| Step |
Hyp |
Ref |
Expression |
| 1 |
|
cantnfs.s |
⊢ 𝑆 = dom ( 𝐴 CNF 𝐵 ) |
| 2 |
|
cantnfs.a |
⊢ ( 𝜑 → 𝐴 ∈ On ) |
| 3 |
|
cantnfs.b |
⊢ ( 𝜑 → 𝐵 ∈ On ) |
| 4 |
|
cantnfcl.g |
⊢ 𝐺 = OrdIso ( E , ( 𝐹 supp ∅ ) ) |
| 5 |
|
cantnfcl.f |
⊢ ( 𝜑 → 𝐹 ∈ 𝑆 ) |
| 6 |
|
cantnfval.h |
⊢ 𝐻 = seqω ( ( 𝑘 ∈ V , 𝑧 ∈ V ↦ ( ( ( 𝐴 ↑o ( 𝐺 ‘ 𝑘 ) ) ·o ( 𝐹 ‘ ( 𝐺 ‘ 𝑘 ) ) ) +o 𝑧 ) ) , ∅ ) |
| 7 |
|
cantnflt.a |
⊢ ( 𝜑 → ∅ ∈ 𝐴 ) |
| 8 |
|
cantnflt.k |
⊢ ( 𝜑 → 𝐾 ∈ suc dom 𝐺 ) |
| 9 |
|
cantnflt.c |
⊢ ( 𝜑 → 𝐶 ∈ On ) |
| 10 |
|
cantnflt.s |
⊢ ( 𝜑 → ( 𝐺 “ 𝐾 ) ⊆ 𝐶 ) |
| 11 |
|
oen0 |
⊢ ( ( ( 𝐴 ∈ On ∧ 𝐶 ∈ On ) ∧ ∅ ∈ 𝐴 ) → ∅ ∈ ( 𝐴 ↑o 𝐶 ) ) |
| 12 |
2 9 7 11
|
syl21anc |
⊢ ( 𝜑 → ∅ ∈ ( 𝐴 ↑o 𝐶 ) ) |
| 13 |
|
fveq2 |
⊢ ( 𝐾 = ∅ → ( 𝐻 ‘ 𝐾 ) = ( 𝐻 ‘ ∅ ) ) |
| 14 |
|
0ex |
⊢ ∅ ∈ V |
| 15 |
6
|
seqom0g |
⊢ ( ∅ ∈ V → ( 𝐻 ‘ ∅ ) = ∅ ) |
| 16 |
14 15
|
ax-mp |
⊢ ( 𝐻 ‘ ∅ ) = ∅ |
| 17 |
13 16
|
eqtrdi |
⊢ ( 𝐾 = ∅ → ( 𝐻 ‘ 𝐾 ) = ∅ ) |
| 18 |
17
|
eleq1d |
⊢ ( 𝐾 = ∅ → ( ( 𝐻 ‘ 𝐾 ) ∈ ( 𝐴 ↑o 𝐶 ) ↔ ∅ ∈ ( 𝐴 ↑o 𝐶 ) ) ) |
| 19 |
12 18
|
syl5ibrcom |
⊢ ( 𝜑 → ( 𝐾 = ∅ → ( 𝐻 ‘ 𝐾 ) ∈ ( 𝐴 ↑o 𝐶 ) ) ) |
| 20 |
9
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ ω ∧ 𝐾 = suc 𝑥 ) ) → 𝐶 ∈ On ) |
| 21 |
|
eloni |
⊢ ( 𝐶 ∈ On → Ord 𝐶 ) |
| 22 |
20 21
|
syl |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ ω ∧ 𝐾 = suc 𝑥 ) ) → Ord 𝐶 ) |
| 23 |
10
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ ω ∧ 𝐾 = suc 𝑥 ) ) → ( 𝐺 “ 𝐾 ) ⊆ 𝐶 ) |
| 24 |
4
|
oif |
⊢ 𝐺 : dom 𝐺 ⟶ ( 𝐹 supp ∅ ) |
| 25 |
|
ffn |
⊢ ( 𝐺 : dom 𝐺 ⟶ ( 𝐹 supp ∅ ) → 𝐺 Fn dom 𝐺 ) |
| 26 |
24 25
|
mp1i |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ ω ∧ 𝐾 = suc 𝑥 ) ) → 𝐺 Fn dom 𝐺 ) |
| 27 |
4
|
oicl |
⊢ Ord dom 𝐺 |
| 28 |
|
ordsuc |
⊢ ( Ord dom 𝐺 ↔ Ord suc dom 𝐺 ) |
| 29 |
27 28
|
mpbi |
⊢ Ord suc dom 𝐺 |
| 30 |
|
ordelon |
⊢ ( ( Ord suc dom 𝐺 ∧ 𝐾 ∈ suc dom 𝐺 ) → 𝐾 ∈ On ) |
| 31 |
29 8 30
|
sylancr |
⊢ ( 𝜑 → 𝐾 ∈ On ) |
| 32 |
|
ordsssuc |
⊢ ( ( 𝐾 ∈ On ∧ Ord dom 𝐺 ) → ( 𝐾 ⊆ dom 𝐺 ↔ 𝐾 ∈ suc dom 𝐺 ) ) |
| 33 |
31 27 32
|
sylancl |
⊢ ( 𝜑 → ( 𝐾 ⊆ dom 𝐺 ↔ 𝐾 ∈ suc dom 𝐺 ) ) |
| 34 |
8 33
|
mpbird |
⊢ ( 𝜑 → 𝐾 ⊆ dom 𝐺 ) |
| 35 |
34
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ ω ∧ 𝐾 = suc 𝑥 ) ) → 𝐾 ⊆ dom 𝐺 ) |
| 36 |
|
vex |
⊢ 𝑥 ∈ V |
| 37 |
36
|
sucid |
⊢ 𝑥 ∈ suc 𝑥 |
| 38 |
|
simprr |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ ω ∧ 𝐾 = suc 𝑥 ) ) → 𝐾 = suc 𝑥 ) |
| 39 |
37 38
|
eleqtrrid |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ ω ∧ 𝐾 = suc 𝑥 ) ) → 𝑥 ∈ 𝐾 ) |
| 40 |
|
fnfvima |
⊢ ( ( 𝐺 Fn dom 𝐺 ∧ 𝐾 ⊆ dom 𝐺 ∧ 𝑥 ∈ 𝐾 ) → ( 𝐺 ‘ 𝑥 ) ∈ ( 𝐺 “ 𝐾 ) ) |
| 41 |
26 35 39 40
|
syl3anc |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ ω ∧ 𝐾 = suc 𝑥 ) ) → ( 𝐺 ‘ 𝑥 ) ∈ ( 𝐺 “ 𝐾 ) ) |
| 42 |
23 41
|
sseldd |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ ω ∧ 𝐾 = suc 𝑥 ) ) → ( 𝐺 ‘ 𝑥 ) ∈ 𝐶 ) |
| 43 |
|
ordsucss |
⊢ ( Ord 𝐶 → ( ( 𝐺 ‘ 𝑥 ) ∈ 𝐶 → suc ( 𝐺 ‘ 𝑥 ) ⊆ 𝐶 ) ) |
| 44 |
22 42 43
|
sylc |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ ω ∧ 𝐾 = suc 𝑥 ) ) → suc ( 𝐺 ‘ 𝑥 ) ⊆ 𝐶 ) |
| 45 |
|
suppssdm |
⊢ ( 𝐹 supp ∅ ) ⊆ dom 𝐹 |
| 46 |
1 2 3
|
cantnfs |
⊢ ( 𝜑 → ( 𝐹 ∈ 𝑆 ↔ ( 𝐹 : 𝐵 ⟶ 𝐴 ∧ 𝐹 finSupp ∅ ) ) ) |
| 47 |
5 46
|
mpbid |
⊢ ( 𝜑 → ( 𝐹 : 𝐵 ⟶ 𝐴 ∧ 𝐹 finSupp ∅ ) ) |
