| Step |
Hyp |
Ref |
Expression |
| 1 |
|
cantnfs.s |
⊢ 𝑆 = dom ( 𝐴 CNF 𝐵 ) |
| 2 |
|
cantnfs.a |
⊢ ( 𝜑 → 𝐴 ∈ On ) |
| 3 |
|
cantnfs.b |
⊢ ( 𝜑 → 𝐵 ∈ On ) |
| 4 |
|
cantnfp1.g |
⊢ ( 𝜑 → 𝐺 ∈ 𝑆 ) |
| 5 |
|
cantnfp1.x |
⊢ ( 𝜑 → 𝑋 ∈ 𝐵 ) |
| 6 |
|
cantnfp1.y |
⊢ ( 𝜑 → 𝑌 ∈ 𝐴 ) |
| 7 |
|
cantnfp1.s |
⊢ ( 𝜑 → ( 𝐺 supp ∅ ) ⊆ 𝑋 ) |
| 8 |
|
cantnfp1.f |
⊢ 𝐹 = ( 𝑡 ∈ 𝐵 ↦ if ( 𝑡 = 𝑋 , 𝑌 , ( 𝐺 ‘ 𝑡 ) ) ) |
| 9 |
|
cantnfp1.e |
⊢ ( 𝜑 → ∅ ∈ 𝑌 ) |
| 10 |
|
cantnfp1.o |
⊢ 𝑂 = OrdIso ( E , ( 𝐹 supp ∅ ) ) |
| 11 |
|
iftrue |
⊢ ( 𝑡 = 𝑋 → if ( 𝑡 = 𝑋 , 𝑌 , ( 𝐺 ‘ 𝑡 ) ) = 𝑌 ) |
| 12 |
8 11 5 6
|
fvmptd3 |
⊢ ( 𝜑 → ( 𝐹 ‘ 𝑋 ) = 𝑌 ) |
| 13 |
9
|
ne0d |
⊢ ( 𝜑 → 𝑌 ≠ ∅ ) |
| 14 |
12 13
|
eqnetrd |
⊢ ( 𝜑 → ( 𝐹 ‘ 𝑋 ) ≠ ∅ ) |
| 15 |
6
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑡 ∈ 𝐵 ) → 𝑌 ∈ 𝐴 ) |
| 16 |
1 2 3
|
cantnfs |
⊢ ( 𝜑 → ( 𝐺 ∈ 𝑆 ↔ ( 𝐺 : 𝐵 ⟶ 𝐴 ∧ 𝐺 finSupp ∅ ) ) ) |
| 17 |
4 16
|
mpbid |
⊢ ( 𝜑 → ( 𝐺 : 𝐵 ⟶ 𝐴 ∧ 𝐺 finSupp ∅ ) ) |
| 18 |
17
|
simpld |
⊢ ( 𝜑 → 𝐺 : 𝐵 ⟶ 𝐴 ) |
| 19 |
18
|
ffvelcdmda |
⊢ ( ( 𝜑 ∧ 𝑡 ∈ 𝐵 ) → ( 𝐺 ‘ 𝑡 ) ∈ 𝐴 ) |
| 20 |
15 19
|
ifcld |
⊢ ( ( 𝜑 ∧ 𝑡 ∈ 𝐵 ) → if ( 𝑡 = 𝑋 , 𝑌 , ( 𝐺 ‘ 𝑡 ) ) ∈ 𝐴 ) |
| 21 |
20 8
|
fmptd |
⊢ ( 𝜑 → 𝐹 : 𝐵 ⟶ 𝐴 ) |
| 22 |
21
|
ffnd |
⊢ ( 𝜑 → 𝐹 Fn 𝐵 ) |
| 23 |
9
|
elexd |
⊢ ( 𝜑 → ∅ ∈ V ) |
| 24 |
|
elsuppfn |
⊢ ( ( 𝐹 Fn 𝐵 ∧ 𝐵 ∈ On ∧ ∅ ∈ V ) → ( 𝑋 ∈ ( 𝐹 supp ∅ ) ↔ ( 𝑋 ∈ 𝐵 ∧ ( 𝐹 ‘ 𝑋 ) ≠ ∅ ) ) ) |
| 25 |
22 3 23 24
|
syl3anc |
⊢ ( 𝜑 → ( 𝑋 ∈ ( 𝐹 supp ∅ ) ↔ ( 𝑋 ∈ 𝐵 ∧ ( 𝐹 ‘ 𝑋 ) ≠ ∅ ) ) ) |
| 26 |
5 14 25
|
mpbir2and |
⊢ ( 𝜑 → 𝑋 ∈ ( 𝐹 supp ∅ ) ) |
| 27 |
|
n0i |
⊢ ( 𝑋 ∈ ( 𝐹 supp ∅ ) → ¬ ( 𝐹 supp ∅ ) = ∅ ) |
| 28 |
26 27
|
syl |
⊢ ( 𝜑 → ¬ ( 𝐹 supp ∅ ) = ∅ ) |
| 29 |
|
ovexd |
⊢ ( 𝜑 → ( 𝐹 supp ∅ ) ∈ V ) |
| 30 |
