Step |
Hyp |
Ref |
Expression |
1 |
|
cantnfs.s |
⊢ 𝑆 = dom ( 𝐴 CNF 𝐵 ) |
2 |
|
cantnfs.a |
⊢ ( 𝜑 → 𝐴 ∈ On ) |
3 |
|
cantnfs.b |
⊢ ( 𝜑 → 𝐵 ∈ On ) |
4 |
|
cantnfp1.g |
⊢ ( 𝜑 → 𝐺 ∈ 𝑆 ) |
5 |
|
cantnfp1.x |
⊢ ( 𝜑 → 𝑋 ∈ 𝐵 ) |
6 |
|
cantnfp1.y |
⊢ ( 𝜑 → 𝑌 ∈ 𝐴 ) |
7 |
|
cantnfp1.s |
⊢ ( 𝜑 → ( 𝐺 supp ∅ ) ⊆ 𝑋 ) |
8 |
|
cantnfp1.f |
⊢ 𝐹 = ( 𝑡 ∈ 𝐵 ↦ if ( 𝑡 = 𝑋 , 𝑌 , ( 𝐺 ‘ 𝑡 ) ) ) |
9 |
|
onelon |
⊢ ( ( 𝐵 ∈ On ∧ 𝑋 ∈ 𝐵 ) → 𝑋 ∈ On ) |
10 |
3 5 9
|
syl2anc |
⊢ ( 𝜑 → 𝑋 ∈ On ) |
11 |
|
eloni |
⊢ ( 𝑋 ∈ On → Ord 𝑋 ) |
12 |
|
ordirr |
⊢ ( Ord 𝑋 → ¬ 𝑋 ∈ 𝑋 ) |
13 |
10 11 12
|
3syl |
⊢ ( 𝜑 → ¬ 𝑋 ∈ 𝑋 ) |
14 |
|
fvex |
⊢ ( 𝐺 ‘ 𝑋 ) ∈ V |
15 |
|
dif1o |
⊢ ( ( 𝐺 ‘ 𝑋 ) ∈ ( V ∖ 1o ) ↔ ( ( 𝐺 ‘ 𝑋 ) ∈ V ∧ ( 𝐺 ‘ 𝑋 ) ≠ ∅ ) ) |
16 |
14 15
|
mpbiran |
⊢ ( ( 𝐺 ‘ 𝑋 ) ∈ ( V ∖ 1o ) ↔ ( 𝐺 ‘ 𝑋 ) ≠ ∅ ) |
17 |
1 2 3
|
cantnfs |
⊢ ( 𝜑 → ( 𝐺 ∈ 𝑆 ↔ ( 𝐺 : 𝐵 ⟶ 𝐴 ∧ 𝐺 finSupp ∅ ) ) ) |
18 |
4 17
|
mpbid |
⊢ ( 𝜑 → ( 𝐺 : 𝐵 ⟶ 𝐴 ∧ 𝐺 finSupp ∅ ) ) |
19 |
18
|
simpld |
⊢ ( 𝜑 → 𝐺 : 𝐵 ⟶ 𝐴 ) |
20 |
19
|
ffnd |
⊢ ( 𝜑 → 𝐺 Fn 𝐵 ) |
21 |
|
0ex |
⊢ ∅ ∈ V |
22 |
21
|
a1i |
⊢ ( 𝜑 → ∅ ∈ V ) |
23 |
|
elsuppfn |
⊢ ( ( 𝐺 Fn 𝐵 ∧ 𝐵 ∈ On ∧ ∅ ∈ V ) → ( 𝑋 ∈ ( 𝐺 supp ∅ ) ↔ ( 𝑋 ∈ 𝐵 ∧ ( 𝐺 ‘ 𝑋 ) ≠ ∅ ) ) ) |
24 |
20 3 22 23
|
syl3anc |
⊢ ( 𝜑 → ( 𝑋 ∈ ( 𝐺 supp ∅ ) ↔ ( 𝑋 ∈ 𝐵 ∧ ( 𝐺 ‘ 𝑋 ) ≠ ∅ ) ) ) |
25 |
16
|
bicomi |
⊢ ( ( 𝐺 ‘ 𝑋 ) ≠ ∅ ↔ ( 𝐺 ‘ 𝑋 ) ∈ ( V ∖ 1o ) ) |
26 |
25
|
a1i |