| 48 |
47
|
simpld |
⊢ ( 𝜑 → 𝐹 : 𝐵 ⟶ 𝐴 ) |
| 49 |
45 48
|
fssdm |
⊢ ( 𝜑 → ( 𝐹 supp ∅ ) ⊆ 𝐵 ) |
| 50 |
|
onss |
⊢ ( 𝐵 ∈ On → 𝐵 ⊆ On ) |
| 51 |
3 50
|
syl |
⊢ ( 𝜑 → 𝐵 ⊆ On ) |
| 52 |
49 51
|
sstrd |
⊢ ( 𝜑 → ( 𝐹 supp ∅ ) ⊆ On ) |
| 53 |
52
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ ω ∧ 𝐾 = suc 𝑥 ) ) → ( 𝐹 supp ∅ ) ⊆ On ) |
| 54 |
8
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ ω ∧ 𝐾 = suc 𝑥 ) ) → 𝐾 ∈ suc dom 𝐺 ) |
| 55 |
38 54
|
eqeltrrd |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ ω ∧ 𝐾 = suc 𝑥 ) ) → suc 𝑥 ∈ suc dom 𝐺 ) |
| 56 |
|
ordsucelsuc |
⊢ ( Ord dom 𝐺 → ( 𝑥 ∈ dom 𝐺 ↔ suc 𝑥 ∈ suc dom 𝐺 ) ) |
| 57 |
27 56
|
ax-mp |
⊢ ( 𝑥 ∈ dom 𝐺 ↔ suc 𝑥 ∈ suc dom 𝐺 ) |
| 58 |
55 57
|
sylibr |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ ω ∧ 𝐾 = suc 𝑥 ) ) → 𝑥 ∈ dom 𝐺 ) |
| 59 |
24
|
ffvelcdmi |
⊢ ( 𝑥 ∈ dom 𝐺 → ( 𝐺 ‘ 𝑥 ) ∈ ( 𝐹 supp ∅ ) ) |
| 60 |
58 59
|
syl |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ ω ∧ 𝐾 = suc 𝑥 ) ) → ( 𝐺 ‘ 𝑥 ) ∈ ( 𝐹 supp ∅ ) ) |
| 61 |
53 60
|
sseldd |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ ω ∧ 𝐾 = suc 𝑥 ) ) → ( 𝐺 ‘ 𝑥 ) ∈ On ) |
| 62 |
|
onsuc |
⊢ ( ( 𝐺 ‘ 𝑥 ) ∈ On → suc ( 𝐺 ‘ 𝑥 ) ∈ On ) |
| 63 |
61 62
|
syl |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ ω ∧ 𝐾 = suc 𝑥 ) ) → suc ( 𝐺 ‘ 𝑥 ) ∈ On ) |
| 64 |
2
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ ω ∧ 𝐾 = suc 𝑥 ) ) → 𝐴 ∈ On ) |
| 65 |
7
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ ω ∧ 𝐾 = suc 𝑥 ) ) → ∅ ∈ 𝐴 ) |
| 66 |
|
oewordi |
⊢ ( ( ( suc ( 𝐺 ‘ 𝑥 ) ∈ On ∧ 𝐶 ∈ On ∧ 𝐴 ∈ On ) ∧ ∅ ∈ 𝐴 ) → ( suc ( 𝐺 ‘ 𝑥 ) ⊆ 𝐶 → ( 𝐴 ↑o suc ( 𝐺 ‘ 𝑥 ) ) ⊆ ( 𝐴 ↑o 𝐶 ) ) ) |
| 67 |
63 20 64 65 66
|
syl31anc |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ ω ∧ 𝐾 = suc 𝑥 ) ) → ( suc ( 𝐺 ‘ 𝑥 ) ⊆ 𝐶 → ( 𝐴 ↑o suc ( 𝐺 ‘ 𝑥 ) ) ⊆ ( 𝐴 ↑o 𝐶 ) ) ) |
| 68 |
44 67
|
mpd |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ ω ∧ 𝐾 = suc 𝑥 ) ) → ( 𝐴 ↑o suc ( 𝐺 ‘ 𝑥 ) ) ⊆ ( 𝐴 ↑o 𝐶 ) ) |
| 69 |
38
|
fveq2d |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ ω ∧ 𝐾 = suc 𝑥 ) ) → ( 𝐻 ‘ 𝐾 ) = ( 𝐻 ‘ suc 𝑥 ) ) |
| 70 |
|
simprl |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ ω ∧ 𝐾 = suc 𝑥 ) ) → 𝑥 ∈ ω ) |
| 71 |
|
simpl |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ ω ∧ 𝐾 = suc 𝑥 ) ) → 𝜑 ) |
| 72 |
|
eleq1 |
⊢ ( 𝑥 = ∅ → ( 𝑥 ∈ dom 𝐺 ↔ ∅ ∈ dom 𝐺 ) ) |
| 73 |
|
suceq |
⊢ ( 𝑥 = ∅ → suc 𝑥 = suc ∅ ) |
| 74 |
73
|
fveq2d |
⊢ ( 𝑥 = ∅ → ( 𝐻 ‘ suc 𝑥 ) = ( 𝐻 ‘ suc ∅ ) ) |
| 75 |
|
fveq2 |
⊢ ( 𝑥 = ∅ → ( 𝐺 ‘ 𝑥 ) = ( 𝐺 ‘ ∅ ) ) |
| 76 |
|
suceq |
⊢ ( ( 𝐺 ‘ 𝑥 ) = ( 𝐺 ‘ ∅ ) → suc ( 𝐺 ‘ 𝑥 ) = suc ( 𝐺 ‘ ∅ ) ) |
| 77 |
75 76
|
syl |
⊢ ( 𝑥 = ∅ → suc ( 𝐺 ‘ 𝑥 ) = suc ( 𝐺 ‘ ∅ ) ) |
| 78 |
77
|
oveq2d |
⊢ ( 𝑥 = ∅ → ( 𝐴 ↑o suc ( 𝐺 ‘ 𝑥 ) ) = ( 𝐴 ↑o suc ( 𝐺 ‘ ∅ ) ) ) |
| 79 |
74 78
|
eleq12d |
⊢ ( 𝑥 = ∅ → ( ( 𝐻 ‘ suc 𝑥 ) ∈ ( 𝐴 ↑o suc ( 𝐺 ‘ 𝑥 ) ) ↔ ( 𝐻 ‘ suc ∅ ) ∈ ( 𝐴 ↑o suc ( 𝐺 ‘ ∅ ) ) ) ) |
| 80 |
72 79
|
imbi12d |
⊢ ( 𝑥 = ∅ → ( ( 𝑥 ∈ dom 𝐺 → ( 𝐻 ‘ suc 𝑥 ) ∈ ( 𝐴 ↑o suc ( 𝐺 ‘ 𝑥 ) ) ) ↔ ( ∅ ∈ dom 𝐺 → ( 𝐻 ‘ suc ∅ ) ∈ ( 𝐴 ↑o suc ( 𝐺 ‘ ∅ ) ) ) ) ) |
| 81 |
|
eleq1 |
⊢ ( 𝑥 = 𝑦 → ( 𝑥 ∈ dom 𝐺 ↔ 𝑦 ∈ dom 𝐺 ) ) |
| 82 |
|
suceq |
⊢ ( 𝑥 = 𝑦 → suc 𝑥 = suc 𝑦 ) |
| 83 |
82
|
