Step |
Hyp |
Ref |
Expression |
1 |
|
cantnfs.s |
⊢ 𝑆 = dom ( 𝐴 CNF 𝐵 ) |
2 |
|
cantnfs.a |
⊢ ( 𝜑 → 𝐴 ∈ On ) |
3 |
|
cantnfs.b |
⊢ ( 𝜑 → 𝐵 ∈ On ) |
4 |
|
cantnfp1.g |
⊢ ( 𝜑 → 𝐺 ∈ 𝑆 ) |
5 |
|
cantnfp1.x |
⊢ ( 𝜑 → 𝑋 ∈ 𝐵 ) |
6 |
|
cantnfp1.y |
⊢ ( 𝜑 → 𝑌 ∈ 𝐴 ) |
7 |
|
cantnfp1.s |
⊢ ( 𝜑 → ( 𝐺 supp ∅ ) ⊆ 𝑋 ) |
8 |
|
cantnfp1.f |
⊢ 𝐹 = ( 𝑡 ∈ 𝐵 ↦ if ( 𝑡 = 𝑋 , 𝑌 , ( 𝐺 ‘ 𝑡 ) ) ) |
9 |
|
cantnfp1.e |
⊢ ( 𝜑 → ∅ ∈ 𝑌 ) |
10 |
|
cantnfp1.o |
⊢ 𝑂 = OrdIso ( E , ( 𝐹 supp ∅ ) ) |
11 |
|
cantnfp1.h |
⊢ 𝐻 = seqω ( ( 𝑘 ∈ V , 𝑧 ∈ V ↦ ( ( ( 𝐴 ↑o ( 𝑂 ‘ 𝑘 ) ) ·o ( 𝐹 ‘ ( 𝑂 ‘ 𝑘 ) ) ) +o 𝑧 ) ) , ∅ ) |
12 |
|
cantnfp1.k |
⊢ 𝐾 = OrdIso ( E , ( 𝐺 supp ∅ ) ) |
13 |
|
cantnfp1.m |
⊢ 𝑀 = seqω ( ( 𝑘 ∈ V , 𝑧 ∈ V ↦ ( ( ( 𝐴 ↑o ( 𝐾 ‘ 𝑘 ) ) ·o ( 𝐺 ‘ ( 𝐾 ‘ 𝑘 ) ) ) +o 𝑧 ) ) , ∅ ) |
14 |
1 2 3 4 5 6 7 8
|
cantnfp1lem1 |
⊢ ( 𝜑 → 𝐹 ∈ 𝑆 ) |
15 |
1 2 3 10 14 11
|
cantnfval |
⊢ ( 𝜑 → ( ( 𝐴 CNF 𝐵 ) ‘ 𝐹 ) = ( 𝐻 ‘ dom 𝑂 ) ) |
16 |
1 2 3 4 5 6 7 8 9 10
|
cantnfp1lem2 |
⊢ ( 𝜑 → dom 𝑂 = suc ∪ dom 𝑂 ) |
17 |
16
|
fveq2d |
⊢ ( 𝜑 → ( 𝐻 ‘ dom 𝑂 ) = ( 𝐻 ‘ suc ∪ dom 𝑂 ) ) |
18 |
1 2 3 10 14
|
cantnfcl |
⊢ ( 𝜑 → ( E We ( 𝐹 supp ∅ ) ∧ dom 𝑂 ∈ ω ) ) |
19 |
18
|
simprd |
⊢ ( 𝜑 → dom 𝑂 ∈ ω ) |
20 |
16 19
|
eqeltrrd |
⊢ ( 𝜑 → suc ∪ dom 𝑂 ∈ ω ) |
21 |
|
peano2b |
⊢ ( ∪ dom 𝑂 ∈ ω ↔ suc ∪ dom 𝑂 ∈ ω ) |
22 |
20 21
|
sylibr |
⊢ ( 𝜑 → ∪ dom 𝑂 ∈ ω ) |
23 |
1 2 3 10 14 11
|
cantnfsuc |
⊢ ( ( 𝜑 ∧ ∪ dom 𝑂 ∈ ω ) → ( 𝐻 ‘ suc ∪ dom 𝑂 ) = ( ( ( 𝐴 ↑o ( 𝑂 ‘ ∪ dom 𝑂 ) ) ·o ( 𝐹 ‘ ( 𝑂 ‘ ∪ dom 𝑂 ) ) ) +o ( 𝐻 ‘ ∪ dom 𝑂 ) ) ) |
