| Step | Hyp | Ref | Expression | 
						
							| 1 |  | cantnfs.s | ⊢ 𝑆  =  dom  ( 𝐴  CNF  𝐵 ) | 
						
							| 2 |  | cantnfs.a | ⊢ ( 𝜑  →  𝐴  ∈  On ) | 
						
							| 3 |  | cantnfs.b | ⊢ ( 𝜑  →  𝐵  ∈  On ) | 
						
							| 4 |  | cantnfp1.g | ⊢ ( 𝜑  →  𝐺  ∈  𝑆 ) | 
						
							| 5 |  | cantnfp1.x | ⊢ ( 𝜑  →  𝑋  ∈  𝐵 ) | 
						
							| 6 |  | cantnfp1.y | ⊢ ( 𝜑  →  𝑌  ∈  𝐴 ) | 
						
							| 7 |  | cantnfp1.s | ⊢ ( 𝜑  →  ( 𝐺  supp  ∅ )  ⊆  𝑋 ) | 
						
							| 8 |  | cantnfp1.f | ⊢ 𝐹  =  ( 𝑡  ∈  𝐵  ↦  if ( 𝑡  =  𝑋 ,  𝑌 ,  ( 𝐺 ‘ 𝑡 ) ) ) | 
						
							| 9 |  | onelon | ⊢ ( ( 𝐵  ∈  On  ∧  𝑋  ∈  𝐵 )  →  𝑋  ∈  On ) | 
						
							| 10 | 3 5 9 | syl2anc | ⊢ ( 𝜑  →  𝑋  ∈  On ) | 
						
							| 11 |  | eloni | ⊢ ( 𝑋  ∈  On  →  Ord  𝑋 ) | 
						
							| 12 |  | ordirr | ⊢ ( Ord  𝑋  →  ¬  𝑋  ∈  𝑋 ) | 
						
							| 13 | 10 11 12 | 3syl | ⊢ ( 𝜑  →  ¬  𝑋  ∈  𝑋 ) | 
						
							| 14 |  | fvex | ⊢ ( 𝐺 ‘ 𝑋 )  ∈  V | 
						
							| 15 |  | dif1o | ⊢ ( ( 𝐺 ‘ 𝑋 )  ∈  ( V  ∖  1o )  ↔  ( ( 𝐺 ‘ 𝑋 )  ∈  V  ∧  ( 𝐺 ‘ 𝑋 )  ≠  ∅ ) ) | 
						
							| 16 | 14 15 | mpbiran | ⊢ ( ( 𝐺 ‘ 𝑋 )  ∈  ( V  ∖  1o )  ↔  ( 𝐺 ‘ 𝑋 )  ≠  ∅ ) | 
						
							| 17 | 1 2 3 | cantnfs | ⊢ ( 𝜑  →  ( 𝐺  ∈  𝑆  ↔  ( 𝐺 : 𝐵 ⟶ 𝐴  ∧  𝐺  finSupp  ∅ ) ) ) | 
						
							| 18 | 4 17 | mpbid | ⊢ ( 𝜑  →  ( 𝐺 : 𝐵 ⟶ 𝐴  ∧  𝐺  finSupp  ∅ ) ) | 
						
							| 19 | 18 | simpld | ⊢ ( 𝜑  →  𝐺 : 𝐵 ⟶ 𝐴 ) | 
						
							| 20 | 19 | ffnd | ⊢ ( 𝜑  →  𝐺  Fn  𝐵 ) | 
						
							| 21 |  | 0ex | ⊢ ∅  ∈  V | 
						
							| 22 | 21 | a1i | ⊢ ( 𝜑  →  ∅  ∈  V ) | 
						
							| 23 |  | elsuppfn | ⊢ ( ( 𝐺  Fn  𝐵  ∧  𝐵  ∈  On  ∧  ∅  ∈  V )  →  ( 𝑋  ∈  ( 𝐺  supp  ∅ )  ↔  ( 𝑋  ∈  𝐵  ∧  ( 𝐺 ‘ 𝑋 )  ≠  ∅ ) ) ) | 
						
							| 24 | 20 3 22 23 | syl3anc | ⊢ ( 𝜑  →  ( 𝑋  ∈  ( 𝐺  supp  ∅ )  ↔  ( 𝑋  ∈  𝐵  ∧  ( 𝐺 ‘ 𝑋 )  ≠  ∅ ) ) ) | 
						
