↦ ( ( ( 𝐴 ↑o ( 𝐺 ‘ 𝑘 ) ) ·o ( 𝐹 ‘ ( 𝐺 ‘ 𝑘 ) ) ) +o 𝑧 ) ) , ∅ ) |
7 |
|
cantnflt.a |
⊢ ( 𝜑 → ∅ ∈ 𝐴 ) |
8 |
|
cantnflt.k |
⊢ ( 𝜑 → 𝐾 ∈ suc dom 𝐺 ) |
9 |
|
cantnflt.c |
⊢ ( 𝜑 → 𝐶 ∈ On ) |
10 |
|
cantnflt.s |
⊢ ( 𝜑 → ( 𝐺 “ 𝐾 ) ⊆ 𝐶 ) |
11 |
|
oen0 |
⊢ ( ( ( 𝐴 ∈ On ∧ 𝐶 ∈ On ) ∧ ∅ ∈ 𝐴 ) → ∅ ∈ ( 𝐴 ↑o 𝐶 ) ) |
12 |
2 9 7 11
|
syl21anc |
⊢ ( 𝜑 → ∅ ∈ ( 𝐴 ↑o 𝐶 ) ) |
13 |
|
fveq2 |
⊢ ( 𝐾 = ∅ → ( 𝐻 ‘ 𝐾 ) = ( 𝐻 ‘ ∅ ) ) |
14 |
|
0ex |
⊢ ∅ ∈ V |
15 |
6
|
seqom0g |
⊢ ( ∅ ∈ V → ( 𝐻 ‘ ∅ ) = ∅ ) |
16 |
14 15
|
ax-mp |
⊢ ( 𝐻 ‘ ∅ ) = ∅ |
17 |
13 16
|
eqtrdi |
⊢ ( 𝐾 = ∅ → ( 𝐻 ‘ 𝐾 ) = ∅ ) |
18 |
17
|
eleq1d |
⊢ ( 𝐾 = ∅ → ( ( 𝐻 ‘ 𝐾 ) ∈ ( 𝐴 ↑o 𝐶 ) ↔ ∅ ∈ ( 𝐴 ↑o 𝐶 ) ) ) |
19 |
12 18
|
syl5ibrcom |
⊢ ( 𝜑 → ( 𝐾 = ∅ → ( 𝐻 ‘ 𝐾 ) ∈ ( 𝐴 ↑o 𝐶 ) ) ) |
20 |
9
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ ω ∧ 𝐾 = suc 𝑥 ) ) → 𝐶 ∈ On ) |
21 |
|
eloni |
⊢ ( 𝐶 ∈ On → Ord 𝐶 ) |
22 |
20 21
|
syl |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ ω ∧ 𝐾 = suc 𝑥 ) ) → Ord 𝐶 ) |
23 |
10
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ ω ∧ 𝐾 = suc 𝑥 ) ) → ( 𝐺 “ 𝐾 ) ⊆ 𝐶 ) |
24 |
4
|
oif |
⊢ 𝐺 : dom 𝐺 ⟶ ( 𝐹 supp ∅ ) |
25 |
|
ffn |
⊢ ( 𝐺 : dom 𝐺 ⟶ ( 𝐹 supp ∅ ) → 𝐺 Fn dom 𝐺 ) |
26 |
24 25
|
mp1i |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ ω ∧ 𝐾 = suc 𝑥 ) ) → 𝐺 Fn dom 𝐺 ) |
27 |
4
|
oicl |
⊢ Ord dom 𝐺 |
28 |
|
ordsuc |
⊢ ( Ord dom 𝐺 ↔ Ord suc dom 𝐺 ) |
29 |
27 28
|
mpbi |
⊢ Ord suc dom 𝐺 |
30 |
|
ordelon |
⊢ ( ( Ord suc dom 𝐺 ∧ 𝐾 ∈ suc dom 𝐺 ) → 𝐾 ∈ On ) |
31 |
29 8 30
|
sylancr |
⊢ ( 𝜑 → 𝐾 ∈ On ) |
32 |
|
ordsssuc |
⊢ ( ( 𝐾 ∈ On ∧ Ord dom 𝐺 ) → ( 𝐾 ⊆ dom 𝐺 ↔ 𝐾 ∈ suc dom 𝐺 ) ) |
33 |
31 27 32
|
sylancl |
⊢ ( 𝜑 → ( 𝐾 ⊆ dom 𝐺 ↔ 𝐾 ∈ suc dom 𝐺 ) ) |
34 |
8 33
|
mpbird |
⊢ ( 𝜑 → 𝐾 ⊆ dom 𝐺 ) |
35 |
34
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ ω ∧ 𝐾 = suc 𝑥 ) ) → 𝐾 ⊆ dom 𝐺 ) |
36 |
|
vex |
⊢ 𝑥 ∈ V |
37 |
36
|
sucid |
⊢ 𝑥 ∈ suc 𝑥 |
38 |
|
simprr |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ ω ∧ 𝐾 = suc 𝑥 ) ) → 𝐾 = suc 𝑥 ) |
39 |
37 38
|
eleqtrrid |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ ω ∧ 𝐾 = suc 𝑥 ) ) → 𝑥 ∈ 𝐾 ) |
40 |
|
fnfvima |
⊢ ( ( 𝐺 Fn dom 𝐺 ∧ 𝐾 ⊆ dom 𝐺 ∧ 𝑥 ∈ 𝐾 ) → ( 𝐺 ‘ 𝑥 ) ∈ ( 𝐺 “ 𝐾 ) ) |
41 |
26 35 39 40
|
syl3anc |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ ω ∧ 𝐾 = suc 𝑥 ) ) → ( 𝐺 ‘ 𝑥 ) ∈ ( 𝐺 “ 𝐾 ) ) |
42 |
23 41
|
sseldd |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ ω ∧ 𝐾 = suc 𝑥 ) ) → ( 𝐺 ‘ 𝑥 ) ∈ 𝐶 ) |
43 |
|
ordsucss |
⊢ ( Ord 𝐶 → ( ( 𝐺 ‘ 𝑥 ) ∈ 𝐶 → suc ( 𝐺 ‘ 𝑥 ) ⊆ 𝐶 ) ) |
44 |
22 42 43
|
sylc |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ ω ∧ 𝐾 = suc 𝑥 ) ) → suc ( 𝐺 ‘ 𝑥 ) ⊆ 𝐶 ) |
45 |
|
suppssdm |
⊢ ( 𝐹 supp ∅ ) ⊆ dom 𝐹 |
46 |
1 2 3
|
cantnfs |
⊢ ( 𝜑 → ( 𝐹 ∈ 𝑆 ↔ ( 𝐹 : 𝐵 ⟶ 𝐴 ∧ 𝐹 finSupp ∅ ) ) ) |
47 |
5 46
|
mpbid |
⊢ ( 𝜑 → ( 𝐹 : 𝐵 ⟶ 𝐴 ∧ 𝐹 finSupp ∅ ) ) |
48 |
47
|
simpld |
⊢ ( 𝜑 → 𝐹 : 𝐵 ⟶ 𝐴 ) |
49 |
45 48
|
fssdm |
⊢ ( 𝜑 → ( 𝐹 supp ∅ ) ⊆ 𝐵 ) |
50 |
|
onss |
⊢ ( 𝐵 ∈ On → 𝐵 ⊆ On ) |
51 |
3 50
|
syl |
⊢ ( 𝜑 → 𝐵 ⊆ On ) |
52 |
49 51
|
sstrd |
⊢ ( 𝜑 → ( 𝐹 supp ∅ ) ⊆ On ) |
53 |
52
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ ω ∧ 𝐾 = suc 𝑥 ) ) → ( 𝐹 supp ∅ ) ⊆ On ) |