24 |
22 23
|
mpdan |
⊢ ( 𝜑 → ( 𝐻 ‘ suc ∪ dom 𝑂 ) = ( ( ( 𝐴 ↑o ( 𝑂 ‘ ∪ dom 𝑂 ) ) ·o ( 𝐹 ‘ ( 𝑂 ‘ ∪ dom 𝑂 ) ) ) +o ( 𝐻 ‘ ∪ dom 𝑂 ) ) ) |
25 |
|
ovexd |
⊢ ( 𝜑 → ( 𝐹 supp ∅ ) ∈ V ) |
26 |
18
|
simpld |
⊢ ( 𝜑 → E We ( 𝐹 supp ∅ ) ) |
27 |
10
|
oiiso |
⊢ ( ( ( 𝐹 supp ∅ ) ∈ V ∧ E We ( 𝐹 supp ∅ ) ) → 𝑂 Isom E , E ( dom 𝑂 , ( 𝐹 supp ∅ ) ) ) |
28 |
25 26 27
|
syl2anc |
⊢ ( 𝜑 → 𝑂 Isom E , E ( dom 𝑂 , ( 𝐹 supp ∅ ) ) ) |
29 |
|
isof1o |
⊢ ( 𝑂 Isom E , E ( dom 𝑂 , ( 𝐹 supp ∅ ) ) → 𝑂 : dom 𝑂 –1-1-onto→ ( 𝐹 supp ∅ ) ) |
30 |
28 29
|
syl |
⊢ ( 𝜑 → 𝑂 : dom 𝑂 –1-1-onto→ ( 𝐹 supp ∅ ) ) |
31 |
|
f1ocnv |
⊢ ( 𝑂 : dom 𝑂 –1-1-onto→ ( 𝐹 supp ∅ ) → ◡ 𝑂 : ( 𝐹 supp ∅ ) –1-1-onto→ dom 𝑂 ) |
32 |
|
f1of |
⊢ ( ◡ 𝑂 : ( 𝐹 supp ∅ ) –1-1-onto→ dom 𝑂 → ◡ 𝑂 : ( 𝐹 supp ∅ ) ⟶ dom 𝑂 ) |
33 |
30 31 32
|
3syl |
⊢ ( 𝜑 → ◡ 𝑂 : ( 𝐹 supp ∅ ) ⟶ dom 𝑂 ) |
34 |
|
iftrue |
⊢ ( 𝑡 = 𝑋 → if ( 𝑡 = 𝑋 , 𝑌 , ( 𝐺 ‘ 𝑡 ) ) = 𝑌 ) |
35 |
8 34 5 6
|
fvmptd3 |
⊢ ( 𝜑 → ( 𝐹 ‘ 𝑋 ) = 𝑌 ) |
36 |
9
|
ne0d |
⊢ ( 𝜑 → 𝑌 ≠ ∅ ) |
37 |
35 36
|
eqnetrd |
⊢ ( 𝜑 → ( 𝐹 ‘ 𝑋 ) ≠ ∅ ) |
38 |
6
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑡 ∈ 𝐵 ) → 𝑌 ∈ 𝐴 ) |
39 |
1 2 3
|
cantnfs |
⊢ ( 𝜑 → ( 𝐺 ∈ 𝑆 ↔ ( 𝐺 : 𝐵 ⟶ 𝐴 ∧ 𝐺 finSupp ∅ ) ) ) |
40 |
4 39
|
mpbid |
⊢ ( 𝜑 → ( 𝐺 : 𝐵 ⟶ 𝐴 ∧ 𝐺 finSupp ∅ ) ) |
41 |
40
|
simpld |
⊢ ( 𝜑 → 𝐺 : 𝐵 ⟶ 𝐴 ) |
42 |
41
|
ffvelrnda |
⊢ ( ( 𝜑 ∧ 𝑡 ∈ 𝐵 ) → ( 𝐺 ‘ 𝑡 ) ∈ 𝐴 ) |
43 |
38 42
|
ifcld |