							| 25 | 16 | bicomi | ⊢ ( ( 𝐺 ‘ 𝑋 )  ≠  ∅  ↔  ( 𝐺 ‘ 𝑋 )  ∈  ( V  ∖  1o ) ) | 
						
							| 26 | 25 | a1i | ⊢ ( 𝜑  →  ( ( 𝐺 ‘ 𝑋 )  ≠  ∅  ↔  ( 𝐺 ‘ 𝑋 )  ∈  ( V  ∖  1o ) ) ) | 
						
							| 27 | 26 | anbi2d | ⊢ ( 𝜑  →  ( ( 𝑋  ∈  𝐵  ∧  ( 𝐺 ‘ 𝑋 )  ≠  ∅ )  ↔  ( 𝑋  ∈  𝐵  ∧  ( 𝐺 ‘ 𝑋 )  ∈  ( V  ∖  1o ) ) ) ) | 
						
							| 28 | 24 27 | bitrd | ⊢ ( 𝜑  →  ( 𝑋  ∈  ( 𝐺  supp  ∅ )  ↔  ( 𝑋  ∈  𝐵  ∧  ( 𝐺 ‘ 𝑋 )  ∈  ( V  ∖  1o ) ) ) ) | 
						
							| 29 | 7 | sseld | ⊢ ( 𝜑  →  ( 𝑋  ∈  ( 𝐺  supp  ∅ )  →  𝑋  ∈  𝑋 ) ) | 
						
							| 30 | 28 29 | sylbird | ⊢ ( 𝜑  →  ( ( 𝑋  ∈  𝐵  ∧  ( 𝐺 ‘ 𝑋 )  ∈  ( V  ∖  1o ) )  →  𝑋  ∈  𝑋 ) ) | 
						
							| 31 | 5 30 | mpand | ⊢ ( 𝜑  →  ( ( 𝐺 ‘ 𝑋 )  ∈  ( V  ∖  1o )  →  𝑋  ∈  𝑋 ) ) | 
						
							| 32 | 16 31 | biimtrrid | ⊢ ( 𝜑  →  ( ( 𝐺 ‘ 𝑋 )  ≠  ∅  →  𝑋  ∈  𝑋 ) ) | 
						
							| 33 | 32 | necon1bd | ⊢ ( 𝜑  →  ( ¬  𝑋  ∈  𝑋  →  ( 𝐺 ‘ 𝑋 )  =  ∅ ) ) | 
						
							| 34 | 13 33 | mpd | ⊢ ( 𝜑  →  ( 𝐺 ‘ 𝑋 )  =  ∅ ) | 
						
							| 35 | 34 | ad3antrrr | ⊢ ( ( ( ( 𝜑  ∧  𝑌  =  ∅ )  ∧  𝑡  ∈  𝐵 )  ∧  𝑡  =  𝑋 )  →  ( 𝐺 ‘ 𝑋 )  =  ∅ ) | 
						
							| 36 |  | simpr | ⊢ ( ( ( ( 𝜑  ∧  𝑌  =  ∅ )  ∧  𝑡  ∈  𝐵 )  ∧  𝑡  =  𝑋 )  →  𝑡  =  𝑋 ) | 
						
							| 37 | 36 | fveq2d | ⊢ ( ( ( ( 𝜑  ∧  𝑌  =  ∅ )  ∧  𝑡  ∈  𝐵 )  ∧  𝑡  =  𝑋 )  →  ( 𝐺 ‘ 𝑡 )  =  ( 𝐺 ‘ 𝑋 ) ) | 
						
							| 38 |  | simpllr | ⊢ ( ( ( ( 𝜑  ∧  𝑌  =  ∅ )  ∧  𝑡  ∈  𝐵 )  ∧  𝑡  =  𝑋 )  →  𝑌  =  ∅ ) | 
						
							| 39 | 35 37 38 | 3eqtr4rd | ⊢ ( ( ( ( 𝜑  ∧  𝑌  =  ∅ )  ∧  𝑡  ∈  𝐵 )  ∧  𝑡  =  𝑋 )  →  𝑌  =  ( 𝐺 ‘ 𝑡 ) ) | 
						
							| 40 |  | eqidd | ⊢ ( ( ( ( 𝜑  ∧  𝑌  =  ∅ )  ∧  𝑡  ∈  𝐵 )  ∧  ¬  𝑡  =  𝑋 )  →  ( 𝐺 ‘ 𝑡 )  =  ( 𝐺 ‘ 𝑡 ) ) | 
						