54 |
8
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ ω ∧ 𝐾 = suc 𝑥 ) ) → 𝐾 ∈ suc dom 𝐺 ) |
55 |
38 54
|
eqeltrrd |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ ω ∧ 𝐾 = suc 𝑥 ) ) → suc 𝑥 ∈ suc dom 𝐺 ) |
56 |
|
ordsucelsuc |
⊢ ( Ord dom 𝐺 → ( 𝑥 ∈ dom 𝐺 ↔ suc 𝑥 ∈ suc dom 𝐺 ) ) |
57 |
27 56
|
ax-mp |
⊢ ( 𝑥 ∈ dom 𝐺 ↔ suc 𝑥 ∈ suc dom 𝐺 ) |
58 |
55 57
|
sylibr |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ ω ∧ 𝐾 = suc 𝑥 ) ) → 𝑥 ∈ dom 𝐺 ) |
59 |
24
|
ffvelrni |
⊢ ( 𝑥 ∈ dom 𝐺 → ( 𝐺 ‘ 𝑥 ) ∈ ( 𝐹 supp ∅ ) ) |
60 |
58 59
|
syl |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ ω ∧ 𝐾 = suc 𝑥 ) ) → ( 𝐺 ‘ 𝑥 ) ∈ ( 𝐹 supp ∅ ) ) |
61 |
53 60
|
sseldd |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ ω ∧ 𝐾 = suc 𝑥 ) ) → ( 𝐺 ‘ 𝑥 ) ∈ On ) |
62 |
|
suceloni |
⊢ ( ( 𝐺 ‘ 𝑥 ) ∈ On → suc ( 𝐺 ‘ 𝑥 ) ∈ On ) |
63 |
61 62
|
syl |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ ω ∧ 𝐾 = suc 𝑥 ) ) → suc ( 𝐺 ‘ 𝑥 ) ∈ On ) |
64 |
2
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ ω ∧ 𝐾 = suc 𝑥 ) ) → 𝐴 ∈ On ) |
65 |
7
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ ω ∧ 𝐾 = suc 𝑥 ) ) → ∅ ∈ 𝐴 ) |
66 |
|
oewordi |
⊢ ( ( ( suc ( 𝐺 ‘ 𝑥 ) ∈ On ∧ 𝐶 ∈ On ∧ 𝐴 ∈ On ) ∧ ∅ ∈ 𝐴 ) → ( suc ( 𝐺 ‘ 𝑥 ) ⊆ 𝐶 → ( 𝐴 ↑o suc ( 𝐺 ‘ 𝑥 ) ) ⊆ ( 𝐴 ↑o 𝐶 ) ) ) |
67 |
63 20 64 65 66
|
syl31anc |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ ω ∧ 𝐾 = suc 𝑥 ) ) → ( suc ( 𝐺 ‘ 𝑥 ) ⊆ 𝐶 → ( 𝐴 ↑o suc ( 𝐺 ‘ 𝑥 ) ) ⊆ ( 𝐴 ↑o 𝐶 ) ) ) |
68 |
44 67
|
mpd |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ ω ∧ 𝐾 = suc 𝑥 ) ) → ( 𝐴 ↑o suc ( 𝐺 ‘ 𝑥 ) ) ⊆ ( 𝐴 ↑o 𝐶 ) ) |
69 |
38
|
fveq2d |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ ω ∧ 𝐾 = suc 𝑥 ) ) → ( 𝐻 ‘ 𝐾 ) = ( 𝐻 ‘ suc 𝑥 ) ) |
70 |
|
simprl |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ ω ∧ 𝐾 = suc 𝑥 ) ) → 𝑥 ∈ ω ) |
71 |
|
simpl |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ ω ∧ 𝐾 = suc 𝑥 ) ) → 𝜑 ) |
72 |
|
eleq1 |
⊢ ( 𝑥 = ∅ → ( 𝑥 ∈ dom 𝐺 ↔ ∅ ∈ dom 𝐺 ) ) |
73 |
|
suceq |
⊢ ( 𝑥 = ∅ → suc 𝑥 = suc ∅ ) |
74 |
73
|
fveq2d |
⊢ ( 𝑥 = ∅ → ( 𝐻 ‘ suc 𝑥 ) = ( 𝐻 ‘ suc ∅ ) ) |
75 |
|
fveq2 |
⊢ ( 𝑥 = ∅ → ( 𝐺 ‘ 𝑥 ) = ( 𝐺 ‘ ∅ ) ) |
76 |
|
suceq |
⊢ ( ( 𝐺 ‘ 𝑥 ) = ( 𝐺 ‘ ∅ ) → suc ( 𝐺 ‘ 𝑥 ) = suc ( 𝐺 ‘ ∅ ) ) |
77 |
75 76
|
syl |
⊢ ( 𝑥 = ∅ → suc ( 𝐺 ‘ 𝑥 ) = suc ( 𝐺 ‘ ∅ ) ) |
78 |
77
|
oveq2d |
⊢ ( 𝑥 = ∅ → ( 𝐴 ↑o suc ( 𝐺 ‘ 𝑥 ) ) = ( 𝐴 ↑o suc ( 𝐺 ‘ ∅ ) ) ) |
79 |
74 78
|
eleq12d |
⊢ ( 𝑥 = ∅ → ( ( 𝐻 ‘ suc 𝑥 ) ∈ ( 𝐴 ↑o suc ( 𝐺 ‘ 𝑥 ) ) ↔ ( 𝐻 ‘ suc ∅ ) ∈ ( 𝐴 ↑o suc ( 𝐺 ‘ ∅ ) ) ) ) |
80 |
72 79
|
imbi12d |
⊢ ( 𝑥 = ∅ → ( ( 𝑥 ∈ dom 𝐺 → ( 𝐻 ‘ suc 𝑥 ) ∈ ( 𝐴 ↑o suc ( 𝐺 ‘ 𝑥 ) ) ) ↔ ( ∅ ∈ dom 𝐺 → ( 𝐻 ‘ suc ∅ ) ∈ ( 𝐴 ↑o suc ( 𝐺 ‘ ∅ ) ) ) ) ) |
81 |
|
eleq1 |
⊢ ( 𝑥 = 𝑦 → ( 𝑥 ∈ dom 𝐺 ↔ 𝑦 ∈ dom 𝐺 ) ) |
82 |
|
suceq |
⊢ ( 𝑥 = 𝑦 → suc 𝑥 = suc 𝑦 ) |
83 |
82
|
fveq2d |
⊢ ( 𝑥 = 𝑦 → ( 𝐻 ‘ suc 𝑥 ) = ( 𝐻 ‘ suc 𝑦 ) ) |
84 |
|
fveq2 |
⊢ ( 𝑥 = 𝑦 → ( 𝐺 ‘ 𝑥 ) = ( 𝐺 ‘ 𝑦 ) ) |
85 |
|
suceq |
⊢ ( ( 𝐺 ‘ 𝑥 ) = ( 𝐺 ‘ 𝑦 ) → suc ( 𝐺 ‘ 𝑥 ) = suc ( 𝐺 ‘ 𝑦 ) ) |
86 |
84 85
|
syl |
⊢ ( 𝑥 = 𝑦 → suc ( 𝐺 ‘ 𝑥 ) = suc ( 𝐺 ‘ 𝑦 ) ) |
87 |
86
|
oveq2d |