⊢ ( ( 𝜑 ∧ 𝑡 ∈ 𝐵 ) → if ( 𝑡 = 𝑋 , 𝑌 , ( 𝐺 ‘ 𝑡 ) ) ∈ 𝐴 ) |
44 |
43 8
|
fmptd |
⊢ ( 𝜑 → 𝐹 : 𝐵 ⟶ 𝐴 ) |
45 |
44
|
ffnd |
⊢ ( 𝜑 → 𝐹 Fn 𝐵 ) |
46 |
|
0ex |
⊢ ∅ ∈ V |
47 |
46
|
a1i |
⊢ ( 𝜑 → ∅ ∈ V ) |
48 |
|
elsuppfn |
⊢ ( ( 𝐹 Fn 𝐵 ∧ 𝐵 ∈ On ∧ ∅ ∈ V ) → ( 𝑋 ∈ ( 𝐹 supp ∅ ) ↔ ( 𝑋 ∈ 𝐵 ∧ ( 𝐹 ‘ 𝑋 ) ≠ ∅ ) ) ) |
49 |
45 3 47 48
|
syl3anc |
⊢ ( 𝜑 → ( 𝑋 ∈ ( 𝐹 supp ∅ ) ↔ ( 𝑋 ∈ 𝐵 ∧ ( 𝐹 ‘ 𝑋 ) ≠ ∅ ) ) ) |
50 |
5 37 49
|
mpbir2and |
⊢ ( 𝜑 → 𝑋 ∈ ( 𝐹 supp ∅ ) ) |
51 |
33 50
|
ffvelrnd |
⊢ ( 𝜑 → ( ◡ 𝑂 ‘ 𝑋 ) ∈ dom 𝑂 ) |
52 |
|
elssuni |
⊢ ( ( ◡ 𝑂 ‘ 𝑋 ) ∈ dom 𝑂 → ( ◡ 𝑂 ‘ 𝑋 ) ⊆ ∪ dom 𝑂 ) |
53 |
51 52
|
syl |
⊢ ( 𝜑 → ( ◡ 𝑂 ‘ 𝑋 ) ⊆ ∪ dom 𝑂 ) |
54 |
10
|
oicl |
⊢ Ord dom 𝑂 |
55 |
|
ordelon |
⊢ ( ( Ord dom 𝑂 ∧ ( ◡ 𝑂 ‘ 𝑋 ) ∈ dom 𝑂 ) → ( ◡ 𝑂 ‘ 𝑋 ) ∈ On ) |
56 |
54 51 55
|
sylancr |
⊢ ( 𝜑 → ( ◡ 𝑂 ‘ 𝑋 ) ∈ On ) |
57 |
|
nnon |
⊢ ( ∪ dom 𝑂 ∈ ω → ∪ dom 𝑂 ∈ On ) |
58 |
22 57
|
syl |
⊢ ( 𝜑 → ∪ dom 𝑂 ∈ On ) |
59 |
|
ontri1 |
⊢ ( ( ( ◡ 𝑂 ‘ 𝑋 ) ∈ On ∧ ∪ dom 𝑂 ∈ On ) → ( ( ◡ 𝑂 ‘ 𝑋 ) ⊆ ∪ dom 𝑂 ↔ ¬ ∪ dom 𝑂 ∈ ( ◡ 𝑂 ‘ 𝑋 ) ) ) |
60 |
56 58 59
|
syl2anc |
⊢ ( 𝜑 → ( ( ◡ 𝑂 ‘ 𝑋 ) ⊆ ∪ dom 𝑂 ↔ ¬ ∪ dom 𝑂 ∈ ( ◡ 𝑂 ‘ 𝑋 ) ) ) |
61 |
53 60
|
mpbid |
⊢ ( 𝜑 → ¬ ∪ dom 𝑂 ∈ ( ◡ 𝑂 ‘ 𝑋 ) ) |
62 |
|
sucidg |
⊢ ( ∪ dom 𝑂 ∈ ω → ∪ dom 𝑂 ∈ suc ∪ dom 𝑂 ) |
63 |
22 62
|
syl |
⊢ ( 𝜑 → ∪ dom 𝑂 ∈ suc ∪ dom 𝑂 ) |
64 |
63 16
|
eleqtrrd |
⊢ ( 𝜑 → ∪ dom 𝑂 ∈ dom 𝑂 ) |
65 |
|
isorel |
⊢ ( ( 𝑂 Isom E , E ( dom 𝑂 , ( 𝐹 supp ∅ ) ) ∧ ( ∪ dom 𝑂 ∈ dom 𝑂 ∧ ( ◡ 𝑂 ‘ 𝑋 ) ∈ dom 𝑂 ) ) → ( ∪ dom 𝑂 E ( ◡ 𝑂 ‘ 𝑋 ) ↔ ( 𝑂 ‘ ∪ dom 𝑂 ) E ( 𝑂 ‘ ( ◡ 𝑂 ‘ 𝑋 ) ) ) ) |