⊢ ( 𝜑 → ( ( 𝐺 ‘ 𝑋 ) ≠ ∅ ↔ ( 𝐺 ‘ 𝑋 ) ∈ ( V ∖ 1o ) ) ) |
27 |
26
|
anbi2d |
⊢ ( 𝜑 → ( ( 𝑋 ∈ 𝐵 ∧ ( 𝐺 ‘ 𝑋 ) ≠ ∅ ) ↔ ( 𝑋 ∈ 𝐵 ∧ ( 𝐺 ‘ 𝑋 ) ∈ ( V ∖ 1o ) ) ) ) |
28 |
24 27
|
bitrd |
⊢ ( 𝜑 → ( 𝑋 ∈ ( 𝐺 supp ∅ ) ↔ ( 𝑋 ∈ 𝐵 ∧ ( 𝐺 ‘ 𝑋 ) ∈ ( V ∖ 1o ) ) ) ) |
29 |
7
|
sseld |
⊢ ( 𝜑 → ( 𝑋 ∈ ( 𝐺 supp ∅ ) → 𝑋 ∈ 𝑋 ) ) |
30 |
28 29
|
sylbird |
⊢ ( 𝜑 → ( ( 𝑋 ∈ 𝐵 ∧ ( 𝐺 ‘ 𝑋 ) ∈ ( V ∖ 1o ) ) → 𝑋 ∈ 𝑋 ) ) |
31 |
5 30
|
mpand |
⊢ ( 𝜑 → ( ( 𝐺 ‘ 𝑋 ) ∈ ( V ∖ 1o ) → 𝑋 ∈ 𝑋 ) ) |
32 |
16 31
|
syl5bir |
⊢ ( 𝜑 → ( ( 𝐺 ‘ 𝑋 ) ≠ ∅ → 𝑋 ∈ 𝑋 ) ) |
33 |
32
|
necon1bd |
⊢ ( 𝜑 → ( ¬ 𝑋 ∈ 𝑋 → ( 𝐺 ‘ 𝑋 ) = ∅ ) ) |
34 |
13 33
|
mpd |
⊢ ( 𝜑 → ( 𝐺 ‘ 𝑋 ) = ∅ ) |
35 |
34
|
ad3antrrr |
⊢ ( ( ( ( 𝜑 ∧ 𝑌 = ∅ ) ∧ 𝑡 ∈ 𝐵 ) ∧ 𝑡 = 𝑋 ) → ( 𝐺 ‘ 𝑋 ) = ∅ ) |
36 |
|
simpr |
⊢ ( ( ( ( 𝜑 ∧ 𝑌 = ∅ ) ∧ 𝑡 ∈ 𝐵 ) ∧ 𝑡 = 𝑋 ) → 𝑡 = 𝑋 ) |
37 |
36
|
fveq2d |
⊢ ( ( ( ( 𝜑 ∧ 𝑌 = ∅ ) ∧ 𝑡 ∈ 𝐵 ) ∧ 𝑡 = 𝑋 ) → ( 𝐺 ‘ 𝑡 ) = ( 𝐺 ‘ 𝑋 ) ) |
38 |
|
simpllr |
⊢ ( ( ( ( 𝜑 ∧ 𝑌 = ∅ ) ∧ 𝑡 ∈ 𝐵 ) ∧ 𝑡 = 𝑋 ) → 𝑌 = ∅ ) |
39 |
35 37 38
|
3eqtr4rd |
⊢ ( ( ( ( 𝜑 ∧ 𝑌 = ∅ ) ∧ 𝑡 ∈ 𝐵 ) ∧ 𝑡 = 𝑋 ) → 𝑌 = ( 𝐺 ‘ 𝑡 ) ) |
40 |
|
eqidd |
⊢ ( ( ( ( 𝜑 ∧ 𝑌 = ∅ ) ∧ 𝑡 ∈ 𝐵 ) ∧ ¬ 𝑡 = 𝑋 ) → ( 𝐺 ‘ 𝑡 ) = ( 𝐺 ‘ 𝑡 ) ) |
41 |
39 40
|
ifeqda |
⊢ ( ( ( 𝜑 ∧ 𝑌 = ∅ ) ∧ 𝑡 ∈ 𝐵 ) → if ( 𝑡 = 𝑋 , 𝑌 , ( 𝐺 ‘ 𝑡 ) ) = ( 𝐺 ‘ 𝑡 ) ) |
42 |
41
|
mpteq2dva |
⊢ ( ( 𝜑 ∧ 𝑌 = ∅ ) → ( 𝑡 ∈ 𝐵 ↦ if ( 𝑡 = 𝑋 , 𝑌 , ( 𝐺 ‘ 𝑡 ) ) ) = ( 𝑡 ∈ 𝐵 ↦ ( 𝐺 ‘ 𝑡 ) ) ) |
43 |
8 42
|
eqtrid |
⊢ ( ( 𝜑 ∧ 𝑌 = ∅ ) → 𝐹 = ( 𝑡 ∈ 𝐵 ↦ ( 𝐺 ‘ 𝑡 ) ) ) |
44 |
19
|
feqmptd |
⊢ ( 𝜑 → 𝐺 = ( 𝑡 ∈ 𝐵 ↦ ( 𝐺 ‘ 𝑡 ) ) ) |
45 |
44
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑌 = ∅ ) → 𝐺 = ( 𝑡 ∈ 𝐵 ↦ ( 𝐺 ‘ 𝑡 ) ) ) |
46 |
43 45
|
eqtr4d |
⊢ ( ( 𝜑 ∧ 𝑌 = ∅ ) → 𝐹 = 𝐺 ) |
47 |
4
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑌 = ∅ ) → 𝐺 ∈ 𝑆 ) |
48 |
46 47
|
eqeltrd |
⊢ ( ( 𝜑 ∧ 𝑌 = ∅ ) → 𝐹 ∈ 𝑆 ) |
49 |
|
oecl |
⊢ ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ) → ( 𝐴 ↑o 𝐵 ) ∈ On ) |
50 |
2 3 49
|
syl2anc |
⊢ ( 𝜑 → ( 𝐴 ↑o 𝐵 ) ∈ On ) |
51 |
1 2 3
|
cantnff |
⊢ ( 𝜑 → ( 𝐴 CNF 𝐵 ) : 𝑆 ⟶ ( 𝐴 ↑o 𝐵 ) ) |
52 |
51 4
|
ffvelrnd |
⊢ ( 𝜑 → ( ( 𝐴 CNF 𝐵 ) ‘ 𝐺 ) ∈ ( 𝐴 ↑o 𝐵 ) ) |
53 |
|
onelon |
⊢ ( ( ( 𝐴 ↑o 𝐵 ) ∈ On ∧ ( ( 𝐴 CNF 𝐵 ) ‘ 𝐺 ) ∈ ( 𝐴 ↑o 𝐵 ) ) → ( ( 𝐴 CNF 𝐵 ) ‘ 𝐺 ) ∈ On ) |
54 |
50 52 53
|
syl2anc |
⊢ ( 𝜑 → ( ( 𝐴 CNF 𝐵 ) ‘ 𝐺 ) ∈ On ) |
55 |
54
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑌 = ∅ ) → ( ( 𝐴 CNF 𝐵 ) ‘ 𝐺 ) ∈ On ) |
56 |
|
oa0r |
⊢ ( ( ( 𝐴 CNF 𝐵 ) ‘ 𝐺 ) ∈ On → ( ∅ +o ( ( 𝐴 CNF 𝐵 ) ‘ 𝐺 ) ) = ( ( 𝐴 CNF 𝐵 ) ‘ 𝐺 ) ) |
57 |
55 56
|
syl |
⊢ ( ( 𝜑 ∧ 𝑌 = ∅ ) → ( ∅ +o ( ( 𝐴 CNF 𝐵 ) ‘ 𝐺 ) ) = ( ( 𝐴 CNF 𝐵 ) ‘ 𝐺 ) ) |
58 |
|
oveq2 |
⊢ ( 𝑌 = ∅ → ( ( 𝐴 ↑o 𝑋 ) ·o 𝑌 ) = ( ( 𝐴 ↑o 𝑋 ) ·o ∅ ) ) |
59 |
|
oecl |
⊢ ( ( 𝐴 ∈ On ∧ 𝑋 ∈ On ) → ( 𝐴 ↑o 𝑋 ) ∈ On ) |
60 |
2 10 59
|
syl2anc |