⊢ ( 𝑥 = 𝑦 → ( 𝐴 ↑o suc ( 𝐺 ‘ 𝑥 ) ) = ( 𝐴 ↑o suc ( 𝐺 ‘ 𝑦 ) ) ) |
88 |
83 87
|
eleq12d |
⊢ ( 𝑥 = 𝑦 → ( ( 𝐻 ‘ suc 𝑥 ) ∈ ( 𝐴 ↑o suc ( 𝐺 ‘ 𝑥 ) ) ↔ ( 𝐻 ‘ suc 𝑦 ) ∈ ( 𝐴 ↑o suc ( 𝐺 ‘ 𝑦 ) ) ) ) |
89 |
81 88
|
imbi12d |
⊢ ( 𝑥 = 𝑦 → ( ( 𝑥 ∈ dom 𝐺 → ( 𝐻 ‘ suc 𝑥 ) ∈ ( 𝐴 ↑o suc ( 𝐺 ‘ 𝑥 ) ) ) ↔ ( 𝑦 ∈ dom 𝐺 → ( 𝐻 ‘ suc 𝑦 ) ∈ ( 𝐴 ↑o suc ( 𝐺 ‘ 𝑦 ) ) ) ) ) |
90 |
|
eleq1 |
⊢ ( 𝑥 = suc 𝑦 → ( 𝑥 ∈ dom 𝐺 ↔ suc 𝑦 ∈ dom 𝐺 ) ) |
91 |
|
suceq |
⊢ ( 𝑥 = suc 𝑦 → suc 𝑥 = suc suc 𝑦 ) |
92 |
91
|
fveq2d |
⊢ ( 𝑥 = suc 𝑦 → ( 𝐻 ‘ suc 𝑥 ) = ( 𝐻 ‘ suc suc 𝑦 ) ) |
93 |
|
fveq2 |
⊢ ( 𝑥 = suc 𝑦 → ( 𝐺 ‘ 𝑥 ) = ( 𝐺 ‘ suc 𝑦 ) ) |
94 |
|
suceq |
⊢ ( ( 𝐺 ‘ 𝑥 ) = ( 𝐺 ‘ suc 𝑦 ) → suc ( 𝐺 ‘ 𝑥 ) = suc ( 𝐺 ‘ suc 𝑦 ) ) |
95 |
93 94
|
syl |
⊢ ( 𝑥 = suc 𝑦 → suc ( 𝐺 ‘ 𝑥 ) = suc ( 𝐺 ‘ suc 𝑦 ) ) |
96 |
95
|
oveq2d |
⊢ ( 𝑥 = suc 𝑦 → ( 𝐴 ↑o suc ( 𝐺 ‘ 𝑥 ) ) = ( 𝐴 ↑o suc ( 𝐺 ‘ suc 𝑦 ) ) ) |
97 |
92 96
|
eleq12d |
⊢ ( 𝑥 = suc 𝑦 → ( ( 𝐻 ‘ suc 𝑥 ) ∈ ( 𝐴 ↑o suc ( 𝐺 ‘ 𝑥 ) ) ↔ ( 𝐻 ‘ suc suc 𝑦 ) ∈ ( 𝐴 ↑o suc ( 𝐺 ‘ suc 𝑦 ) ) ) ) |
98 |
90 97
|
imbi12d |
⊢ ( 𝑥 = suc 𝑦 → ( ( 𝑥 ∈ dom 𝐺 → ( 𝐻 ‘ suc 𝑥 ) ∈ ( 𝐴 ↑o suc ( 𝐺 ‘ 𝑥 ) ) ) ↔ ( suc 𝑦 ∈ dom 𝐺 → ( 𝐻 ‘ suc suc 𝑦 ) ∈ ( 𝐴 ↑o suc ( 𝐺 ‘ suc 𝑦 ) ) ) ) ) |
99 |
48
|
adantr |
⊢ ( ( 𝜑 ∧ ∅ ∈ dom 𝐺 ) → 𝐹 : 𝐵 ⟶ 𝐴 ) |
100 |
24
|
ffvelrni |
⊢ ( ∅ ∈ dom 𝐺 → ( 𝐺 ‘ ∅ ) ∈ ( 𝐹 supp ∅ ) ) |
101 |
49
|
sselda |
⊢ ( ( 𝜑 ∧ ( 𝐺 ‘ ∅ ) ∈ ( 𝐹 supp ∅ ) ) → ( 𝐺 ‘ ∅ ) ∈ 𝐵 ) |
102 |
100 101
|
sylan2 |
⊢ ( ( 𝜑 ∧ ∅ ∈ dom 𝐺 ) → ( 𝐺 ‘ ∅ ) ∈ 𝐵 ) |
103 |
99 102
|
ffvelrnd |
⊢ ( ( 𝜑 ∧ ∅ ∈ dom 𝐺 ) → ( 𝐹 ‘ ( 𝐺 ‘ ∅ ) ) ∈ 𝐴 ) |
104 |
2
|
adantr |
⊢ ( ( 𝜑 ∧ ∅ ∈ dom 𝐺 ) → 𝐴 ∈ On ) |
105 |
|
onelon |
⊢ ( ( 𝐴 ∈ On ∧ ( 𝐹 ‘ ( 𝐺 ‘ ∅ ) ) ∈ 𝐴 ) → ( 𝐹 ‘ ( 𝐺 ‘ ∅ ) ) ∈ On ) |
106 |
104 103 105
|
syl2anc |
⊢ ( ( 𝜑 ∧ ∅ ∈ dom 𝐺 ) → ( 𝐹 ‘ ( 𝐺 ‘ ∅ ) ) ∈ On ) |
107 |
52
|
sselda |
⊢ ( ( 𝜑 ∧ ( 𝐺 ‘ ∅ ) ∈ ( 𝐹 supp ∅ ) ) → ( 𝐺 ‘ ∅ ) ∈ On ) |
108 |
100 107
|
sylan2 |
⊢ ( ( 𝜑 ∧ ∅ ∈ dom 𝐺 ) → ( 𝐺 ‘ ∅ ) ∈ On ) |
109 |
|
oecl |
⊢ ( ( 𝐴 ∈ On ∧ ( 𝐺 ‘ ∅ ) ∈ On ) → ( 𝐴 ↑o ( 𝐺 ‘ ∅ ) ) ∈ On ) |
110 |
104 108 109
|
syl2anc |
⊢ ( ( 𝜑 ∧ ∅ ∈ dom 𝐺 ) → ( 𝐴 ↑o ( 𝐺 ‘ ∅ ) ) ∈ On ) |
111 |
7
|
adantr |
⊢ ( ( 𝜑 ∧ ∅ ∈ dom 𝐺 ) → ∅ ∈ 𝐴 ) |
112 |
|
oen0 |
⊢ ( ( ( 𝐴 ∈ On ∧ ( 𝐺 ‘ ∅ ) ∈ On ) ∧ ∅ ∈ 𝐴 ) → ∅ ∈ ( 𝐴 ↑o ( 𝐺 ‘ ∅ ) ) ) |
113 |
104 108 111 112
|
syl21anc |
⊢ ( ( 𝜑 ∧ ∅ ∈ dom 𝐺 ) → ∅ ∈ ( 𝐴 ↑o ( 𝐺 ‘ ∅ ) ) ) |
114 |
|
omord2 |
⊢ ( ( ( ( 𝐹 ‘ ( 𝐺 ‘ ∅ ) ) ∈ On ∧ 𝐴 ∈ On ∧ ( 𝐴 ↑o ( 𝐺 ‘ ∅ ) ) ∈ On ) ∧ ∅ ∈ ( 𝐴 ↑o ( 𝐺 ‘ ∅ ) ) ) → ( ( 𝐹 ‘ ( 𝐺 ‘ ∅ ) ) ∈ 𝐴 ↔ ( ( 𝐴 ↑o ( 𝐺 ‘ ∅ ) ) ·o ( 𝐹 ‘ ( 𝐺 ‘ ∅ ) ) ) ∈ ( ( 𝐴 ↑o ( 𝐺 ‘ ∅ ) ) ·o 𝐴 ) ) ) |
115 |
106 104 110 113 114
|
syl31anc |
⊢ ( ( 𝜑 ∧ ∅ ∈ dom 𝐺 ) → ( ( 𝐹 ‘ ( 𝐺 ‘ ∅ ) ) ∈ 𝐴 ↔ ( ( 𝐴 ↑o ( 𝐺 ‘ ∅ ) ) ·o ( 𝐹 ‘ ( 𝐺 ‘ ∅ ) ) ) ∈ ( ( 𝐴 ↑o ( 𝐺 ‘ ∅ ) ) ·o 𝐴 ) ) ) |
116 |
103 115
|
mpbid |
⊢ ( ( 𝜑 ∧ ∅ ∈ dom 𝐺 ) → ( ( 𝐴 ↑o ( 𝐺 ‘ ∅ ) ) ·o ( 𝐹 ‘ ( 𝐺 ‘ ∅ ) ) ) ∈ ( ( 𝐴 ↑o ( 𝐺 ‘ ∅ ) ) ·o 𝐴 ) ) |
117 |
|
peano1 |
⊢ ∅ ∈ ω |
118 |
117
|
a1i |
⊢ ( ∅ ∈ dom 𝐺 → ∅ ∈ ω ) |
119 |
1 2 3 4 5 6
|
cantnfsuc |
⊢ ( ( 𝜑 ∧ ∅ ∈ ω ) → ( 𝐻 ‘ suc ∅ ) = ( ( ( 𝐴 ↑o ( 𝐺 ‘ ∅ ) ) ·o ( 𝐹 ‘ ( 𝐺 ‘ ∅ ) ) ) +o ( 𝐻 ‘ ∅ ) ) ) |
120 |
118 119
|
sylan2 |