fveq2d |
⊢ ( 𝑥 = 𝑦 → ( 𝐻 ‘ suc 𝑥 ) = ( 𝐻 ‘ suc 𝑦 ) ) |
| 84 |
|
fveq2 |
⊢ ( 𝑥 = 𝑦 → ( 𝐺 ‘ 𝑥 ) = ( 𝐺 ‘ 𝑦 ) ) |
| 85 |
|
suceq |
⊢ ( ( 𝐺 ‘ 𝑥 ) = ( 𝐺 ‘ 𝑦 ) → suc ( 𝐺 ‘ 𝑥 ) = suc ( 𝐺 ‘ 𝑦 ) ) |
| 86 |
84 85
|
syl |
⊢ ( 𝑥 = 𝑦 → suc ( 𝐺 ‘ 𝑥 ) = suc ( 𝐺 ‘ 𝑦 ) ) |
| 87 |
86
|
oveq2d |
⊢ ( 𝑥 = 𝑦 → ( 𝐴 ↑o suc ( 𝐺 ‘ 𝑥 ) ) = ( 𝐴 ↑o suc ( 𝐺 ‘ 𝑦 ) ) ) |
| 88 |
83 87
|
eleq12d |
⊢ ( 𝑥 = 𝑦 → ( ( 𝐻 ‘ suc 𝑥 ) ∈ ( 𝐴 ↑o suc ( 𝐺 ‘ 𝑥 ) ) ↔ ( 𝐻 ‘ suc 𝑦 ) ∈ ( 𝐴 ↑o suc ( 𝐺 ‘ 𝑦 ) ) ) ) |
| 89 |
81 88
|
imbi12d |
⊢ ( 𝑥 = 𝑦 → ( ( 𝑥 ∈ dom 𝐺 → ( 𝐻 ‘ suc 𝑥 ) ∈ ( 𝐴 ↑o suc ( 𝐺 ‘ 𝑥 ) ) ) ↔ ( 𝑦 ∈ dom 𝐺 → ( 𝐻 ‘ suc 𝑦 ) ∈ ( 𝐴 ↑o suc ( 𝐺 ‘ 𝑦 ) ) ) ) ) |
| 90 |
|
eleq1 |
⊢ ( 𝑥 = suc 𝑦 → ( 𝑥 ∈ dom 𝐺 ↔ suc 𝑦 ∈ dom 𝐺 ) ) |
| 91 |
|
suceq |
⊢ ( 𝑥 = suc 𝑦 → suc 𝑥 = suc suc 𝑦 ) |
| 92 |
91
|
fveq2d |
⊢ ( 𝑥 = suc 𝑦 → ( 𝐻 ‘ suc 𝑥 ) = ( 𝐻 ‘ suc suc 𝑦 ) ) |
| 93 |
|
fveq2 |
⊢ ( 𝑥 = suc 𝑦 → ( 𝐺 ‘ 𝑥 ) = ( 𝐺 ‘ suc 𝑦 ) ) |
| 94 |
|
suceq |
⊢ ( ( 𝐺 ‘ 𝑥 ) = ( 𝐺 ‘ suc 𝑦 ) → suc ( 𝐺 ‘ 𝑥 ) = suc ( 𝐺 ‘ suc 𝑦 ) ) |
| 95 |
93 94
|
syl |
⊢ ( 𝑥 = suc 𝑦 → suc ( 𝐺 ‘ 𝑥 ) = suc ( 𝐺 ‘ suc 𝑦 ) ) |
| 96 |
95
|
oveq2d |
⊢ ( 𝑥 = suc 𝑦 → ( 𝐴 ↑o suc ( 𝐺 ‘ 𝑥 ) ) = ( 𝐴 ↑o suc ( 𝐺 ‘ suc 𝑦 ) ) ) |
| 97 |
92 96
|
eleq12d |
⊢ ( 𝑥 = suc 𝑦 → ( ( 𝐻 ‘ suc 𝑥 ) ∈ ( 𝐴 ↑o suc ( 𝐺 ‘ 𝑥 ) ) ↔ ( 𝐻 ‘ suc suc 𝑦 ) ∈ ( 𝐴 ↑o suc ( 𝐺 ‘ suc 𝑦 ) ) ) ) |
| 98 |
90 97
|
imbi12d |
⊢ ( 𝑥 = suc 𝑦 → ( ( 𝑥 ∈ dom 𝐺 → ( 𝐻 ‘ suc 𝑥 ) ∈ ( 𝐴 ↑o suc ( 𝐺 ‘ 𝑥 ) ) ) ↔ ( suc 𝑦 ∈ dom 𝐺 → ( 𝐻 ‘ suc suc 𝑦 ) ∈ ( 𝐴 ↑o suc ( 𝐺 ‘ suc 𝑦 ) ) ) ) ) |
| 99 |
48
|
adantr |
⊢ ( ( 𝜑 ∧ ∅ ∈ dom 𝐺 ) → 𝐹 : 𝐵 ⟶ 𝐴 ) |
| 100 |
24
|
ffvelcdmi |
⊢ ( ∅ ∈ dom 𝐺 → ( 𝐺 ‘ ∅ ) ∈ ( 𝐹 supp ∅ ) ) |
| 101 |
49
|
sselda |
⊢ ( ( 𝜑 ∧ ( 𝐺 ‘ ∅ ) ∈ ( 𝐹 supp ∅ ) ) → ( 𝐺 ‘ ∅ ) ∈ 𝐵 ) |
| 102 |
100 101
|
sylan2 |
⊢ ( ( 𝜑 ∧ ∅ ∈ dom 𝐺 ) → ( 𝐺 ‘ ∅ ) ∈ 𝐵 ) |
| 103 |
99 102
|
ffvelcdmd |
⊢ ( ( 𝜑 ∧ ∅ ∈ dom 𝐺 ) → ( 𝐹 ‘ ( 𝐺 ‘ ∅ ) ) ∈ 𝐴 ) |
| 104 |
2
|
adantr |
⊢ ( ( 𝜑 ∧ ∅ ∈ dom 𝐺 ) → 𝐴 ∈ On ) |
| 105 |
|
onelon |
⊢ ( ( 𝐴 ∈ On ∧ ( 𝐹 ‘ ( 𝐺 ‘ ∅ ) ) ∈ 𝐴 ) → ( 𝐹 ‘ ( 𝐺 ‘ ∅ ) ) ∈ On ) |
| 106 |
104 103 105
|
syl2anc |
⊢ ( ( 𝜑 ∧ ∅ ∈ dom 𝐺 ) → ( 𝐹 ‘ ( 𝐺 ‘ ∅ ) ) ∈ On ) |
| 107 |
52
|
sselda |
⊢ ( ( 𝜑 ∧ ( 𝐺 ‘ ∅ ) ∈ ( 𝐹 supp ∅ ) ) → ( 𝐺 ‘ ∅ ) ∈ On ) |
| 108 |
100 107
|
sylan2 |
⊢ ( ( 𝜑 ∧ ∅ ∈ dom 𝐺 ) → ( 𝐺 ‘ ∅ ) ∈ On ) |
| 109 |
|
oecl |
⊢ ( ( 𝐴 ∈ On ∧ ( 𝐺 ‘ ∅ ) ∈ On ) → ( 𝐴 ↑o ( 𝐺 ‘ ∅ ) ) ∈ On ) |
| 110 |
104 108 109
|
syl2anc |
⊢ ( ( 𝜑 ∧ ∅ ∈ dom 𝐺 ) → ( 𝐴 ↑o ( 𝐺 ‘ ∅ ) ) ∈ On ) |
| 111 |
7
|
adantr |
⊢ ( ( 𝜑 ∧ ∅ ∈ dom 𝐺 ) → ∅ ∈ 𝐴 ) |
| 112 |
|
oen0 |
⊢ ( ( ( 𝐴 ∈ On ∧ ( 𝐺 ‘ ∅ ) ∈ On ) ∧ ∅ ∈ 𝐴 ) → ∅ ∈ ( 𝐴 ↑o ( 𝐺 ‘ ∅ ) ) ) |
| 113 |
104 108 111 112
|
syl21anc |
⊢ ( ( 𝜑 ∧ ∅ ∈ dom 𝐺 ) → ∅ ∈ ( 𝐴 ↑o ( 𝐺 ‘ ∅ ) ) ) |
| 114 |
|
omord2 |
⊢ ( ( ( ( 𝐹 ‘ ( 𝐺 ‘ ∅ ) ) ∈ On ∧ 𝐴 ∈ On ∧ ( 𝐴 ↑o ( 𝐺 ‘ ∅ ) ) ∈ On ) ∧ ∅ ∈ ( 𝐴 ↑o ( 𝐺 ‘ ∅ ) ) ) → ( ( 𝐹 ‘ ( 𝐺 ‘ ∅ ) ) ∈ 𝐴 ↔ ( ( 𝐴 ↑o ( 𝐺 ‘ ∅ ) ) ·o ( 𝐹 ‘ ( 𝐺 ‘ ∅ ) ) ) ∈ ( ( 𝐴 ↑o ( 𝐺 ‘ ∅ ) ) ·o 𝐴 ) ) ) |
| 115 |
106 104 110 113 114
|
syl31anc |
⊢ ( ( 𝜑 ∧ ∅ ∈ dom 𝐺 ) → ( ( 𝐹 ‘ ( 𝐺 ‘ ∅ ) ) ∈ 𝐴 ↔ ( ( 𝐴 ↑o ( 𝐺 ‘ ∅ ) ) ·o ( 𝐹 ‘ ( 𝐺 ‘ ∅ ) ) ) ∈ ( ( 𝐴 ↑o ( 𝐺 ‘ ∅ ) ) ·o 𝐴 ) ) ) |
| 116 |
103 115
|
mpbid |
⊢ ( ( 𝜑 ∧ ∅ ∈ dom 𝐺 ) → ( ( 𝐴 ↑o ( 𝐺 ‘ ∅ ) ) ·o ( 𝐹 ‘ ( 𝐺 ‘ ∅ ) ) ) ∈ ( ( 𝐴 ↑o ( 𝐺 ‘ ∅ ) ) ·o 𝐴 ) ) |
| 117 |
|
peano1 |
⊢ ∅ ∈ ω |
| 118 |
117
|
a1i |
⊢ ( ∅ ∈ dom 𝐺 → ∅ ∈ ω ) |
| 119 |
1 2 3 4 5 6
|
cantnfsuc |
⊢ ( ( 𝜑 ∧ ∅ ∈ ω ) → ( 𝐻 ‘ suc ∅ ) = ( ( ( 𝐴 ↑o ( 𝐺 ‘ ∅ ) ) ·o ( 𝐹 ‘ ( 𝐺 ‘ ∅ ) ) ) +o ( 𝐻 ‘ ∅ ) ) ) |
| 120 |
118 119
|
sylan2 |
⊢ ( ( 𝜑 ∧ ∅ ∈ dom 𝐺 ) → ( 𝐻 ‘ suc ∅ ) = ( ( ( 𝐴 ↑o ( 𝐺 ‘ ∅ ) ) ·o ( 𝐹 ‘ ( 𝐺 ‘ ∅ ) ) ) +o ( 𝐻 ‘ ∅ ) ) ) |
| 121 |
16
|
oveq2i |
⊢ ( ( ( 𝐴 ↑o ( 𝐺 ‘ ∅ ) ) ·o ( 𝐹 ‘ ( 𝐺 ‘ ∅ ) ) ) +o ( 𝐻 ‘ ∅ ) ) = ( ( ( 𝐴 ↑o ( 𝐺 ‘ ∅ ) ) ·o ( 𝐹 ‘ ( 𝐺 ‘ ∅ ) ) ) +o ∅ ) |
| 122 |
|
omcl |
⊢ ( ( ( 𝐴 ↑o ( 𝐺 ‘ ∅ ) ) ∈ On ∧ ( 𝐹 ‘ ( 𝐺 ‘ ∅ ) ) ∈ On ) → ( ( 𝐴 ↑o ( 𝐺 ‘ ∅ ) ) ·o ( 𝐹 ‘ ( 𝐺 ‘ ∅ ) ) ) ∈ On ) |
| 123 |
110 106 122
|
syl2anc |
⊢ ( ( 𝜑 ∧ ∅ ∈ dom 𝐺 ) → ( ( 𝐴 ↑o ( 𝐺 ‘ ∅ ) ) ·o ( 𝐹 ‘ ( 𝐺 ‘ ∅ ) ) ) ∈ On ) |
| 124 |
|
oa0 |
⊢ ( ( ( 𝐴 ↑o ( 𝐺 ‘ ∅ ) ) ·o ( 𝐹 ‘ ( 𝐺 ‘ ∅ ) ) ) ∈ On → ( ( ( 𝐴 ↑o ( 𝐺 ‘ ∅ ) ) ·o ( 𝐹 ‘ ( 𝐺 ‘ ∅ ) ) ) +o ∅ ) = ( ( 𝐴 ↑o ( 𝐺 ‘ ∅ ) ) ·o ( 𝐹 ‘ ( 𝐺 ‘ ∅ ) ) ) ) |
| 125 |
123 124
|
syl |
⊢ ( ( 𝜑 ∧ ∅ ∈ dom 𝐺 ) → ( ( ( 𝐴 ↑o ( 𝐺 ‘ ∅ ) ) ·o ( 𝐹 ‘ ( 𝐺 ‘ ∅ ) ) ) +o ∅ ) = ( ( 𝐴 ↑o ( 𝐺 ‘ ∅ ) ) ·o ( 𝐹 ‘ ( 𝐺 ‘ ∅ ) ) ) ) |
| 126 |
121 125
|
eqtrid |
⊢ ( ( 𝜑 ∧ ∅ ∈ dom 𝐺 ) → ( ( ( 𝐴 ↑o ( 𝐺 ‘ ∅ ) ) ·o ( 𝐹 ‘ ( 𝐺 ‘ ∅ ) ) ) +o ( 𝐻 ‘ ∅ ) ) = ( ( 𝐴 ↑o ( 𝐺 ‘ ∅ ) ) ·o ( 𝐹 ‘ ( 𝐺 ‘ ∅ ) ) ) ) |
| 127 |
120 126
|
eqtrd |
⊢ ( ( 𝜑 ∧ ∅ ∈ dom 𝐺 ) → ( 𝐻 ‘ suc ∅ ) = ( ( 𝐴 ↑o ( 𝐺 ‘ ∅ ) ) ·o ( 𝐹 ‘ ( 𝐺 ‘ ∅ ) ) ) ) |
| 128 |
|
oesuc |
⊢ ( ( 𝐴 ∈ On ∧ ( 𝐺 ‘ ∅ ) ∈ On ) → ( 𝐴 ↑o suc ( 𝐺 ‘ ∅ ) ) = ( ( 𝐴 ↑o ( 𝐺 ‘ ∅ ) ) ·o 𝐴 ) ) |
| 129 |
104 108 128
|
syl2anc |
⊢ ( ( 𝜑 ∧ ∅ ∈ dom 𝐺 ) → ( 𝐴 ↑o suc ( 𝐺 ‘ ∅ ) ) = ( ( 𝐴 ↑o ( 𝐺 ‘ ∅ ) ) ·o 𝐴 ) ) |
| 130 |
116 127 129
|
3eltr4d |
⊢ ( ( 𝜑 ∧ ∅ ∈ dom 𝐺 ) → ( 𝐻 ‘ suc ∅ ) ∈ ( 𝐴 ↑o suc ( 𝐺 ‘ ∅ ) ) ) |
| 131 |
130
|
ex |
⊢ ( 𝜑 → ( ∅ ∈ dom 𝐺 → ( 𝐻 ‘ suc ∅ ) ∈ ( 𝐴 ↑o suc ( 𝐺 ‘ ∅ ) ) ) ) |
| 132 |
|
ordtr |
⊢ ( Ord dom 𝐺 → Tr dom 𝐺 ) |
| 133 |
27 132
|
ax-mp |
⊢ Tr dom 𝐺 |
| 134 |
|
trsuc |
⊢ ( ( Tr dom 𝐺 ∧ suc 𝑦 ∈ dom 𝐺 ) → 𝑦 ∈ dom 𝐺 ) |
| 135 |
133 134
|
mpan |
⊢ ( suc 𝑦 ∈ dom 𝐺 → 𝑦 ∈ dom 𝐺 ) |
| 136 |
135
|
imim1i |
⊢ ( ( 𝑦 ∈ dom 𝐺 → ( 𝐻 ‘ suc 𝑦 ) ∈ ( 𝐴 ↑o suc ( 𝐺 ‘ 𝑦 ) ) ) → ( suc 𝑦 ∈ dom 𝐺 → ( 𝐻 ‘ suc 𝑦 ) ∈ ( 𝐴 ↑o suc ( 𝐺 ‘ 𝑦 ) ) ) ) |
| 137 |
2
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ ω ) ∧ ( suc 𝑦 ∈ dom 𝐺 ∧ ( 𝐻 ‘ suc 𝑦 ) ∈ ( 𝐴 ↑o suc ( 𝐺 ‘ 𝑦 ) ) ) ) → 𝐴 ∈ On ) |
| 138 |
|
eloni |
⊢ ( 𝐴 ∈ On → Ord 𝐴 ) |
| 139 |
137 138
|
syl |
⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ ω ) ∧ ( suc 𝑦 ∈ dom 𝐺 ∧ ( 𝐻 ‘ suc 𝑦 ) ∈ ( 𝐴 ↑o suc ( 𝐺 ‘ 𝑦 ) ) ) ) → Ord 𝐴 ) |
| 140 |
48
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ ω ) ∧ ( suc 𝑦 ∈ dom 𝐺 ∧ ( 𝐻 ‘ suc 𝑦 ) ∈ ( 𝐴 ↑o suc ( 𝐺 ‘ 𝑦 ) ) ) ) → 𝐹 : 𝐵 ⟶ 𝐴 ) |
| 141 |
49
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ ω ) ∧ ( suc 𝑦 ∈ dom 𝐺 ∧ ( 𝐻 ‘ suc 𝑦 ) ∈ ( 𝐴 ↑o suc ( 𝐺 ‘ 𝑦 ) ) ) ) → ( 𝐹 supp ∅ ) ⊆ 𝐵 ) |
| 142 |
24
|
ffvelcdmi |
⊢ ( suc 𝑦 ∈ dom 𝐺 → ( 𝐺 ‘ suc 𝑦 ) ∈ ( 𝐹 supp ∅ ) ) |
| 143 |
142
|
ad2antrl |
⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ ω ) ∧ ( suc 𝑦 ∈ dom 𝐺 ∧ ( 𝐻 ‘ suc 𝑦 ) ∈ ( 𝐴 ↑o suc ( 𝐺 ‘ 𝑦 ) ) ) ) → ( 𝐺 ‘ suc 𝑦 ) ∈ ( 𝐹 supp ∅ ) ) |
| 144 |
141 143
|
sseldd |
⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ ω ) ∧ ( suc 𝑦 ∈ dom 𝐺 ∧ ( 𝐻 ‘ suc 𝑦 ) ∈ ( 𝐴 ↑o suc ( 𝐺 ‘ 𝑦 ) ) ) ) → ( 𝐺 ‘ suc 𝑦 ) ∈ 𝐵 ) |
| 145 |
140 144
|
ffvelcdmd |
⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ ω ) ∧ ( suc 𝑦 ∈ dom 𝐺 ∧ ( 𝐻 ‘ suc 𝑦 ) ∈ ( 𝐴 ↑o suc ( 𝐺 ‘ 𝑦 ) ) ) ) → ( 𝐹 ‘ ( 𝐺 ‘ suc 𝑦 ) ) ∈ 𝐴 ) |
| 146 |
|
ordsucss |
⊢ ( Ord 𝐴 → ( ( 𝐹 ‘ ( 𝐺 ‘ suc 𝑦 ) ) ∈ 𝐴 → suc ( 𝐹 ‘ ( 𝐺 ‘ suc 𝑦 ) ) ⊆ 𝐴 ) ) |
| 147 |
139 145 146
|
sylc |
⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ ω ) ∧ ( suc 𝑦 ∈ dom 𝐺 ∧ ( 𝐻 ‘ suc 𝑦 ) ∈ ( 𝐴 ↑o suc ( 𝐺 ‘ 𝑦 ) ) ) ) → suc ( 𝐹 ‘ ( 𝐺 ‘ suc 𝑦 ) ) ⊆ 𝐴 ) |
| 148 |
|
onelon |
⊢ ( ( 𝐴 ∈ On ∧ ( 𝐹 ‘ ( 𝐺 ‘ suc 𝑦 ) ) ∈ 𝐴 ) → ( 𝐹 ‘ ( 𝐺 ‘ suc 𝑦 ) ) ∈ On ) |
| 149 |
137 145 148
|
syl2anc |
⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ ω ) ∧ ( suc 𝑦 ∈ dom 𝐺 ∧ ( 𝐻 ‘ suc 𝑦 ) ∈ ( 𝐴 ↑o suc ( 𝐺 ‘ 𝑦 ) ) ) ) → ( 𝐹 ‘ ( 𝐺 ‘ suc 𝑦 ) ) ∈ On ) |
| 150 |
|
onsuc |
⊢ ( ( 𝐹 ‘ ( 𝐺 ‘ suc 𝑦 ) ) ∈ On → suc ( 𝐹 ‘ ( 𝐺 ‘ suc 𝑦 ) ) ∈ On ) |
| 151 |
149 150
|
syl |
⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ ω ) ∧ ( suc 𝑦 ∈ dom 𝐺 ∧ ( 𝐻 ‘ suc 𝑦 ) ∈ ( 𝐴 ↑o suc ( 𝐺 ‘ 𝑦 ) ) ) ) → suc ( 𝐹 ‘ ( 𝐺 ‘ suc 𝑦 ) ) ∈ On ) |
| 152 |
52
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ ω ) ∧ ( suc 𝑦 ∈ dom 𝐺 ∧ ( 𝐻 ‘ suc 𝑦 ) ∈ ( 𝐴 ↑o suc ( 𝐺 ‘ 𝑦 ) ) ) ) → ( 𝐹 supp ∅ ) ⊆ On ) |
| 153 |
152 143
|
sseldd |
⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ ω ) ∧ ( suc 𝑦 ∈ dom 𝐺 ∧ ( 𝐻 ‘ suc 𝑦 ) ∈ ( 𝐴 ↑o suc ( 𝐺 ‘ 𝑦 ) ) ) ) → ( 𝐺 ‘ suc 𝑦 ) ∈ On ) |
| 154 |
|
oecl |
⊢ ( ( 𝐴 ∈ On ∧ ( 𝐺 ‘ suc 𝑦 ) ∈ On ) → ( 𝐴 ↑o ( 𝐺 ‘ suc 𝑦 ) ) ∈ On ) |
| 155 |
137 153 154
|
syl2anc |
⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ ω ) ∧ ( suc 𝑦 ∈ dom 𝐺 ∧ ( 𝐻 ‘ suc 𝑦 ) ∈ ( 𝐴 ↑o suc ( 𝐺 ‘ 𝑦 ) ) ) ) → ( 𝐴 ↑o ( 𝐺 ‘ suc 𝑦 ) ) ∈ On ) |
| 156 |
|
omwordi |
⊢ ( ( suc ( 𝐹 ‘ ( 𝐺 ‘ suc 𝑦 ) ) ∈ On ∧ 𝐴 ∈ On ∧ ( 𝐴 ↑o ( 𝐺 ‘ suc 𝑦 ) ) ∈ On ) → ( suc ( 𝐹 ‘ ( 𝐺 ‘ suc 𝑦 ) ) ⊆ 𝐴 → ( ( 𝐴 ↑o ( 𝐺 ‘ suc 𝑦 ) ) ·o suc ( 𝐹 ‘ ( 𝐺 ‘ suc 𝑦 ) ) ) ⊆ ( ( 𝐴 ↑o ( 𝐺 ‘ suc 𝑦 ) ) ·o 𝐴 ) ) ) |
| 157 |
151 137 155 156
|
syl3anc |
⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ ω ) ∧ ( suc 𝑦 ∈ dom 𝐺 ∧ ( 𝐻 ‘ suc 𝑦 ) ∈ ( 𝐴 ↑o suc ( 𝐺 ‘ 𝑦 ) ) ) ) → ( suc ( 𝐹 ‘ ( 𝐺 ‘ suc 𝑦 ) ) ⊆ 𝐴 → ( ( 𝐴 ↑o ( 𝐺 ‘ suc 𝑦 ) ) ·o suc ( 𝐹 ‘ ( 𝐺 ‘ suc 𝑦 ) ) ) ⊆ ( ( 𝐴 ↑o ( 𝐺 ‘ suc 𝑦 ) ) ·o 𝐴 ) ) ) |
| 158 |
147 157
|
mpd |
⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ ω ) ∧ ( suc 𝑦 ∈ dom 𝐺 ∧ ( 𝐻 ‘ suc 𝑦 ) ∈ ( 𝐴 ↑o suc ( 𝐺 ‘ 𝑦 ) ) ) ) → ( ( 𝐴 ↑o ( 𝐺 ‘ suc 𝑦 ) ) ·o suc ( 𝐹 ‘ ( 𝐺 ‘ suc 𝑦 ) ) ) ⊆ ( ( 𝐴 ↑o ( 𝐺 ‘ suc 𝑦 ) ) ·o 𝐴 ) ) |
| 159 |
|
oesuc |
⊢ ( ( 𝐴 ∈ On ∧ ( 𝐺 ‘ suc 𝑦 ) ∈ On ) → ( 𝐴 ↑o suc ( 𝐺 ‘ suc 𝑦 ) ) = ( ( 𝐴 ↑o ( 𝐺 ‘ suc 𝑦 ) ) ·o 𝐴 ) ) |
| 160 |
137 153 159
|
syl2anc |
⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ ω ) ∧ ( suc 𝑦 ∈ dom 𝐺 ∧ ( 𝐻 ‘ suc 𝑦 ) ∈ ( 𝐴 ↑o suc ( 𝐺 ‘ 𝑦 ) ) ) ) → ( 𝐴 ↑o suc ( 𝐺 ‘ suc 𝑦 ) ) = ( ( 𝐴 ↑o ( 𝐺 ‘ suc 𝑦 ) ) ·o 𝐴 ) ) |
| 161 |
158 160
|
sseqtrrd |
⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ ω ) ∧ ( suc 𝑦 ∈ dom 𝐺 ∧ ( 𝐻 ‘ suc 𝑦 ) ∈ ( 𝐴 ↑o suc ( 𝐺 ‘ 𝑦 ) ) ) ) → ( ( 𝐴 ↑o ( 𝐺 ‘ suc 𝑦 ) ) ·o suc ( 𝐹 ‘ ( 𝐺 ‘ suc 𝑦 ) ) ) ⊆ ( 𝐴 ↑o suc ( 𝐺 ‘ suc 𝑦 ) ) ) |
| 162 |
|
eloni |
⊢ ( ( 𝐺 ‘ suc 𝑦 ) ∈ On → Ord ( 𝐺 ‘ suc 𝑦 ) ) |
| 163 |
153 162
|
syl |
⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ ω ) ∧ ( suc 𝑦 ∈ dom 𝐺 ∧ ( 𝐻 ‘ suc 𝑦 ) ∈ ( 𝐴 ↑o suc ( 𝐺 ‘ 𝑦 ) ) ) ) → Ord ( 𝐺 ‘ suc 𝑦 ) ) |
| 164 |
|
vex |
⊢ 𝑦 ∈ V |
| 165 |
164
|
sucid |
⊢ 𝑦 ∈ suc 𝑦 |
| 166 |
164
|
sucex |
⊢ suc 𝑦 ∈ V |
| 167 |
166
|
epeli |
⊢ ( 𝑦 E suc 𝑦 ↔ 𝑦 ∈ suc 𝑦 ) |
| 168 |
165 167
|
mpbir |
⊢ 𝑦 E suc 𝑦 |
| 169 |
|
ovexd |
⊢ ( 𝜑 → ( 𝐹 supp ∅ ) ∈ V ) |
| 170 |
1 2 3 4 5
|
cantnfcl |
⊢ ( 𝜑 → ( E We ( 𝐹 supp ∅ ) ∧ dom 𝐺 ∈ ω ) ) |
| 171 |
170
|
simpld |
⊢ ( 𝜑 → E We ( 𝐹 supp ∅ ) ) |
| 172 |
4
|
oiiso |
⊢ ( ( ( 𝐹 supp ∅ ) ∈ V ∧ E We ( 𝐹 supp ∅ ) ) → 𝐺 Isom E , E ( dom 𝐺 , ( 𝐹 supp ∅ ) ) ) |
| 173 |
169 171 172
|
syl2anc |
⊢ ( 𝜑 → 𝐺 Isom E , E ( dom 𝐺 , ( 𝐹 supp ∅ ) ) ) |
| 174 |
173
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ ω ) ∧ ( suc 𝑦 ∈ dom 𝐺 ∧ ( 𝐻 ‘ suc 𝑦 ) ∈ ( 𝐴 ↑o suc ( 𝐺 ‘ 𝑦 ) ) ) ) → 𝐺 Isom E , E ( dom 𝐺 , ( 𝐹 supp ∅ ) ) ) |
| 175 |
135
|
ad2antrl |
⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ ω ) ∧ ( suc 𝑦 ∈ dom 𝐺 ∧ ( 𝐻 ‘ suc 𝑦 ) ∈ ( 𝐴 ↑o suc ( 𝐺 ‘ 𝑦 ) ) ) ) → 𝑦 ∈ dom 𝐺 ) |
| 176 |
|
simprl |
⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ ω ) ∧ ( suc 𝑦 ∈ dom 𝐺 ∧ ( 𝐻 ‘ suc 𝑦 ) ∈ ( 𝐴 ↑o suc ( 𝐺 ‘ 𝑦 ) ) ) ) → suc 𝑦 ∈ dom 𝐺 ) |
| 177 |
|
isorel |
⊢ ( ( 𝐺 Isom E , E ( dom 𝐺 , ( 𝐹 supp ∅ ) ) ∧ ( 𝑦 ∈ dom 𝐺 ∧ suc 𝑦 ∈ dom 𝐺 ) ) → ( 𝑦 E suc 𝑦 ↔ ( 𝐺 ‘ 𝑦 ) E ( 𝐺 ‘ suc 𝑦 ) ) ) |
| 178 |
174 175 176 177
|
syl12anc |
⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ ω ) ∧ ( suc 𝑦 ∈ dom 𝐺 ∧ ( 𝐻 ‘ suc 𝑦 ) ∈ ( 𝐴 ↑o suc ( 𝐺 ‘ 𝑦 ) ) ) ) → ( 𝑦 E suc 𝑦 ↔ ( 𝐺 ‘ 𝑦 ) E ( 𝐺 ‘ suc 𝑦 ) ) ) |
| 179 |
168 178
|
mpbii |
⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ ω ) ∧ ( suc 𝑦 ∈ dom 𝐺 ∧ ( 𝐻 ‘ suc 𝑦 ) ∈ ( 𝐴 ↑o suc ( 𝐺 ‘ 𝑦 ) ) ) ) → ( 𝐺 ‘ 𝑦 ) E ( 𝐺 ‘ suc 𝑦 ) ) |
| 180 |
|
fvex |
⊢ ( 𝐺 ‘ suc 𝑦 ) ∈ V |
| 181 |
180
|
epeli |
⊢ ( ( 𝐺 ‘ 𝑦 ) E ( 𝐺 ‘ suc 𝑦 ) ↔ ( 𝐺 ‘ 𝑦 ) ∈ ( 𝐺 ‘ suc 𝑦 ) ) |
| 182 |
179 181
|
sylib |
⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ ω ) ∧ ( suc 𝑦 ∈ dom 𝐺 ∧ ( 𝐻 ‘ suc 𝑦 ) ∈ ( 𝐴 ↑o suc ( 𝐺 ‘ 𝑦 ) ) ) ) → ( 𝐺 ‘ 𝑦 ) ∈ ( 𝐺 ‘ suc 𝑦 ) ) |
| 183 |
|
ordsucss |
⊢ ( Ord ( 𝐺 ‘ suc 𝑦 ) → ( ( 𝐺 ‘ 𝑦 ) ∈ ( 𝐺 ‘ suc 𝑦 ) → suc ( 𝐺 ‘ 𝑦 ) ⊆ ( 𝐺 ‘ suc 𝑦 ) ) ) |
| 184 |
163 182 183
|
sylc |
⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ ω ) ∧ ( suc 𝑦 ∈ dom 𝐺 ∧ ( 𝐻 ‘ suc 𝑦 ) ∈ ( 𝐴 ↑o suc ( 𝐺 ‘ 𝑦 ) ) ) ) → suc ( 𝐺 ‘ 𝑦 ) ⊆ ( 𝐺 ‘ suc 𝑦 ) ) |
| 185 |
24
|
ffvelcdmi |
⊢ ( 𝑦 ∈ dom 𝐺 → ( 𝐺 ‘ 𝑦 ) ∈ ( 𝐹 supp ∅ ) ) |
| 186 |
175 185
|
syl |
⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ ω ) ∧ ( suc 𝑦 ∈ dom 𝐺 ∧ ( 𝐻 ‘ suc 𝑦 ) ∈ ( 𝐴 ↑o suc ( 𝐺 ‘ 𝑦 ) ) ) ) → ( 𝐺 ‘ 𝑦 ) ∈ ( 𝐹 supp ∅ ) ) |
| 187 |
152 186
|
sseldd |
⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ ω ) ∧ ( suc 𝑦 ∈ dom 𝐺 ∧ ( 𝐻 ‘ suc 𝑦 ) ∈ ( 𝐴 ↑o suc ( 𝐺 ‘ 𝑦 ) ) ) ) → ( 𝐺 ‘ 𝑦 ) ∈ On ) |
| 188 |
|
onsuc |
⊢ ( ( 𝐺 ‘ 𝑦 ) ∈ On → suc ( 𝐺 ‘ 𝑦 ) ∈ On ) |
| 189 |
187 188
|
syl |
⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ ω ) ∧ ( suc 𝑦 ∈ dom 𝐺 ∧ ( 𝐻 ‘ suc 𝑦 ) ∈ ( 𝐴 ↑o suc ( 𝐺 ‘ 𝑦 ) ) ) ) → suc ( 𝐺 ‘ 𝑦 ) ∈ On ) |
| 190 |
7
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ ω ) ∧ ( suc 𝑦 ∈ dom 𝐺 ∧ ( 𝐻 ‘ suc 𝑦 ) ∈ ( 𝐴 ↑o suc ( 𝐺 ‘ 𝑦 ) ) ) ) → ∅ ∈ 𝐴 ) |
| 191 |
|
oewordi |