1 2 3 4 5 6 7 8
|
cantnfp1lem1 |
⊢ ( 𝜑 → 𝐹 ∈ 𝑆 ) |
| 31 |
1 2 3 10 30
|
cantnfcl |
⊢ ( 𝜑 → ( E We ( 𝐹 supp ∅ ) ∧ dom 𝑂 ∈ ω ) ) |
| 32 |
31
|
simpld |
⊢ ( 𝜑 → E We ( 𝐹 supp ∅ ) ) |
| 33 |
10
|
oien |
⊢ ( ( ( 𝐹 supp ∅ ) ∈ V ∧ E We ( 𝐹 supp ∅ ) ) → dom 𝑂 ≈ ( 𝐹 supp ∅ ) ) |
| 34 |
29 32 33
|
syl2anc |
⊢ ( 𝜑 → dom 𝑂 ≈ ( 𝐹 supp ∅ ) ) |
| 35 |
|
breq1 |
⊢ ( dom 𝑂 = ∅ → ( dom 𝑂 ≈ ( 𝐹 supp ∅ ) ↔ ∅ ≈ ( 𝐹 supp ∅ ) ) ) |
| 36 |
|
ensymb |
⊢ ( ∅ ≈ ( 𝐹 supp ∅ ) ↔ ( 𝐹 supp ∅ ) ≈ ∅ ) |
| 37 |
|
en0 |
⊢ ( ( 𝐹 supp ∅ ) ≈ ∅ ↔ ( 𝐹 supp ∅ ) = ∅ ) |
| 38 |
36 37
|
bitri |
⊢ ( ∅ ≈ ( 𝐹 supp ∅ ) ↔ ( 𝐹 supp ∅ ) = ∅ ) |
| 39 |
35 38
|
bitrdi |
⊢ ( dom 𝑂 = ∅ → ( dom 𝑂 ≈ ( 𝐹 supp ∅ ) ↔ ( 𝐹 supp ∅ ) = ∅ ) ) |
| 40 |
34 39
|
syl5ibcom |
⊢ ( 𝜑 → ( dom 𝑂 = ∅ → ( 𝐹 supp ∅ ) = ∅ ) ) |
| 41 |
28 40
|
mtod |
⊢ ( 𝜑 → ¬ dom 𝑂 = ∅ ) |
| 42 |
31
|
simprd |
⊢ ( 𝜑 → dom 𝑂 ∈ ω ) |
| 43 |
|
nnlim |
⊢ ( dom 𝑂 ∈ ω → ¬ Lim dom 𝑂 ) |
| 44 |
42 43
|
syl |
⊢ ( 𝜑 → ¬ Lim dom 𝑂 ) |
| 45 |
|
ioran |
⊢ ( ¬ ( dom 𝑂 = ∅ ∨ Lim dom 𝑂 ) ↔ ( ¬ dom 𝑂 = ∅ ∧ ¬ Lim dom 𝑂 ) ) |
| 46 |
41 44 45
|
sylanbrc |
⊢ ( 𝜑 → ¬ ( dom 𝑂 = ∅ ∨ Lim dom 𝑂 ) ) |
| 47 |
|
nnord |
⊢ ( dom 𝑂 ∈ ω → Ord dom 𝑂 ) |
| 48 |
|
unizlim |
⊢ ( Ord dom 𝑂 → ( dom 𝑂 = ∪ dom 𝑂 ↔ ( dom 𝑂 = ∅ ∨ Lim dom 𝑂 ) ) ) |
| 49 |
42 47 48
|
3syl |
⊢ ( 𝜑 → ( dom 𝑂 = ∪ dom 𝑂 ↔ ( dom 𝑂 = ∅ ∨ Lim dom 𝑂 ) ) ) |
| 50 |
46 49
|
mtbird |
⊢ ( 𝜑 → ¬ dom 𝑂 = ∪ dom 𝑂 ) |
| 51 |
|
orduniorsuc |
⊢ ( Ord dom 𝑂 → ( dom 𝑂 = ∪ dom 𝑂 ∨ dom 𝑂 = suc ∪ dom 𝑂 ) ) |
| 52 |
42 47 51
|
3syl |
⊢ ( 𝜑 → ( dom 𝑂 = ∪ dom 𝑂 ∨ dom 𝑂 = suc ∪ dom 𝑂 ) ) |
| 53 |
52
|
ord |
⊢ ( 𝜑 → ( ¬ dom 𝑂 = ∪ dom 𝑂 → dom 𝑂 = suc ∪ dom 𝑂 ) ) |
| 54 |
50 53
|
mpd |
⊢ ( 𝜑 → dom 𝑂 = suc ∪ dom 𝑂 ) |