⊢ ( ( 𝜑 ∧ ∅ ∈ dom 𝐺 ) → ( 𝐻 ‘ suc ∅ ) = ( ( ( 𝐴 ↑o ( 𝐺 ‘ ∅ ) ) ·o ( 𝐹 ‘ ( 𝐺 ‘ ∅ ) ) ) +o ( 𝐻 ‘ ∅ ) ) ) |
121 |
16
|
oveq2i |
⊢ ( ( ( 𝐴 ↑o ( 𝐺 ‘ ∅ ) ) ·o ( 𝐹 ‘ ( 𝐺 ‘ ∅ ) ) ) +o ( 𝐻 ‘ ∅ ) ) = ( ( ( 𝐴 ↑o ( 𝐺 ‘ ∅ ) ) ·o ( 𝐹 ‘ ( 𝐺 ‘ ∅ ) ) ) +o ∅ ) |
122 |
|
omcl |
⊢ ( ( ( 𝐴 ↑o ( 𝐺 ‘ ∅ ) ) ∈ On ∧ ( 𝐹 ‘ ( 𝐺 ‘ ∅ ) ) ∈ On ) → ( ( 𝐴 ↑o ( 𝐺 ‘ ∅ ) ) ·o ( 𝐹 ‘ ( 𝐺 ‘ ∅ ) ) ) ∈ On ) |
123 |
110 106 122
|
syl2anc |
⊢ ( ( 𝜑 ∧ ∅ ∈ dom 𝐺 ) → ( ( 𝐴 ↑o ( 𝐺 ‘ ∅ ) ) ·o ( 𝐹 ‘ ( 𝐺 ‘ ∅ ) ) ) ∈ On ) |
124 |
|
oa0 |
⊢ ( ( ( 𝐴 ↑o ( 𝐺 ‘ ∅ ) ) ·o ( 𝐹 ‘ ( 𝐺 ‘ ∅ ) ) ) ∈ On → ( ( ( 𝐴 ↑o ( 𝐺 ‘ ∅ ) ) ·o ( 𝐹 ‘ ( 𝐺 ‘ ∅ ) ) ) +o ∅ ) = ( ( 𝐴 ↑o ( 𝐺 ‘ ∅ ) ) ·o ( 𝐹 ‘ ( 𝐺 ‘ ∅ ) ) ) ) |
125 |
123 124
|
syl |
⊢ ( ( 𝜑 ∧ ∅ ∈ dom 𝐺 ) → ( ( ( 𝐴 ↑o ( 𝐺 ‘ ∅ ) ) ·o ( 𝐹 ‘ ( 𝐺 ‘ ∅ ) ) ) +o ∅ ) = ( ( 𝐴 ↑o ( 𝐺 ‘ ∅ ) ) ·o ( 𝐹 ‘ ( 𝐺 ‘ ∅ ) ) ) ) |
126 |
121 125
|
eqtrid |
⊢ ( ( 𝜑 ∧ ∅ ∈ dom 𝐺 ) → ( ( ( 𝐴 ↑o ( 𝐺 ‘ ∅ ) ) ·o ( 𝐹 ‘ ( 𝐺 ‘ ∅ ) ) ) +o ( 𝐻 ‘ ∅ ) ) = ( ( 𝐴 ↑o ( 𝐺 ‘ ∅ ) ) ·o ( 𝐹 ‘ ( 𝐺 ‘ ∅ ) ) ) ) |
127 |
120 126
|
eqtrd |
⊢ ( ( 𝜑 ∧ ∅ ∈ dom 𝐺 ) → ( 𝐻 ‘ suc ∅ ) = ( ( 𝐴 ↑o ( 𝐺 ‘ ∅ ) ) ·o ( 𝐹 ‘ ( 𝐺 ‘ ∅ ) ) ) ) |
128 |
|
oesuc |
⊢ ( ( 𝐴 ∈ On ∧ ( 𝐺 ‘ ∅ ) ∈ On ) → ( 𝐴 ↑o suc ( 𝐺 ‘ ∅ ) ) = ( ( 𝐴 ↑o ( 𝐺 ‘ ∅ ) ) ·o 𝐴 ) ) |
129 |
104 108 128
|
syl2anc |
⊢ ( ( 𝜑 ∧ ∅ ∈ dom 𝐺 ) → ( 𝐴 ↑o suc ( 𝐺 ‘ ∅ ) ) = ( ( 𝐴 ↑o ( 𝐺 ‘ ∅ ) ) ·o 𝐴 ) ) |
130 |
116 127 129
|
3eltr4d |
⊢ ( ( 𝜑 ∧ ∅ ∈ dom 𝐺 ) → ( 𝐻 ‘ suc ∅ ) ∈ ( 𝐴 ↑o suc ( 𝐺 ‘ ∅ ) ) ) |
131 |
130
|
ex |
⊢ ( 𝜑 → ( ∅ ∈ dom 𝐺 → ( 𝐻 ‘ suc ∅ ) ∈ ( 𝐴 ↑o suc ( 𝐺 ‘ ∅ ) ) ) ) |
132 |
|
ordtr |
⊢ ( Ord dom 𝐺 → Tr dom 𝐺 ) |
133 |
27 132
|
ax-mp |
⊢ Tr dom 𝐺 |
134 |
|
trsuc |
⊢ ( ( Tr dom 𝐺 ∧ suc 𝑦 ∈ dom 𝐺 ) → 𝑦 ∈ dom 𝐺 ) |
135 |
133 134
|
mpan |
⊢ ( suc 𝑦 ∈ dom 𝐺 → 𝑦 ∈ dom 𝐺 ) |
136 |
135
|
imim1i |
⊢ ( ( 𝑦 ∈ dom 𝐺 → ( 𝐻 ‘ suc 𝑦 ) ∈ ( 𝐴 ↑o suc ( 𝐺 ‘ 𝑦 ) ) ) → ( suc 𝑦 ∈ dom 𝐺 → ( 𝐻 ‘ suc 𝑦 ) ∈ ( 𝐴 ↑o suc ( 𝐺 ‘ 𝑦 ) ) ) ) |
137 |
2
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ ω ) ∧ ( suc 𝑦 ∈ dom 𝐺 ∧ ( 𝐻 ‘ suc 𝑦 ) ∈ ( 𝐴 ↑o suc ( 𝐺 ‘ 𝑦 ) ) ) ) → 𝐴 ∈ On ) |
138 |
|
eloni |
⊢ ( 𝐴 ∈ On → Ord 𝐴 ) |
139 |
137 138
|
syl |
⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ ω ) ∧ ( suc 𝑦 ∈ dom 𝐺 ∧ ( 𝐻 ‘ suc 𝑦 ) ∈ ( 𝐴 ↑o suc ( 𝐺 ‘ 𝑦 ) ) ) ) → Ord 𝐴 ) |
140 |
48
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ ω ) ∧ ( suc 𝑦 ∈ dom 𝐺 ∧ ( 𝐻 ‘ suc 𝑦 ) ∈ ( 𝐴 ↑o suc ( 𝐺 ‘ 𝑦 ) ) ) ) → 𝐹 : 𝐵 ⟶ 𝐴 ) |
141 |
49
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ ω ) ∧ ( suc 𝑦 ∈ dom 𝐺 ∧ ( 𝐻 ‘ suc 𝑦 ) ∈ ( 𝐴 ↑o suc ( 𝐺 ‘ 𝑦 ) ) ) ) → ( 𝐹 supp ∅ ) ⊆ 𝐵 ) |
142 |
24
|
ffvelrni |
⊢ ( suc 𝑦 ∈ dom 𝐺 → ( 𝐺 ‘ suc 𝑦 ) ∈ ( 𝐹 supp ∅ ) ) |
143 |
142
|
ad2antrl |
⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ ω ) ∧ ( suc 𝑦 ∈ dom 𝐺 ∧ ( 𝐻 ‘ suc 𝑦 ) ∈ ( 𝐴 ↑o suc ( 𝐺 ‘ 𝑦 ) ) ) ) → ( 𝐺 ‘ suc 𝑦 ) ∈ ( 𝐹 supp ∅ ) ) |
144 |
141 143
|
sseldd |
⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ ω ) ∧ ( suc 𝑦 ∈ dom 𝐺 ∧ ( 𝐻 ‘ suc 𝑦 ) ∈ ( 𝐴 ↑o suc ( 𝐺 ‘ 𝑦 ) ) ) ) → ( 𝐺 ‘ suc 𝑦 ) ∈ 𝐵 ) |
145 |
140 144
|
ffvelrnd |
⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ ω ) ∧ ( suc 𝑦 ∈ dom 𝐺 ∧ ( 𝐻 ‘ suc 𝑦 ) ∈ ( 𝐴 ↑o suc ( 𝐺 ‘ 𝑦 ) ) ) ) → ( 𝐹 ‘ ( 𝐺 ‘ suc 𝑦 ) ) ∈ 𝐴 ) |
146 |
|
ordsucss |
⊢ ( Ord 𝐴 → ( ( 𝐹 ‘ ( 𝐺 ‘ suc 𝑦 ) ) ∈ 𝐴 → suc ( 𝐹 ‘ ( 𝐺 ‘ suc 𝑦 ) ) ⊆ 𝐴 ) ) |
147 |
139 145 146
|
sylc |
⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ ω ) ∧ ( suc 𝑦 ∈ dom 𝐺 ∧ ( 𝐻 ‘ suc 𝑦 ) ∈ ( 𝐴 ↑o suc ( 𝐺 ‘ 𝑦 ) ) ) ) → suc ( 𝐹 ‘ ( 𝐺 ‘ suc 𝑦 ) ) ⊆ 𝐴 ) |
148 |
|
onelon |
⊢ ( ( 𝐴 ∈ On ∧ ( 𝐹 ‘ ( 𝐺 ‘ suc 𝑦 ) ) ∈ 𝐴 ) → ( 𝐹 ‘ ( 𝐺 ‘ suc 𝑦 ) ) ∈ On ) |
149 |
137 145 148
|
syl2anc |
⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ ω ) ∧ ( suc 𝑦 ∈ dom 𝐺 ∧ ( 𝐻 ‘ suc 𝑦 ) ∈ ( 𝐴 ↑o suc ( 𝐺 ‘ 𝑦 ) ) ) ) → ( 𝐹 ‘ ( 𝐺 ‘ suc 𝑦 ) ) ∈ On ) |
150 |
|
suceloni |
⊢ ( ( 𝐹 ‘ ( 𝐺 ‘ suc 𝑦 ) ) ∈ On → suc ( 𝐹 ‘ ( 𝐺 ‘ suc 𝑦 ) ) ∈ On ) |
151 |
149 150
|
syl |
⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ ω ) ∧ ( suc 𝑦 ∈ dom 𝐺 ∧ ( 𝐻 ‘ suc 𝑦 ) ∈ ( 𝐴 ↑o suc ( 𝐺 ‘ 𝑦 ) ) ) ) → suc ( 𝐹 ‘ ( 𝐺 ‘ suc 𝑦 ) ) ∈ On ) |
152 |
52
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ ω ) ∧ ( suc 𝑦 ∈ dom 𝐺 ∧ ( 𝐻 ‘ suc 𝑦 ) ∈ ( 𝐴 ↑o suc ( 𝐺 ‘ 𝑦 ) ) ) ) → ( 𝐹 supp ∅ ) ⊆ On ) |
153 |
152 143
|
sseldd |
⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ ω ) ∧ ( suc 𝑦 ∈ dom 𝐺 ∧ ( 𝐻 ‘ suc 𝑦 ) ∈ ( 𝐴 ↑o suc ( 𝐺 ‘ 𝑦 ) ) ) ) → ( 𝐺 ‘ suc 𝑦 ) ∈ On ) |
154 |
|
oecl |
⊢ ( ( 𝐴 ∈ On ∧ ( 𝐺 ‘ suc 𝑦 ) ∈ On ) → ( 𝐴 ↑o ( 𝐺 ‘ suc 𝑦 ) ) ∈ On ) |
155 |
137 153 154
|
syl2anc |
⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ ω ) ∧ ( suc 𝑦 ∈ dom 𝐺 ∧ ( 𝐻 ‘ suc 𝑦 ) ∈ ( 𝐴 ↑o suc ( 𝐺 ‘ 𝑦 ) ) ) ) → ( 𝐴 ↑o ( 𝐺 ‘ suc 𝑦 ) ) ∈ On ) |
156 |
|
omwordi |
⊢ ( ( suc ( 𝐹 ‘ ( 𝐺 ‘ suc 𝑦 ) ) ∈ On ∧ 𝐴 ∈ On ∧ ( 𝐴 ↑o ( 𝐺 ‘ suc 𝑦 ) ) ∈ On ) → ( suc ( 𝐹 ‘ ( 𝐺 ‘ suc 𝑦 ) ) ⊆ 𝐴 → ( ( 𝐴 ↑o ( 𝐺 ‘ suc 𝑦 ) ) ·o suc ( 𝐹 ‘ ( 𝐺 ‘ suc 𝑦 ) ) ) ⊆ ( ( 𝐴 ↑o ( 𝐺 ‘ suc 𝑦 ) ) ·o 𝐴 ) ) ) |
157 |
151 137 155 156
|
syl3anc |
⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ ω ) ∧ ( suc 𝑦 ∈ dom 𝐺 ∧ ( 𝐻 ‘ suc 𝑦 ) ∈ ( 𝐴 ↑o suc ( 𝐺 ‘ 𝑦 ) ) ) ) → ( suc ( 𝐹 ‘ ( 𝐺 ‘ suc 𝑦 ) ) ⊆ 𝐴 → ( ( 𝐴 ↑o ( 𝐺 ‘ suc 𝑦 ) ) ·o suc ( 𝐹 ‘ ( 𝐺 ‘ suc 𝑦 ) ) ) ⊆ ( ( 𝐴 ↑o ( 𝐺 ‘ suc 𝑦 ) ) ·o 𝐴 ) ) ) |
158 |
147 157
|
mpd |
⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ ω ) ∧ ( suc 𝑦 ∈ dom 𝐺 ∧ ( 𝐻 ‘ suc 𝑦 ) ∈ ( 𝐴 ↑o suc ( 𝐺 ‘ 𝑦 ) ) ) ) → ( ( 𝐴 ↑o ( 𝐺 ‘ suc 𝑦 ) ) ·o suc ( 𝐹 ‘ ( 𝐺 ‘ suc 𝑦 ) ) ) ⊆ ( ( 𝐴 ↑o ( 𝐺 ‘ suc 𝑦 ) ) ·o 𝐴 ) ) |
159 |
|
oesuc |
⊢ ( ( 𝐴 ∈ On ∧ ( 𝐺 ‘ suc 𝑦 ) ∈ On ) → ( 𝐴 ↑o suc ( 𝐺 ‘ suc 𝑦 ) ) = ( ( 𝐴 ↑o ( 𝐺 ‘ suc 𝑦 ) ) ·o 𝐴 ) ) |
160 |
137 153 159
|
syl2anc |
⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ ω ) ∧ ( suc 𝑦 ∈ dom 𝐺 ∧ ( 𝐻 ‘ suc 𝑦 ) ∈ ( 𝐴 ↑o suc ( 𝐺 ‘ 𝑦 ) ) ) ) → ( 𝐴 ↑o suc ( 𝐺 ‘ suc 𝑦 ) ) = ( ( 𝐴 ↑o ( 𝐺 ‘ suc 𝑦 ) ) ·o 𝐴 ) ) |
161 |
158 160
|
sseqtrrd |
⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ ω ) ∧ ( suc 𝑦 ∈ dom 𝐺 ∧ ( 𝐻 ‘ suc 𝑦 ) ∈ ( 𝐴 ↑o suc ( 𝐺 ‘ 𝑦 ) ) ) ) → ( ( 𝐴 ↑o ( 𝐺 ‘ suc 𝑦 ) ) ·o suc ( 𝐹 ‘ ( 𝐺 ‘ suc 𝑦 ) ) ) ⊆ ( 𝐴 ↑o suc ( 𝐺 ‘ suc 𝑦 ) ) ) |
162 |
|
eloni |
⊢ ( ( 𝐺 ‘ suc 𝑦 ) ∈ On → Ord ( 𝐺 ‘ suc 𝑦 ) ) |
163 |
153 162
|
syl |
⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ ω ) ∧ ( suc 𝑦 ∈ dom 𝐺 ∧ ( 𝐻 ‘ suc 𝑦 ) ∈ ( 𝐴 ↑o suc ( 𝐺 ‘ 𝑦 ) ) ) ) → Ord ( 𝐺 ‘ suc 𝑦 ) ) |
164 |
|
vex |
⊢ 𝑦 ∈ V |
165 |
164
|
sucid |
⊢ 𝑦 ∈ suc 𝑦 |
166 |
164
|
sucex |
⊢ suc 𝑦 ∈ V |
167 |
166
|
epeli |
⊢ ( 𝑦 E suc 𝑦 ↔ 𝑦 ∈ suc 𝑦 ) |
168 |
165 167
|
mpbir |
⊢ 𝑦 E suc 𝑦 |
169 |
|
ovexd |
⊢ ( 𝜑 → ( 𝐹 supp ∅ ) ∈ V ) |
170 |
1 2 3 4 5
|
cantnfcl |
⊢ ( 𝜑 → ( E We ( 𝐹 supp ∅ ) ∧ dom 𝐺 ∈ ω ) ) |
171 |
170
|
simpld |
⊢ ( 𝜑 → E We ( 𝐹 supp ∅ ) ) |
172 |
4
|
oiiso |
⊢ ( ( ( 𝐹 supp ∅ ) ∈ V ∧ E We ( 𝐹 supp ∅ ) ) → 𝐺 Isom E , E ( dom 𝐺 , ( 𝐹 supp ∅ ) ) ) |
173 |
169 171 172
|
syl2anc |
⊢ ( 𝜑 → 𝐺 Isom E , E ( dom 𝐺 , ( 𝐹 supp ∅ ) ) ) |
174 |
173
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ ω ) ∧ ( suc 𝑦 ∈ dom 𝐺 ∧ ( 𝐻 ‘ suc 𝑦 ) ∈ ( 𝐴 ↑o suc ( 𝐺 ‘ 𝑦 ) ) ) ) → 𝐺 Isom E , E ( dom 𝐺 , ( 𝐹 supp ∅ ) ) ) |
175 |
135
|
ad2antrl |
⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ ω ) ∧ ( suc 𝑦 ∈ dom 𝐺 ∧ ( 𝐻 ‘ suc 𝑦 ) ∈ ( 𝐴 ↑o suc ( 𝐺 ‘ 𝑦 ) ) ) ) → 𝑦 ∈ dom 𝐺 ) |
176 |
|
simprl |
⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ ω ) ∧ ( suc 𝑦 ∈ dom 𝐺 ∧ ( 𝐻 ‘ suc 𝑦 ) ∈ ( 𝐴 ↑o suc ( 𝐺 ‘ 𝑦 ) ) ) ) → suc 𝑦 ∈ dom 𝐺 ) |
177 |
|
isorel |
⊢ ( ( 𝐺 Isom E , E ( dom 𝐺 , ( 𝐹 supp ∅ ) ) ∧ ( 𝑦 ∈ dom 𝐺 ∧ suc 𝑦 ∈ dom 𝐺 ) ) → ( 𝑦 E suc 𝑦 ↔ ( 𝐺 ‘ 𝑦 ) E ( 𝐺 ‘ suc 𝑦 ) ) ) |
178 |
174 175 176 177
|
syl12anc |
⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ ω ) ∧ ( suc 𝑦 ∈ dom 𝐺 ∧ ( 𝐻 ‘ suc 𝑦 ) ∈ ( 𝐴 ↑o suc ( 𝐺 ‘ 𝑦 ) ) ) ) → ( 𝑦 E suc 𝑦 ↔ ( 𝐺 ‘ 𝑦 ) E ( 𝐺 ‘ suc 𝑦 ) ) ) |
179 |
168 178
|
mpbii |
⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ ω ) ∧ ( suc 𝑦 ∈ dom 𝐺 ∧ ( 𝐻 ‘ suc 𝑦 ) ∈ ( 𝐴 ↑o suc ( 𝐺 ‘ 𝑦 ) ) ) ) → ( 𝐺 ‘ 𝑦 ) E ( 𝐺 ‘ suc 𝑦 ) ) |
180 |
|
fvex |
⊢ ( 𝐺 ‘ suc 𝑦 ) ∈ V |
181 |
180
|
epeli |
⊢ ( ( 𝐺 ‘ 𝑦 ) E ( 𝐺 ‘ suc 𝑦 ) ↔ ( 𝐺 ‘ 𝑦 ) ∈ ( 𝐺 ‘ suc 𝑦 ) ) |
182 |
179 181
|
sylib |
⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ ω ) ∧ ( suc 𝑦 ∈ dom 𝐺 ∧ ( 𝐻 ‘ suc 𝑦 ) ∈ ( 𝐴 ↑o suc ( 𝐺 ‘ 𝑦 ) ) ) ) → ( 𝐺 ‘ 𝑦 ) ∈ ( 𝐺 ‘ suc 𝑦 ) ) |
183 |
|
ordsucss |
⊢ ( Ord ( 𝐺 ‘ suc 𝑦 ) → ( ( 𝐺 ‘ 𝑦 ) ∈ ( 𝐺 ‘ suc 𝑦 ) → suc ( 𝐺 ‘ 𝑦 ) ⊆ ( 𝐺 ‘ suc 𝑦 ) ) ) |
184 |
163 182 183
|
sylc |
⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ ω ) ∧ ( suc 𝑦 ∈ dom 𝐺 ∧ ( 𝐻 ‘ suc 𝑦 ) ∈ ( 𝐴 ↑o suc ( 𝐺 ‘ 𝑦 ) ) ) ) → suc ( 𝐺 ‘ 𝑦 ) ⊆ ( 𝐺 ‘ suc 𝑦 ) ) |
185 |
24
|
ffvelrni |
⊢ ( 𝑦 ∈ dom 𝐺 → ( 𝐺 ‘ 𝑦 ) ∈ ( 𝐹 supp ∅ ) ) |
186 |
175 185
|
syl |
⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ ω ) ∧ ( suc 𝑦 ∈ dom 𝐺 ∧ ( 𝐻 ‘ suc 𝑦 ) ∈ ( 𝐴 ↑o suc ( 𝐺 ‘ 𝑦 ) ) ) ) → ( 𝐺 ‘ 𝑦 ) ∈ ( 𝐹 supp ∅ ) ) |
187 |
152 186
|
sseldd |
⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ ω ) ∧ ( suc 𝑦 ∈ dom 𝐺 ∧ ( 𝐻 ‘ suc 𝑦 ) ∈ ( 𝐴 ↑o suc ( 𝐺 ‘ 𝑦 ) ) ) ) → ( 𝐺 ‘ 𝑦 ) ∈ On ) |
188 |
|
suceloni |
⊢ ( ( 𝐺 ‘ 𝑦 ) ∈ On → suc ( 𝐺 ‘ 𝑦 ) ∈ On ) |
189 |
187 188
|
syl |
⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ ω ) ∧ ( suc 𝑦 ∈ dom 𝐺 ∧ ( 𝐻 ‘ suc 𝑦 ) ∈ ( 𝐴 ↑o suc ( 𝐺 ‘ 𝑦 ) ) ) ) → suc ( 𝐺 ‘ 𝑦 ) ∈ On ) |
190 |
7
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ ω ) ∧ ( suc 𝑦 ∈ dom 𝐺 ∧ ( 𝐻 ‘ suc 𝑦 ) ∈ ( 𝐴 ↑o suc ( 𝐺 ‘ 𝑦 ) ) ) ) → ∅ ∈ 𝐴 ) |
191 |
|
oewordi |
⊢ ( ( ( suc ( 𝐺 ‘ 𝑦 ) ∈ On ∧ ( 𝐺 ‘ suc 𝑦 ) ∈ On ∧ 𝐴 ∈ On ) ∧ ∅ ∈ 𝐴 ) → ( suc ( 𝐺 ‘ 𝑦 ) ⊆ ( 𝐺 ‘ suc 𝑦 ) → ( 𝐴 ↑o suc ( 𝐺 ‘ 𝑦 ) ) ⊆ ( 𝐴 ↑o ( 𝐺 ‘ suc 𝑦 ) ) ) ) |
192 |
189 153 137 190 191
|
syl31anc |
⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ ω ) ∧ ( suc 𝑦 ∈ dom 𝐺 ∧ ( 𝐻 ‘ suc 𝑦 ) ∈ ( 𝐴 ↑o suc ( 𝐺 ‘ 𝑦 ) ) ) ) → ( suc ( 𝐺 ‘ 𝑦 ) ⊆ ( 𝐺 ‘ suc 𝑦 ) → ( 𝐴 ↑o suc ( 𝐺 ‘ 𝑦 ) ) ⊆ ( 𝐴 ↑o ( 𝐺 ‘ suc 𝑦 ) ) ) ) |
193 |
184 192
|
mpd |
⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ ω ) ∧ ( suc 𝑦 ∈ dom 𝐺 ∧ ( 𝐻 ‘ suc 𝑦 ) ∈ ( 𝐴 ↑o suc ( 𝐺 ‘ 𝑦 ) ) ) ) → ( 𝐴 ↑o suc ( 𝐺 ‘ 𝑦 ) ) ⊆ ( 𝐴 ↑o ( 𝐺 ‘ suc 𝑦 ) ) ) |
194 |
|
simprr |
⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ ω ) ∧ ( suc 𝑦 ∈ dom 𝐺 ∧ ( 𝐻 ‘ suc 𝑦 ) ∈ ( 𝐴 ↑o suc ( 𝐺 ‘ 𝑦 ) ) ) ) → ( 𝐻 ‘ suc 𝑦 ) ∈ ( 𝐴 ↑o suc ( 𝐺 ‘ 𝑦 ) ) ) |
195 |
193 194
|
sseldd |
⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ ω ) ∧ ( suc 𝑦 ∈ dom 𝐺 ∧ ( 𝐻 ‘ suc 𝑦 ) ∈ ( 𝐴 ↑o suc ( 𝐺 ‘ 𝑦 ) ) ) ) → ( 𝐻 ‘ suc 𝑦 ) ∈ ( 𝐴 ↑o ( 𝐺 ‘ suc 𝑦 ) ) ) |
196 |
|
peano2 |
⊢ ( 𝑦 ∈ ω → suc 𝑦 ∈ ω ) |
197 |
196
|
ad2antlr |
⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ ω ) ∧ ( suc 𝑦 ∈ dom 𝐺 ∧ ( 𝐻 ‘ suc 𝑦 ) ∈ ( 𝐴 ↑o suc ( 𝐺 ‘ 𝑦 ) ) ) ) → suc 𝑦 ∈ ω ) |
198 |
6
|
cantnfvalf |
⊢ 𝐻 : ω ⟶ On |
199 |
198
|
ffvelrni |
⊢ ( suc 𝑦 ∈ ω → ( 𝐻 ‘ suc 𝑦 ) ∈ On ) |
200 |
197 199
|
syl |
⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ ω ) ∧ ( suc 𝑦 ∈ dom 𝐺 ∧ ( 𝐻 ‘ suc 𝑦 ) ∈ ( 𝐴 ↑o suc ( 𝐺 ‘ 𝑦 ) ) ) ) → ( 𝐻 ‘ suc 𝑦 ) ∈ On ) |
201 |
|
omcl |
⊢ ( ( ( 𝐴 ↑o ( 𝐺 ‘ suc 𝑦 ) ) ∈ On ∧ ( 𝐹 ‘ ( 𝐺 ‘ suc 𝑦 ) ) ∈ On ) → ( ( 𝐴 ↑o ( 𝐺 ‘ suc 𝑦 ) ) ·o ( 𝐹 ‘ ( 𝐺 ‘ suc 𝑦 ) ) ) ∈ On ) |
202 |
155 149 201
|
syl2anc |
⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ ω ) ∧ ( suc 𝑦 ∈ dom 𝐺 ∧ ( 𝐻 ‘ suc 𝑦 ) ∈ ( 𝐴 ↑o suc ( 𝐺 ‘ 𝑦 ) ) ) ) → ( ( 𝐴 ↑o ( 𝐺 ‘ suc 𝑦 ) ) ·o ( 𝐹 ‘ ( 𝐺 ‘ suc 𝑦 ) ) ) ∈ On ) |
203 |
|
oaord |
⊢ ( ( ( 𝐻 ‘ suc 𝑦 ) ∈ On ∧ ( 𝐴 ↑o ( 𝐺 ‘ suc 𝑦 ) ) ∈ On ∧ ( ( 𝐴 ↑o ( 𝐺 ‘ suc 𝑦 ) ) ·o ( 𝐹 ‘ ( 𝐺 ‘ suc 𝑦 ) ) ) ∈ On ) → ( ( 𝐻 ‘ suc 𝑦 ) ∈ ( 𝐴 ↑o ( 𝐺 ‘ suc 𝑦 ) ) ↔ ( ( ( 𝐴 ↑o ( 𝐺 ‘ suc 𝑦 ) ) ·o ( 𝐹 ‘ ( 𝐺 ‘ suc 𝑦 ) ) ) +o ( 𝐻 ‘ suc 𝑦 ) ) ∈ ( ( ( 𝐴 ↑o ( 𝐺 ‘ suc 𝑦 ) ) ·o ( 𝐹 ‘ ( 𝐺 ‘ suc 𝑦 ) ) ) +o ( 𝐴 ↑o ( 𝐺 ‘ suc 𝑦 ) ) ) ) ) |
204 |
200 155 202 203
|
syl3anc |
⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ ω ) ∧ ( suc 𝑦 ∈ dom 𝐺 ∧ ( 𝐻 ‘ suc 𝑦 ) ∈ ( 𝐴 ↑o suc ( 𝐺 ‘ 𝑦 ) ) ) ) → ( ( 𝐻 ‘ suc 𝑦 ) ∈ ( 𝐴 ↑o ( 𝐺 ‘ suc 𝑦 ) ) ↔ ( ( ( 𝐴 ↑o ( 𝐺 ‘ suc 𝑦 ) ) ·o ( 𝐹 ‘ ( 𝐺 ‘ suc 𝑦 ) ) ) +o ( 𝐻 ‘ suc 𝑦 ) ) ∈ ( ( ( 𝐴 ↑o ( 𝐺 ‘ suc 𝑦 ) ) ·o ( 𝐹 ‘ ( 𝐺 ‘ suc 𝑦 ) ) ) +o ( 𝐴 ↑o ( 𝐺 ‘ suc 𝑦 ) ) ) ) ) |
205 |
195 204
|
mpbid |
⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ ω ) ∧ ( suc 𝑦 ∈ dom 𝐺 ∧ ( 𝐻 ‘ suc 𝑦 ) ∈ ( 𝐴 ↑o suc ( 𝐺 ‘ 𝑦 ) ) ) ) → ( ( ( 𝐴 ↑o ( 𝐺 ‘ suc 𝑦 ) ) ·o ( 𝐹 ‘ ( 𝐺 ‘ suc 𝑦 ) ) ) +o ( 𝐻 ‘ suc 𝑦 ) ) ∈ ( ( ( 𝐴 ↑o ( 𝐺 ‘ suc 𝑦 ) ) ·o ( 𝐹 ‘ ( 𝐺 ‘ suc 𝑦 ) ) ) +o ( 𝐴 ↑o ( 𝐺 ‘ suc 𝑦 ) ) ) ) |
206 |
1 2 3 4 5 6
|
cantnfsuc |
⊢ ( ( 𝜑 ∧ suc 𝑦 ∈ ω ) → ( 𝐻 ‘ suc suc 𝑦 ) = ( ( ( 𝐴 ↑o ( 𝐺 ‘ suc 𝑦 ) ) ·o ( 𝐹 ‘ ( 𝐺 ‘ suc 𝑦 ) ) ) +o ( 𝐻 ‘ suc 𝑦 ) ) ) |
207 |
196 206
|
sylan2 |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ ω ) → ( 𝐻 ‘ suc suc 𝑦 ) = ( ( ( 𝐴 ↑o ( 𝐺 ‘ suc 𝑦 ) ) ·o ( 𝐹 ‘ ( 𝐺 ‘ suc 𝑦 ) ) ) +o ( 𝐻 ‘ suc 𝑦 ) ) ) |
208 |
207
|
adantr |
⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ ω ) ∧ ( suc 𝑦 ∈ dom 𝐺 ∧ ( 𝐻 ‘ suc 𝑦 ) ∈ ( 𝐴 ↑o suc ( 𝐺 ‘ 𝑦 ) ) ) ) → ( 𝐻 ‘ suc suc 𝑦 ) = ( ( ( 𝐴 ↑o ( 𝐺 ‘ suc 𝑦 ) ) ·o ( 𝐹 ‘ ( 𝐺 ‘ suc 𝑦 ) ) ) +o ( 𝐻 ‘ suc 𝑦 ) ) ) |
209 |
|
omsuc |
⊢ ( ( ( 𝐴 ↑o ( 𝐺 ‘ suc 𝑦 ) ) ∈ On ∧ ( 𝐹 ‘ ( 𝐺 ‘ suc 𝑦 ) ) ∈ On ) → ( ( 𝐴 ↑o ( 𝐺 ‘ suc 𝑦 ) ) ·o suc ( 𝐹 ‘ ( 𝐺 ‘ suc 𝑦 ) ) ) = ( ( ( 𝐴 ↑o ( 𝐺 ‘ suc 𝑦 ) ) ·o ( 𝐹 ‘ ( 𝐺 ‘ suc 𝑦 ) ) ) +o ( 𝐴 ↑o ( 𝐺 ‘ suc 𝑦 ) ) ) ) |
210 |
155 149 209
|
syl2anc |
⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ ω ) ∧ ( suc 𝑦 ∈ dom 𝐺 ∧ ( 𝐻 ‘ suc 𝑦 ) ∈ ( 𝐴 ↑o suc ( 𝐺 ‘ 𝑦 ) ) ) ) → ( ( 𝐴 ↑o ( 𝐺 ‘ suc 𝑦 ) ) ·o suc ( 𝐹 ‘ ( 𝐺 ‘ suc 𝑦 ) ) ) = ( ( ( 𝐴 ↑o ( 𝐺 ‘ suc 𝑦 ) ) ·o ( 𝐹 ‘ ( 𝐺 ‘ suc 𝑦 ) ) ) +o ( 𝐴 ↑o ( 𝐺 ‘ suc 𝑦 ) ) ) ) |
211 |
205 208 210
|
3eltr4d |
⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ ω ) ∧ ( suc 𝑦 ∈ dom 𝐺 ∧ ( 𝐻 ‘ suc 𝑦 ) ∈ ( 𝐴 ↑o suc ( 𝐺 ‘ 𝑦 ) ) ) ) → ( 𝐻 ‘ suc suc 𝑦 ) ∈ ( ( 𝐴 ↑o ( 𝐺 ‘ suc 𝑦 ) ) ·o suc ( 𝐹 ‘ ( 𝐺 ‘ suc 𝑦 ) ) ) ) |
212 |
161 211
|
sseldd |
⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ ω ) ∧ ( suc 𝑦 ∈ dom 𝐺 ∧ ( 𝐻 ‘ suc 𝑦 ) ∈ ( 𝐴 ↑o suc ( 𝐺 ‘ 𝑦 ) ) ) ) → ( 𝐻 ‘ suc suc 𝑦 ) ∈ ( 𝐴 ↑o suc ( 𝐺 ‘ suc 𝑦 ) ) ) |
213 |
212
|
exp32 |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ ω ) → ( suc 𝑦 ∈ dom 𝐺 → ( ( 𝐻 ‘ suc 𝑦 ) ∈ ( 𝐴 ↑o suc ( 𝐺 ‘ 𝑦 ) ) → ( 𝐻 ‘ suc suc 𝑦 ) ∈ ( 𝐴 ↑o suc ( 𝐺 ‘ suc 𝑦 ) ) ) ) ) |
214 |
213
|
a2d |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ ω ) → ( ( suc 𝑦 ∈ dom 𝐺 → ( 𝐻 ‘ suc 𝑦 ) ∈ ( 𝐴 ↑o suc ( 𝐺 ‘ 𝑦 ) ) ) → ( suc 𝑦 ∈ dom 𝐺 → ( 𝐻 ‘ suc suc 𝑦 ) ∈ ( 𝐴 ↑o suc ( 𝐺 ‘ suc 𝑦 ) ) ) ) ) |
215 |
136 214
|
syl5 |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ ω ) → ( ( 𝑦 ∈ dom 𝐺 → ( 𝐻 ‘ suc 𝑦 ) ∈ ( 𝐴 ↑o suc ( 𝐺 ‘ 𝑦 ) ) ) → ( suc 𝑦 ∈ dom 𝐺 → ( 𝐻 ‘ suc suc 𝑦 ) ∈ ( 𝐴 ↑o suc ( 𝐺 ‘ suc 𝑦 ) ) ) ) ) |
216 |
215
|
expcom |
⊢ ( 𝑦 ∈ ω → ( 𝜑 → ( ( 𝑦 ∈ dom 𝐺 → ( 𝐻 ‘ suc 𝑦 ) ∈ ( 𝐴 ↑o suc ( 𝐺 ‘ 𝑦 ) ) ) → ( suc 𝑦 ∈ dom 𝐺 → ( 𝐻 ‘ suc suc 𝑦 ) ∈ ( 𝐴 ↑o suc ( 𝐺 ‘ suc 𝑦 ) ) ) ) ) ) |
217 |
80 89 98 131 216
|
finds2 |
⊢ ( 𝑥 ∈ ω → ( 𝜑 → ( 𝑥 ∈ dom 𝐺 → ( 𝐻 ‘ suc 𝑥 ) ∈ ( 𝐴 ↑o suc ( 𝐺 ‘ 𝑥 ) ) ) ) ) |
218 |
70 71 58 217
|
syl3c |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ ω ∧ 𝐾 = suc 𝑥 ) ) → ( 𝐻 ‘ suc 𝑥 ) ∈ ( 𝐴 ↑o suc ( 𝐺 ‘ 𝑥 ) ) ) |
219 |
69 218
|
eqeltrd |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ ω ∧ 𝐾 = suc 𝑥 ) ) → ( 𝐻 ‘ 𝐾 ) ∈ ( 𝐴 ↑o suc ( 𝐺 ‘ 𝑥 ) ) ) |
220 |
68 219
|
sseldd |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ ω ∧ 𝐾 = suc 𝑥 ) ) → ( 𝐻 ‘ 𝐾 ) ∈ ( 𝐴 ↑o 𝐶 ) ) |
221 |
220
|
rexlimdvaa |
⊢ ( 𝜑 → ( ∃ 𝑥 ∈ ω 𝐾 = suc 𝑥 → ( 𝐻 ‘ 𝐾 ) ∈ ( 𝐴 ↑o 𝐶 ) ) ) |
222 |
|
peano2 |
⊢ ( dom 𝐺 ∈ ω → suc dom 𝐺 ∈ ω ) |
223 |
170 222
|
simpl2im |
⊢ ( 𝜑 → suc dom 𝐺 ∈ ω ) |
224 |
|
elnn |
⊢ ( ( 𝐾 ∈ suc dom 𝐺 ∧ suc dom 𝐺 ∈ ω ) → 𝐾 ∈ ω ) |
225 |
8 223 224
|
syl2anc |
⊢ ( 𝜑 → 𝐾 ∈ ω ) |
226 |
|
nn0suc |
⊢ ( 𝐾 ∈ ω → ( 𝐾 = ∅ ∨ ∃ 𝑥 ∈ ω 𝐾 = suc 𝑥 ) ) |
227 |
225 226
|
syl |
⊢ ( 𝜑 → ( 𝐾 = ∅ ∨ ∃ 𝑥 ∈ ω 𝐾 = suc 𝑥 ) ) |
228 |
19 221 227
|
mpjaod |
⊢ ( 𝜑 → ( 𝐻 ‘ 𝐾 ) ∈ ( 𝐴 ↑o 𝐶 ) ) |