⊢ ( ( ( suc ( 𝐺 ‘ 𝑦 ) ∈ On ∧ ( 𝐺 ‘ suc 𝑦 ) ∈ On ∧ 𝐴 ∈ On ) ∧ ∅ ∈ 𝐴 ) → ( suc ( 𝐺 ‘ 𝑦 ) ⊆ ( 𝐺 ‘ suc 𝑦 ) → ( 𝐴 ↑o suc ( 𝐺 ‘ 𝑦 ) ) ⊆ ( 𝐴 ↑o ( 𝐺 ‘ suc 𝑦 ) ) ) ) |
| 192 |
189 153 137 190 191
|
syl31anc |
⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ ω ) ∧ ( suc 𝑦 ∈ dom 𝐺 ∧ ( 𝐻 ‘ suc 𝑦 ) ∈ ( 𝐴 ↑o suc ( 𝐺 ‘ 𝑦 ) ) ) ) → ( suc ( 𝐺 ‘ 𝑦 ) ⊆ ( 𝐺 ‘ suc 𝑦 ) → ( 𝐴 ↑o suc ( 𝐺 ‘ 𝑦 ) ) ⊆ ( 𝐴 ↑o ( 𝐺 ‘ suc 𝑦 ) ) ) ) |
| 193 |
184 192
|
mpd |
⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ ω ) ∧ ( suc 𝑦 ∈ dom 𝐺 ∧ ( 𝐻 ‘ suc 𝑦 ) ∈ ( 𝐴 ↑o suc ( 𝐺 ‘ 𝑦 ) ) ) ) → ( 𝐴 ↑o suc ( 𝐺 ‘ 𝑦 ) ) ⊆ ( 𝐴 ↑o ( 𝐺 ‘ suc 𝑦 ) ) ) |
| 194 |
|
simprr |
⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ ω ) ∧ ( suc 𝑦 ∈ dom 𝐺 ∧ ( 𝐻 ‘ suc 𝑦 ) ∈ ( 𝐴 ↑o suc ( 𝐺 ‘ 𝑦 ) ) ) ) → ( 𝐻 ‘ suc 𝑦 ) ∈ ( 𝐴 ↑o suc ( 𝐺 ‘ 𝑦 ) ) ) |
| 195 |
193 194
|
sseldd |
⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ ω ) ∧ ( suc 𝑦 ∈ dom 𝐺 ∧ ( 𝐻 ‘ suc 𝑦 ) ∈ ( 𝐴 ↑o suc ( 𝐺 ‘ 𝑦 ) ) ) ) → ( 𝐻 ‘ suc 𝑦 ) ∈ ( 𝐴 ↑o ( 𝐺 ‘ suc 𝑦 ) ) ) |
| 196 |
|
peano2 |
⊢ ( 𝑦 ∈ ω → suc 𝑦 ∈ ω ) |
| 197 |
196
|
ad2antlr |
⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ ω ) ∧ ( suc 𝑦 ∈ dom 𝐺 ∧ ( 𝐻 ‘ suc 𝑦 ) ∈ ( 𝐴 ↑o suc ( 𝐺 ‘ 𝑦 ) ) ) ) → suc 𝑦 ∈ ω ) |
| 198 |
6
|
cantnfvalf |
⊢ 𝐻 : ω ⟶ On |
| 199 |
198
|
ffvelcdmi |
⊢ ( suc 𝑦 ∈ ω → ( 𝐻 ‘ suc 𝑦 ) ∈ On ) |
| 200 |
197 199
|
syl |
⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ ω ) ∧ ( suc 𝑦 ∈ dom 𝐺 ∧ ( 𝐻 ‘ suc 𝑦 ) ∈ ( 𝐴 ↑o suc ( 𝐺 ‘ 𝑦 ) ) ) ) → ( 𝐻 ‘ suc 𝑦 ) ∈ On ) |
| 201 |
|
omcl |
⊢ ( ( ( 𝐴 ↑o ( 𝐺 ‘ suc 𝑦 ) ) ∈ On ∧ ( 𝐹 ‘ ( 𝐺 ‘ suc 𝑦 ) ) ∈ On ) → ( ( 𝐴 ↑o ( 𝐺 ‘ suc 𝑦 ) ) ·o ( 𝐹 ‘ ( 𝐺 ‘ suc 𝑦 ) ) ) ∈ On ) |
| 202 |
155 149 201
|
syl2anc |
⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ ω ) ∧ ( suc 𝑦 ∈ dom 𝐺 ∧ ( 𝐻 ‘ suc 𝑦 ) ∈ ( 𝐴 ↑o suc ( 𝐺 ‘ 𝑦 ) ) ) ) → ( ( 𝐴 ↑o ( 𝐺 ‘ suc 𝑦 ) ) ·o ( 𝐹 ‘ ( 𝐺 ‘ suc 𝑦 ) ) ) ∈ On ) |
| 203 |
|
oaord |
⊢ ( ( ( 𝐻 ‘ suc 𝑦 ) ∈ On ∧ ( 𝐴 ↑o ( 𝐺 ‘ suc 𝑦 ) ) ∈ On ∧ ( ( 𝐴 ↑o ( 𝐺 ‘ suc 𝑦 ) ) ·o ( 𝐹 ‘ ( 𝐺 ‘ suc 𝑦 ) ) ) ∈ On ) → ( ( 𝐻 ‘ suc 𝑦 ) ∈ ( 𝐴 ↑o ( 𝐺 ‘ suc 𝑦 ) ) ↔ ( ( ( 𝐴 ↑o ( 𝐺 ‘ suc 𝑦 ) ) ·o ( 𝐹 ‘ ( 𝐺 ‘ suc 𝑦 ) ) ) +o ( 𝐻 ‘ suc 𝑦 ) ) ∈ ( ( ( 𝐴 ↑o ( 𝐺 ‘ suc 𝑦 ) ) ·o ( 𝐹 ‘ ( 𝐺 ‘ suc 𝑦 ) ) ) +o ( 𝐴 ↑o ( 𝐺 ‘ suc 𝑦 ) ) ) ) ) |
| 204 |
200 155 202 203
|
syl3anc |
⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ ω ) ∧ ( suc 𝑦 ∈ dom 𝐺 ∧ ( 𝐻 ‘ suc 𝑦 ) ∈ ( 𝐴 ↑o suc ( 𝐺 ‘ 𝑦 ) ) ) ) → ( ( 𝐻 ‘ suc 𝑦 ) ∈ ( 𝐴 ↑o ( 𝐺 ‘ suc 𝑦 ) ) ↔ ( ( ( 𝐴 ↑o ( 𝐺 ‘ suc 𝑦 ) ) ·o ( 𝐹 ‘ ( 𝐺 ‘ suc 𝑦 ) ) ) +o ( 𝐻 ‘ suc 𝑦 ) ) ∈ ( ( ( 𝐴 ↑o ( 𝐺 ‘ suc 𝑦 ) ) ·o ( 𝐹 ‘ ( 𝐺 ‘ suc 𝑦 ) ) ) +o ( 𝐴 ↑o ( 𝐺 ‘ suc 𝑦 ) ) ) ) ) |
| 205 |
195 204
|
mpbid |
⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ ω ) ∧ ( suc 𝑦 ∈ dom 𝐺 ∧ ( 𝐻 ‘ suc 𝑦 ) ∈ ( 𝐴 ↑o suc ( 𝐺 ‘ 𝑦 ) ) ) ) → ( ( ( 𝐴 ↑o ( 𝐺 ‘ suc 𝑦 ) ) ·o ( 𝐹 ‘ ( 𝐺 ‘ suc 𝑦 ) ) ) +o ( 𝐻 ‘ suc 𝑦 ) ) ∈ ( ( ( 𝐴 ↑o ( 𝐺 ‘ suc 𝑦 ) ) ·o ( 𝐹 ‘ ( 𝐺 ‘ suc 𝑦 ) ) ) +o ( 𝐴 ↑o ( 𝐺 ‘ suc 𝑦 ) ) ) ) |
| 206 |
1 2 3 4 5 6
|
cantnfsuc |
⊢ ( ( 𝜑 ∧ suc 𝑦 ∈ ω ) → ( 𝐻 ‘ suc suc 𝑦 ) = ( ( ( 𝐴 ↑o ( 𝐺 ‘ suc 𝑦 ) ) ·o ( 𝐹 ‘ ( 𝐺 ‘ suc 𝑦 ) ) ) +o ( 𝐻 ‘ suc 𝑦 ) ) ) |
| 207 |
196 206
|
sylan2 |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ ω ) → ( 𝐻 ‘ suc suc 𝑦 ) = ( ( ( 𝐴 ↑o ( 𝐺 ‘ suc 𝑦 ) ) ·o ( 𝐹 ‘ ( 𝐺 ‘ suc 𝑦 ) ) ) +o ( 𝐻 ‘ suc 𝑦 ) ) ) |