66 |
28 64 51 65
|
syl12anc |
⊢ ( 𝜑 → ( ∪ dom 𝑂 E ( ◡ 𝑂 ‘ 𝑋 ) ↔ ( 𝑂 ‘ ∪ dom 𝑂 ) E ( 𝑂 ‘ ( ◡ 𝑂 ‘ 𝑋 ) ) ) ) |
67 |
|
fvex |
⊢ ( ◡ 𝑂 ‘ 𝑋 ) ∈ V |
68 |
67
|
epeli |
⊢ ( ∪ dom 𝑂 E ( ◡ 𝑂 ‘ 𝑋 ) ↔ ∪ dom 𝑂 ∈ ( ◡ 𝑂 ‘ 𝑋 ) ) |
69 |
|
fvex |
⊢ ( 𝑂 ‘ ( ◡ 𝑂 ‘ 𝑋 ) ) ∈ V |
70 |
69
|
epeli |
⊢ ( ( 𝑂 ‘ ∪ dom 𝑂 ) E ( 𝑂 ‘ ( ◡ 𝑂 ‘ 𝑋 ) ) ↔ ( 𝑂 ‘ ∪ dom 𝑂 ) ∈ ( 𝑂 ‘ ( ◡ 𝑂 ‘ 𝑋 ) ) ) |
71 |
66 68 70
|
3bitr3g |
⊢ ( 𝜑 → ( ∪ dom 𝑂 ∈ ( ◡ 𝑂 ‘ 𝑋 ) ↔ ( 𝑂 ‘ ∪ dom 𝑂 ) ∈ ( 𝑂 ‘ ( ◡ 𝑂 ‘ 𝑋 ) ) ) ) |
72 |
|
f1ocnvfv2 |
⊢ ( ( 𝑂 : dom 𝑂 –1-1-onto→ ( 𝐹 supp ∅ ) ∧ 𝑋 ∈ ( 𝐹 supp ∅ ) ) → ( 𝑂 ‘ ( ◡ 𝑂 ‘ 𝑋 ) ) = 𝑋 ) |
73 |
30 50 72
|
syl2anc |
⊢ ( 𝜑 → ( 𝑂 ‘ ( ◡ 𝑂 ‘ 𝑋 ) ) = 𝑋 ) |
74 |
73
|
eleq2d |
⊢ ( 𝜑 → ( ( 𝑂 ‘ ∪ dom 𝑂 ) ∈ ( 𝑂 ‘ ( ◡ 𝑂 ‘ 𝑋 ) ) ↔ ( 𝑂 ‘ ∪ dom 𝑂 ) ∈ 𝑋 ) ) |
75 |
71 74
|
bitrd |
⊢ ( 𝜑 → ( ∪ dom 𝑂 ∈ ( ◡ 𝑂 ‘ 𝑋 ) ↔ ( 𝑂 ‘ ∪ dom 𝑂 ) ∈ 𝑋 ) ) |
76 |
61 75
|
mtbid |
⊢ ( 𝜑 → ¬ ( 𝑂 ‘ ∪ dom 𝑂 ) ∈ 𝑋 ) |
77 |
7
|
sseld |
⊢ ( 𝜑 → ( ( 𝑂 ‘ ∪ dom 𝑂 ) ∈ ( 𝐺 supp ∅ ) → ( 𝑂 ‘ ∪ dom 𝑂 ) ∈ 𝑋 ) ) |
78 |
|
suppssdm |
⊢ ( 𝐹 supp ∅ ) ⊆ dom 𝐹 |
79 |
78 44
|
fssdm |
⊢ ( 𝜑 → ( 𝐹 supp ∅ ) ⊆ 𝐵 ) |
80 |
|
onss |
⊢ ( 𝐵 ∈ On → 𝐵 ⊆ On ) |
81 |
3 80
|
syl |
⊢ ( 𝜑 → 𝐵 ⊆ On ) |
82 |
79 81
|
sstrd |
⊢ ( 𝜑 → ( 𝐹 supp ∅ ) ⊆ On ) |
83 |
10
|
oif |
⊢ 𝑂 : dom 𝑂 ⟶ ( 𝐹 supp ∅ ) |
84 |
83
|
ffvelrni |
⊢ ( ∪ dom 𝑂 ∈ dom 𝑂 → ( 𝑂 ‘ ∪ dom 𝑂 ) ∈ ( 𝐹 supp ∅ ) ) |
85 |
64 84
|
syl |
⊢ ( 𝜑 → ( 𝑂 ‘ ∪ dom 𝑂 ) ∈ ( 𝐹 supp ∅ ) ) |
86 |
82 85
|
sseldd |
⊢ ( 𝜑 → ( 𝑂 ‘ ