| Step | Hyp | Ref | Expression | 
						
							| 1 |  | cantnfs.s | ⊢ 𝑆  =  dom  ( 𝐴  CNF  𝐵 ) | 
						
							| 2 |  | cantnfs.a | ⊢ ( 𝜑  →  𝐴  ∈  On ) | 
						
							| 3 |  | cantnfs.b | ⊢ ( 𝜑  →  𝐵  ∈  On ) | 
						
							| 4 |  | cantnflt2.f | ⊢ ( 𝜑  →  𝐹  ∈  𝑆 ) | 
						
							| 5 |  | cantnflt2.a | ⊢ ( 𝜑  →  ∅  ∈  𝐴 ) | 
						
							| 6 |  | cantnflt2.c | ⊢ ( 𝜑  →  𝐶  ∈  On ) | 
						
							| 7 |  | cantnflt2.s | ⊢ ( 𝜑  →  ( 𝐹  supp  ∅ )  ⊆  𝐶 ) | 
						
							| 8 |  | eqid | ⊢ OrdIso (  E  ,  ( 𝐹  supp  ∅ ) )  =  OrdIso (  E  ,  ( 𝐹  supp  ∅ ) ) | 
						
							| 9 |  | eqid | ⊢ seqω ( ( 𝑘  ∈  V ,  𝑧  ∈  V  ↦  ( ( ( 𝐴  ↑o  ( OrdIso (  E  ,  ( 𝐹  supp  ∅ ) ) ‘ 𝑘 ) )  ·o  ( 𝐹 ‘ ( OrdIso (  E  ,  ( 𝐹  supp  ∅ ) ) ‘ 𝑘 ) ) )  +o  𝑧 ) ) ,  ∅ )  =  seqω ( ( 𝑘  ∈  V ,  𝑧  ∈  V  ↦  ( ( ( 𝐴  ↑o  ( OrdIso (  E  ,  ( 𝐹  supp  ∅ ) ) ‘ 𝑘 ) )  ·o  ( 𝐹 ‘ ( OrdIso (  E  ,  ( 𝐹  supp  ∅ ) ) ‘ 𝑘 ) ) )  +o  𝑧 ) ) ,  ∅ ) | 
						
							| 10 | 1 2 3 8 4 9 | cantnfval | ⊢ ( 𝜑  →  ( ( 𝐴  CNF  𝐵 ) ‘ 𝐹 )  =  ( seqω ( ( 𝑘  ∈  V ,  𝑧  ∈  V  ↦  ( ( ( 𝐴  ↑o  ( OrdIso (  E  ,  ( 𝐹  supp  ∅ ) ) ‘ 𝑘 ) )  ·o  ( 𝐹 ‘ ( OrdIso (  E  ,  ( 𝐹  supp  ∅ ) ) ‘ 𝑘 ) ) )  +o  𝑧 ) ) ,  ∅ ) ‘ dom  OrdIso (  E  ,  ( 𝐹  supp  ∅ ) ) ) ) | 
						
							| 11 |  | ovexd | ⊢ ( 𝜑  →  ( 𝐹  supp  ∅ )  ∈  V ) | 
						
							| 12 | 8 | oion | ⊢ ( ( 𝐹  supp  ∅ )  ∈  V  →  dom  OrdIso (  E  ,  ( 𝐹  supp  ∅ ) )  ∈  On ) | 
						
							| 13 |  | sucidg | ⊢ ( dom  OrdIso (  E  ,  ( 𝐹  supp  ∅ ) )  ∈  On  →  dom  OrdIso (  E  ,  ( 𝐹  supp  ∅ ) )  ∈  suc  dom  OrdIso (  E  ,  ( 𝐹  supp  ∅ ) ) ) | 
						
							| 14 | 11 12 13 | 3syl | ⊢ ( 𝜑  →  dom  OrdIso (  E  ,  ( 𝐹  supp  ∅ ) )  ∈  suc  dom  OrdIso (  E  ,  ( 𝐹  supp  ∅ ) ) ) | 
						
							| 15 | 1 2 3 8 4 | cantnfcl | ⊢ ( 𝜑  →  (  E   We  ( 𝐹  supp  ∅ )  ∧  dom  OrdIso (  E  ,  ( 𝐹  supp  ∅ ) )  ∈  ω ) ) | 
						