							| 41 | 39 40 | ifeqda | ⊢ ( ( ( 𝜑  ∧  𝑌  =  ∅ )  ∧  𝑡  ∈  𝐵 )  →  if ( 𝑡  =  𝑋 ,  𝑌 ,  ( 𝐺 ‘ 𝑡 ) )  =  ( 𝐺 ‘ 𝑡 ) ) | 
						
							| 42 | 41 | mpteq2dva | ⊢ ( ( 𝜑  ∧  𝑌  =  ∅ )  →  ( 𝑡  ∈  𝐵  ↦  if ( 𝑡  =  𝑋 ,  𝑌 ,  ( 𝐺 ‘ 𝑡 ) ) )  =  ( 𝑡  ∈  𝐵  ↦  ( 𝐺 ‘ 𝑡 ) ) ) | 
						
							| 43 | 8 42 | eqtrid | ⊢ ( ( 𝜑  ∧  𝑌  =  ∅ )  →  𝐹  =  ( 𝑡  ∈  𝐵  ↦  ( 𝐺 ‘ 𝑡 ) ) ) | 
						
							| 44 | 19 | feqmptd | ⊢ ( 𝜑  →  𝐺  =  ( 𝑡  ∈  𝐵  ↦  ( 𝐺 ‘ 𝑡 ) ) ) | 
						
							| 45 | 44 | adantr | ⊢ ( ( 𝜑  ∧  𝑌  =  ∅ )  →  𝐺  =  ( 𝑡  ∈  𝐵  ↦  ( 𝐺 ‘ 𝑡 ) ) ) | 
						
							| 46 | 43 45 | eqtr4d | ⊢ ( ( 𝜑  ∧  𝑌  =  ∅ )  →  𝐹  =  𝐺 ) | 
						
							| 47 | 4 | adantr | ⊢ ( ( 𝜑  ∧  𝑌  =  ∅ )  →  𝐺  ∈  𝑆 ) | 
						
							| 48 | 46 47 | eqeltrd | ⊢ ( ( 𝜑  ∧  𝑌  =  ∅ )  →  𝐹  ∈  𝑆 ) | 
						
							| 49 |  | oecl | ⊢ ( ( 𝐴  ∈  On  ∧  𝐵  ∈  On )  →  ( 𝐴  ↑o  𝐵 )  ∈  On ) | 
						
							| 50 | 2 3 49 | syl2anc | ⊢ ( 𝜑  →  ( 𝐴  ↑o  𝐵 )  ∈  On ) | 
						
							| 51 | 1 2 3 | cantnff | ⊢ ( 𝜑  →  ( 𝐴  CNF  𝐵 ) : 𝑆 ⟶ ( 𝐴  ↑o  𝐵 ) ) | 
						
							| 52 | 51 4 | ffvelcdmd | ⊢ ( 𝜑  →  ( ( 𝐴  CNF  𝐵 ) ‘ 𝐺 )  ∈  ( 𝐴  ↑o  𝐵 ) ) | 
						
							| 53 |  | onelon | ⊢ ( ( ( 𝐴  ↑o  𝐵 )  ∈  On  ∧  ( ( 𝐴  CNF  𝐵 ) ‘ 𝐺 )  ∈  ( 𝐴  ↑o  𝐵 ) )  →  ( ( 𝐴  CNF  𝐵 ) ‘ 𝐺 )  ∈  On ) | 
						
							| 54 | 50 52 53 | syl2anc | ⊢ ( 𝜑  →  ( ( 𝐴  CNF  𝐵 ) ‘ 𝐺 )  ∈  On ) | 
						
							| 55 | 54 | adantr | ⊢ ( ( 𝜑  ∧  𝑌  =  ∅ )  →  ( ( 𝐴  CNF  𝐵 ) ‘ 𝐺 )  ∈  On ) | 
						
							| 56 |  | oa0r | ⊢ ( ( ( 𝐴  CNF  𝐵 ) ‘ 𝐺 )  ∈  On  →  ( ∅  +o  ( ( 𝐴  CNF  𝐵 ) ‘ 𝐺 ) )  =  ( ( 𝐴  CNF  𝐵 ) ‘ 𝐺 ) ) | 
						
							| 57 | 55 56 | syl | ⊢ ( ( 𝜑  ∧  𝑌  =  ∅ )  →  ( ∅  +o  ( ( 𝐴  CNF  𝐵 ) ‘ 𝐺 ) )  =  ( ( 𝐴  CNF  𝐵 ) ‘ 𝐺 ) ) | 
						
							| 58 |  | oveq2 | ⊢ ( 𝑌  =  ∅  →  ( ( 𝐴  ↑o  𝑋 )  ·o  𝑌 )  =  ( ( 𝐴  ↑o  𝑋 )  ·o  ∅ ) ) | 
						
							| 59 |  | oecl | ⊢ ( ( 𝐴  ∈  On  ∧  𝑋  ∈  On )  →  ( 𝐴  ↑o  𝑋 )  ∈  On ) | 
						
							| 60 | 2 10 59 | syl2anc | ⊢ ( 𝜑  →  ( 𝐴  ↑o  𝑋 )  ∈  On ) | 
						
							| 61 |  | om0 | ⊢ ( ( 𝐴  ↑o  𝑋 )  ∈  On  →  ( ( 𝐴  ↑o  𝑋 )  ·o  ∅ )  =  ∅ ) | 
						
							| 62 | 60 61 | syl | ⊢ ( 𝜑  →  ( ( 𝐴  ↑o  𝑋 )  ·o  ∅ )  =  ∅ ) | 
						
							| 63 | 58 62 | sylan9eqr | ⊢ ( ( 𝜑  ∧  𝑌  =  ∅ )  →  ( ( 𝐴  ↑o  𝑋 )  ·o  𝑌 )  =  ∅ ) | 
						
							| 64 | 63 | oveq1d | ⊢ ( ( 𝜑  ∧  𝑌  =  ∅ )  →  ( ( ( 𝐴  ↑o  𝑋 )  ·o  𝑌 )  +o  ( ( 𝐴  CNF  𝐵 ) ‘ 𝐺 ) )  =  ( ∅  +o  ( ( 𝐴  CNF  𝐵 ) ‘ 𝐺 ) ) ) | 
						
							| 65 | 46 | fveq2d | ⊢ ( ( 𝜑  ∧  𝑌  =  ∅ )  →  ( ( 𝐴  CNF  𝐵 ) ‘ 𝐹 )  =  ( ( 𝐴  CNF  𝐵 ) ‘ 𝐺 ) ) | 
						
							| 66 | 57 64 65 | 3eqtr4rd | ⊢ ( ( 𝜑  ∧  𝑌  =  ∅ )  →  ( ( 𝐴  CNF  𝐵 ) ‘ 𝐹 )  =  ( ( ( 𝐴  ↑o  𝑋 )  ·o  𝑌 )  +o  ( ( 𝐴  CNF  𝐵 ) ‘ 𝐺 ) ) ) | 
						
							| 67 | 48 66 | jca | ⊢ ( ( 𝜑  ∧  𝑌  =  ∅ )  →  ( 𝐹  ∈  𝑆  ∧  ( ( 𝐴  CNF  𝐵 ) ‘ 𝐹 )  =  ( ( ( 𝐴  ↑o  𝑋 )  ·o  𝑌 )  +o  ( ( 𝐴  CNF  𝐵 ) ‘ 𝐺 ) ) ) ) | 
						
							| 68 | 2 | adantr | ⊢ ( ( 𝜑  ∧  𝑌  ≠  ∅ )  →  𝐴  ∈  On ) | 
						
							| 69 | 3 | adantr | ⊢ ( ( 𝜑  ∧  𝑌  ≠  ∅ )  →  𝐵  ∈  On ) | 
						
							| 70 | 4 | adantr | ⊢ ( ( 𝜑  ∧  𝑌  ≠  ∅ )  →  𝐺  ∈  𝑆 ) | 
						
							| 71 | 5 | adantr | ⊢ ( ( 𝜑  ∧  𝑌  ≠  ∅ )  →  𝑋  ∈  𝐵 ) | 
						
							| 72 | 6 | adantr | ⊢ ( ( 𝜑  ∧  𝑌  ≠  ∅ )  →  𝑌  ∈  𝐴 ) | 
						
							| 73 | 7 | adantr | ⊢ ( ( 𝜑  ∧  𝑌  ≠  ∅ )  →  ( 𝐺  supp  ∅ )  ⊆  𝑋 ) | 
						
							| 74 | 1 68 69 70 71 72 73 8 | cantnfp1lem1 | ⊢ ( ( 𝜑  ∧  𝑌  ≠  ∅ )  →  𝐹  ∈  𝑆 ) | 
						
							| 75 |  | onelon | ⊢ ( ( 𝐴  ∈  On  ∧  𝑌  ∈  𝐴 )  →  𝑌  ∈  On ) | 
						
							| 76 | 2 6 75 | syl2anc | ⊢ ( 𝜑  →  𝑌  ∈  On ) | 
						
							| 77 |  | on0eln0 | ⊢ ( 𝑌  ∈  On  →  ( ∅  ∈  𝑌  ↔  𝑌  ≠  ∅ ) ) | 
						
							| 78 | 76 77 | syl | ⊢ ( 𝜑  →  ( ∅  ∈  𝑌  ↔  𝑌  ≠  ∅ ) ) | 
						
							| 79 | 78 | biimpar | ⊢ ( ( 𝜑  ∧  𝑌  ≠  ∅ )  →  ∅  ∈  𝑌 ) | 
						
							| 80 |  | eqid | ⊢ OrdIso (  E  ,  ( 𝐹  supp  ∅ ) )  =  OrdIso (  E  ,  ( 𝐹  supp  ∅ ) ) | 
						
							| 81 |  | eqid | ⊢ seqω ( ( 𝑘  ∈  V ,  𝑧  ∈  V  ↦  ( ( ( 𝐴  ↑o  ( OrdIso (  E  ,  ( 𝐹  supp  ∅ ) ) ‘ 𝑘 ) )  ·o  ( 𝐹 ‘ ( OrdIso (  E  ,  ( 𝐹  supp  ∅ ) ) ‘ 𝑘 ) ) )  +o  𝑧 ) ) ,  ∅ )  =  seqω ( ( 𝑘  ∈  V ,  𝑧  ∈  V  ↦  ( ( ( 𝐴  ↑o  ( OrdIso (  E  ,  ( 𝐹  supp  ∅ ) ) ‘ 𝑘 ) )  ·o  ( 𝐹 ‘ ( OrdIso (  E  ,  ( 𝐹  supp  ∅ ) ) ‘ 𝑘 ) ) )  +o  𝑧 ) ) ,  ∅ ) | 
						
							| 82 |  | eqid | ⊢ OrdIso (  E  ,  ( 𝐺  supp  ∅ ) )  =  OrdIso (  E  ,  ( 𝐺  supp  ∅ ) ) | 
						
							| 83 |  | eqid | ⊢ seqω ( ( 𝑘  ∈  V ,  𝑧  ∈  V  ↦  ( ( ( 𝐴  ↑o  ( OrdIso (  E  ,  ( 𝐺  supp  ∅ ) ) ‘ 𝑘 ) )  ·o  ( 𝐺 ‘ ( OrdIso (  E  ,  ( 𝐺  supp  ∅ ) ) ‘ 𝑘 ) ) )  +o  𝑧 ) ) ,  ∅ )  =  seqω ( ( 𝑘  ∈  V ,  𝑧  ∈  V  ↦  ( ( ( 𝐴  ↑o  ( OrdIso (  E  ,  ( 𝐺  supp  ∅ ) ) ‘ 𝑘 ) )  ·o  ( 𝐺 ‘ ( OrdIso (  E  ,  ( 𝐺  supp  ∅ ) ) ‘ 𝑘 ) ) )  +o  𝑧 ) ) ,  ∅ ) | 
						
							| 84 | 1 68 69 70 71 72 73 8 79 80 81 82 83 | cantnfp1lem3 | ⊢ ( ( 𝜑  ∧  𝑌  ≠  ∅ )  →  ( ( 𝐴  CNF  𝐵 ) ‘ 𝐹 )  =  ( ( ( 𝐴  ↑o  𝑋 )  ·o  𝑌 )  +o  ( ( 𝐴  CNF  𝐵 ) ‘ 𝐺 ) ) ) | 
						
							| 85 | 74 84 | jca | ⊢ ( ( 𝜑  ∧  𝑌  ≠  ∅ )  →  ( 𝐹  ∈  𝑆  ∧  ( ( 𝐴  CNF  𝐵 ) ‘ 𝐹 )  =  ( ( ( 𝐴  ↑o  𝑋 )  ·o  𝑌 )  +o  ( ( 𝐴  CNF  𝐵 ) ‘ 𝐺 ) ) ) ) | 
						
							| 86 | 67 85 | pm2.61dane | ⊢ ( 𝜑  →  ( 𝐹  ∈  𝑆  ∧  ( ( 𝐴  CNF  𝐵 ) ‘ 𝐹 )  =  ( ( ( 𝐴  ↑o  𝑋 )  ·o  𝑌 )  +o  ( ( 𝐴  CNF  𝐵 ) ‘ 𝐺 ) ) ) ) |