⊢ ( 𝜑 → ( 𝐴 ↑o 𝑋 ) ∈ On ) |
61 |
|
om0 |
⊢ ( ( 𝐴 ↑o 𝑋 ) ∈ On → ( ( 𝐴 ↑o 𝑋 ) ·o ∅ ) = ∅ ) |
62 |
60 61
|
syl |
⊢ ( 𝜑 → ( ( 𝐴 ↑o 𝑋 ) ·o ∅ ) = ∅ ) |
63 |
58 62
|
sylan9eqr |
⊢ ( ( 𝜑 ∧ 𝑌 = ∅ ) → ( ( 𝐴 ↑o 𝑋 ) ·o 𝑌 ) = ∅ ) |
64 |
63
|
oveq1d |
⊢ ( ( 𝜑 ∧ 𝑌 = ∅ ) → ( ( ( 𝐴 ↑o 𝑋 ) ·o 𝑌 ) +o ( ( 𝐴 CNF 𝐵 ) ‘ 𝐺 ) ) = ( ∅ +o ( ( 𝐴 CNF 𝐵 ) ‘ 𝐺 ) ) ) |
65 |
46
|
fveq2d |
⊢ ( ( 𝜑 ∧ 𝑌 = ∅ ) → ( ( 𝐴 CNF 𝐵 ) ‘ 𝐹 ) = ( ( 𝐴 CNF 𝐵 ) ‘ 𝐺 ) ) |
66 |
57 64 65
|
3eqtr4rd |
⊢ ( ( 𝜑 ∧ 𝑌 = ∅ ) → ( ( 𝐴 CNF 𝐵 ) ‘ 𝐹 ) = ( ( ( 𝐴 ↑o 𝑋 ) ·o 𝑌 ) +o ( ( 𝐴 CNF 𝐵 ) ‘ 𝐺 ) ) ) |
67 |
48 66
|
jca |
⊢ ( ( 𝜑 ∧ 𝑌 = ∅ ) → ( 𝐹 ∈ 𝑆 ∧ ( ( 𝐴 CNF 𝐵 ) ‘ 𝐹 ) = ( ( ( 𝐴 ↑o 𝑋 ) ·o 𝑌 ) +o ( ( 𝐴 CNF 𝐵 ) ‘ 𝐺 ) ) ) ) |
68 |
2
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑌 ≠ ∅ ) → 𝐴 ∈ On ) |
69 |
3
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑌 ≠ ∅ ) → 𝐵 ∈ On ) |
70 |
4
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑌 ≠ ∅ ) → 𝐺 ∈ 𝑆 ) |
71 |
5
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑌 ≠ ∅ ) → 𝑋 ∈ 𝐵 ) |
72 |
6
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑌 ≠ ∅ ) → 𝑌 ∈ 𝐴 ) |
73 |
7
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑌 ≠ ∅ ) → ( 𝐺 supp ∅ ) ⊆ 𝑋 ) |
74 |
1 68 69 70 71 72 73 8
|
cantnfp1lem1 |
⊢ ( ( 𝜑 ∧ 𝑌 ≠ ∅ ) → 𝐹 ∈ 𝑆 ) |
75 |
|
onelon |
⊢ ( ( 𝐴 ∈ On ∧ 𝑌 ∈ 𝐴 ) → 𝑌 ∈ On ) |
76 |
2 6 75
|