							| 16 | 15 | simpld | ⊢ ( 𝜑  →   E   We  ( 𝐹  supp  ∅ ) ) | 
						
							| 17 | 8 | oiiso | ⊢ ( ( ( 𝐹  supp  ∅ )  ∈  V  ∧   E   We  ( 𝐹  supp  ∅ ) )  →  OrdIso (  E  ,  ( 𝐹  supp  ∅ ) )  Isom   E  ,   E  ( dom  OrdIso (  E  ,  ( 𝐹  supp  ∅ ) ) ,  ( 𝐹  supp  ∅ ) ) ) | 
						
							| 18 | 11 16 17 | syl2anc | ⊢ ( 𝜑  →  OrdIso (  E  ,  ( 𝐹  supp  ∅ ) )  Isom   E  ,   E  ( dom  OrdIso (  E  ,  ( 𝐹  supp  ∅ ) ) ,  ( 𝐹  supp  ∅ ) ) ) | 
						
							| 19 |  | isof1o | ⊢ ( OrdIso (  E  ,  ( 𝐹  supp  ∅ ) )  Isom   E  ,   E  ( dom  OrdIso (  E  ,  ( 𝐹  supp  ∅ ) ) ,  ( 𝐹  supp  ∅ ) )  →  OrdIso (  E  ,  ( 𝐹  supp  ∅ ) ) : dom  OrdIso (  E  ,  ( 𝐹  supp  ∅ ) ) –1-1-onto→ ( 𝐹  supp  ∅ ) ) | 
						
							| 20 |  | f1ofo | ⊢ ( OrdIso (  E  ,  ( 𝐹  supp  ∅ ) ) : dom  OrdIso (  E  ,  ( 𝐹  supp  ∅ ) ) –1-1-onto→ ( 𝐹  supp  ∅ )  →  OrdIso (  E  ,  ( 𝐹  supp  ∅ ) ) : dom  OrdIso (  E  ,  ( 𝐹  supp  ∅ ) ) –onto→ ( 𝐹  supp  ∅ ) ) | 
						
							| 21 |  | foima | ⊢ ( OrdIso (  E  ,  ( 𝐹  supp  ∅ ) ) : dom  OrdIso (  E  ,  ( 𝐹  supp  ∅ ) ) –onto→ ( 𝐹  supp  ∅ )  →  ( OrdIso (  E  ,  ( 𝐹  supp  ∅ ) )  “  dom  OrdIso (  E  ,  ( 𝐹  supp  ∅ ) ) )  =  ( 𝐹  supp  ∅ ) ) | 
						
							| 22 | 18 19 20 21 | 4syl | ⊢ ( 𝜑  →  ( OrdIso (  E  ,  ( 𝐹  supp  ∅ ) )  “  dom  OrdIso (  E  ,  ( 𝐹  supp  ∅ ) ) )  =  ( 𝐹  supp  ∅ ) ) | 
						
							| 23 | 22 7 | eqsstrd | ⊢ ( 𝜑  →  ( OrdIso (  E  ,  ( 𝐹  supp  ∅ ) )  “  dom  OrdIso (  E  ,  ( 𝐹  supp  ∅ ) ) )  ⊆  𝐶 ) | 
						
							| 24 | 1 2 3 8 4 9 5 14 6 23 | cantnflt | ⊢ ( 𝜑  →  ( seqω ( ( 𝑘  ∈  V ,  𝑧  ∈  V  ↦  ( ( ( 𝐴  ↑o  ( OrdIso (  E  ,  ( 𝐹  supp  ∅ ) ) ‘ 𝑘 ) )  ·o  ( 𝐹 ‘ ( OrdIso (  E  ,  ( 𝐹  supp  ∅ ) ) ‘ 𝑘 ) ) )  +o  𝑧 ) ) ,  ∅ ) ‘ dom  OrdIso (  E  ,  ( 𝐹  supp  ∅ ) ) )  ∈  ( 𝐴  ↑o  𝐶 ) ) | 
						
							| 25 | 10 24 | eqeltrd | ⊢ ( 𝜑  →  ( ( 𝐴  CNF  𝐵 ) ‘ 𝐹 )  ∈  ( 𝐴  ↑o  𝐶 ) ) |