| 208 |
207
|
adantr |
⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ ω ) ∧ ( suc 𝑦 ∈ dom 𝐺 ∧ ( 𝐻 ‘ suc 𝑦 ) ∈ ( 𝐴 ↑o suc ( 𝐺 ‘ 𝑦 ) ) ) ) → ( 𝐻 ‘ suc suc 𝑦 ) = ( ( ( 𝐴 ↑o ( 𝐺 ‘ suc 𝑦 ) ) ·o ( 𝐹 ‘ ( 𝐺 ‘ suc 𝑦 ) ) ) +o ( 𝐻 ‘ suc 𝑦 ) ) ) |
| 209 |
|
omsuc |
⊢ ( ( ( 𝐴 ↑o ( 𝐺 ‘ suc 𝑦 ) ) ∈ On ∧ ( 𝐹 ‘ ( 𝐺 ‘ suc 𝑦 ) ) ∈ On ) → ( ( 𝐴 ↑o ( 𝐺 ‘ suc 𝑦 ) ) ·o suc ( 𝐹 ‘ ( 𝐺 ‘ suc 𝑦 ) ) ) = ( ( ( 𝐴 ↑o ( 𝐺 ‘ suc 𝑦 ) ) ·o ( 𝐹 ‘ ( 𝐺 ‘ suc 𝑦 ) ) ) +o ( 𝐴 ↑o ( 𝐺 ‘ suc 𝑦 ) ) ) ) |
| 210 |
155 149 209
|
syl2anc |
⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ ω ) ∧ ( suc 𝑦 ∈ dom 𝐺 ∧ ( 𝐻 ‘ suc 𝑦 ) ∈ ( 𝐴 ↑o suc ( 𝐺 ‘ 𝑦 ) ) ) ) → ( ( 𝐴 ↑o ( 𝐺 ‘ suc 𝑦 ) ) ·o suc ( 𝐹 ‘ ( 𝐺 ‘ suc 𝑦 ) ) ) = ( ( ( 𝐴 ↑o ( 𝐺 ‘ suc 𝑦 ) ) ·o ( 𝐹 ‘ ( 𝐺 ‘ suc 𝑦 ) ) ) +o ( 𝐴 ↑o ( 𝐺 ‘ suc 𝑦 ) ) ) ) |
| 211 |
205 208 210
|
3eltr4d |
⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ ω ) ∧ ( suc 𝑦 ∈ dom 𝐺 ∧ ( 𝐻 ‘ suc 𝑦 ) ∈ ( 𝐴 ↑o suc ( 𝐺 ‘ 𝑦 ) ) ) ) → ( 𝐻 ‘ suc suc 𝑦 ) ∈ ( ( 𝐴 ↑o ( 𝐺 ‘ suc 𝑦 ) ) ·o suc ( 𝐹 ‘ ( 𝐺 ‘ suc 𝑦 ) ) ) ) |
| 212 |
161 211
|
sseldd |
⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ ω ) ∧ ( suc 𝑦 ∈ dom 𝐺 ∧ ( 𝐻 ‘ suc 𝑦 ) ∈ ( 𝐴 ↑o suc ( 𝐺 ‘ 𝑦 ) ) ) ) → ( 𝐻 ‘ suc suc 𝑦 ) ∈ ( 𝐴 ↑o suc ( 𝐺 ‘ suc 𝑦 ) ) ) |
| 213 |
212
|
exp32 |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ ω ) → ( suc 𝑦 ∈ dom 𝐺 → ( ( 𝐻 ‘ suc 𝑦 ) ∈ ( 𝐴 ↑o suc ( 𝐺 ‘ 𝑦 ) ) → ( 𝐻 ‘ suc suc 𝑦 ) ∈ ( 𝐴 ↑o suc ( 𝐺 ‘ suc 𝑦 ) ) ) ) ) |
| 214 |
213
|
a2d |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ ω ) → ( ( suc 𝑦 ∈ dom 𝐺 → ( 𝐻 ‘ suc 𝑦 ) ∈ ( 𝐴 ↑o suc ( 𝐺 ‘ 𝑦 ) ) ) → ( suc 𝑦 ∈ dom 𝐺 → ( 𝐻 ‘ suc suc 𝑦 ) ∈ ( 𝐴 ↑o suc ( 𝐺 ‘ suc 𝑦 ) ) ) ) ) |
| 215 |
136 214
|
syl5 |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ ω ) → ( ( 𝑦 ∈ dom 𝐺 → ( 𝐻 ‘ suc 𝑦 ) ∈ ( 𝐴 ↑o suc ( 𝐺 ‘ 𝑦 ) ) ) → ( suc 𝑦 ∈ dom 𝐺 → ( 𝐻 ‘ suc suc 𝑦 ) ∈ ( 𝐴 ↑o suc ( 𝐺 ‘ suc 𝑦 ) ) ) ) ) |
| 216 |
215
|
expcom |
⊢ ( 𝑦 ∈ ω → ( 𝜑 → ( ( 𝑦 ∈ dom 𝐺 → ( 𝐻 ‘ suc 𝑦 ) ∈ ( 𝐴 ↑o suc ( 𝐺 ‘ 𝑦 ) ) ) → ( suc 𝑦 ∈ dom 𝐺 → ( 𝐻 ‘ suc suc 𝑦 ) ∈ ( 𝐴 ↑o suc ( 𝐺 ‘ suc 𝑦 ) ) ) ) ) ) |
| 217 |
80 89 98 131 216
|
finds2 |
⊢ ( 𝑥 ∈ ω → ( 𝜑 → ( 𝑥 ∈ dom 𝐺 → ( 𝐻 ‘ suc 𝑥 ) ∈ ( 𝐴 ↑o suc ( 𝐺 ‘ 𝑥 ) ) ) ) ) |
| 218 |
70 71 58 217
|
syl3c |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ ω ∧ 𝐾 = suc 𝑥 ) ) → ( 𝐻 ‘ suc 𝑥 ) ∈ ( 𝐴 ↑o suc ( 𝐺 ‘ 𝑥 ) ) ) |
| 219 |
69 218
|
eqeltrd |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ ω ∧ 𝐾 = suc 𝑥 ) ) → ( 𝐻 ‘ 𝐾 ) ∈ ( 𝐴 ↑o suc ( 𝐺 ‘ 𝑥 ) ) ) |
| 220 |
68 219
|
sseldd |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ ω ∧ 𝐾 = suc 𝑥 ) ) → ( 𝐻 ‘ 𝐾 ) ∈ ( 𝐴 ↑o 𝐶 ) ) |
| 221 |
220
|
rexlimdvaa |
⊢ ( 𝜑 → ( ∃ 𝑥 ∈ ω 𝐾 = suc 𝑥 → ( 𝐻 ‘ 𝐾 ) ∈ ( 𝐴 ↑o 𝐶 ) ) ) |
| 222 |
|
peano2 |
⊢ ( dom 𝐺 ∈ ω → suc dom 𝐺 ∈ ω ) |
| 223 |
170 222
|
simpl2im |
⊢ ( 𝜑 → suc dom 𝐺 ∈ ω ) |
| 224 |
|
elnn |
⊢ ( ( 𝐾 ∈ suc dom 𝐺 ∧ suc dom 𝐺 ∈ ω ) → 𝐾 ∈ ω ) |
| 225 |
8 223 224
|
syl2anc |
⊢ ( 𝜑 → 𝐾 ∈ ω ) |
| 226 |
|
nn0suc |
⊢ ( 𝐾 ∈ ω → ( 𝐾 = ∅ ∨ ∃ 𝑥 ∈ ω 𝐾 = suc 𝑥 ) ) |
| 227 |
225 226
|
syl |
⊢ ( 𝜑 → ( 𝐾 = ∅ ∨ ∃ 𝑥 ∈ ω 𝐾 = suc 𝑥 ) ) |
| 228 |
19 221 227
|
mpjaod |
⊢ ( 𝜑 → ( 𝐻 ‘ 𝐾 ) ∈ ( 𝐴 ↑o 𝐶 ) ) |