syl2anc |
⊢ ( 𝜑 → 𝑌 ∈ On ) |
77 |
|
on0eln0 |
⊢ ( 𝑌 ∈ On → ( ∅ ∈ 𝑌 ↔ 𝑌 ≠ ∅ ) ) |
78 |
76 77
|
syl |
⊢ ( 𝜑 → ( ∅ ∈ 𝑌 ↔ 𝑌 ≠ ∅ ) ) |
79 |
78
|
biimpar |
⊢ ( ( 𝜑 ∧ 𝑌 ≠ ∅ ) → ∅ ∈ 𝑌 ) |
80 |
|
eqid |
⊢ OrdIso ( E , ( 𝐹 supp ∅ ) ) = OrdIso ( E , ( 𝐹 supp ∅ ) ) |
81 |
|
eqid |
⊢ seqω ( ( 𝑘 ∈ V , 𝑧 ∈ V ↦ ( ( ( 𝐴 ↑o ( OrdIso ( E , ( 𝐹 supp ∅ ) ) ‘ 𝑘 ) ) ·o ( 𝐹 ‘ ( OrdIso ( E , ( 𝐹 supp ∅ ) ) ‘ 𝑘 ) ) ) +o 𝑧 ) ) , ∅ ) = seqω ( ( 𝑘 ∈ V , 𝑧 ∈ V ↦ ( ( ( 𝐴 ↑o ( OrdIso ( E , ( 𝐹 supp ∅ ) ) ‘ 𝑘 ) ) ·o ( 𝐹 ‘ ( OrdIso ( E , ( 𝐹 supp ∅ ) ) ‘ 𝑘 ) ) ) +o 𝑧 ) ) , ∅ ) |
82 |
|
eqid |
⊢ OrdIso ( E , ( 𝐺 supp ∅ ) ) = OrdIso ( E , ( 𝐺 supp ∅ ) ) |
83 |
|
eqid |
⊢ seqω ( ( 𝑘 ∈ V , 𝑧 ∈ V ↦ ( ( ( 𝐴 ↑o ( OrdIso ( E , ( 𝐺 supp ∅ ) ) ‘ 𝑘 ) ) ·o ( 𝐺 ‘ ( OrdIso ( E , ( 𝐺 supp ∅ ) ) ‘ 𝑘 ) ) ) +o 𝑧 ) ) , ∅ ) = seqω ( ( 𝑘 ∈ V , 𝑧 ∈ V ↦ ( ( ( 𝐴 ↑o ( OrdIso ( E , ( 𝐺 supp ∅ ) ) ‘ 𝑘 ) ) ·o ( 𝐺 ‘ ( OrdIso ( E , ( 𝐺 supp ∅ ) ) ‘ 𝑘 ) ) ) +o 𝑧 ) ) , ∅ ) |
84 |
1 68 69 70 71 72 73 8 79 80 81 82 83
|
cantnfp1lem3 |
⊢ ( ( 𝜑 ∧ 𝑌 ≠ ∅ ) → ( ( 𝐴 CNF 𝐵 ) ‘ 𝐹 ) = ( ( ( 𝐴 ↑o 𝑋 ) ·o 𝑌 ) +o ( ( 𝐴 CNF 𝐵 ) ‘ 𝐺 ) ) ) |
85 |
74 84
|
jca |
⊢ ( ( 𝜑 ∧ 𝑌 ≠ ∅ ) → ( 𝐹 ∈ 𝑆 ∧ ( ( 𝐴 CNF 𝐵 ) ‘ 𝐹 ) = ( ( ( 𝐴 ↑o 𝑋 ) ·o 𝑌 ) +o ( ( 𝐴 CNF 𝐵 ) ‘ 𝐺 ) ) ) ) |
86 |
67 85
|
pm2.61dane |
⊢ ( 𝜑 → ( 𝐹 ∈ 𝑆 ∧ ( ( 𝐴 CNF 𝐵 ) ‘ 𝐹 ) = ( ( ( 𝐴 ↑o 𝑋 ) ·o 𝑌 ) +o ( ( 𝐴 CNF 𝐵 ) ‘ 𝐺 ) ) ) ) |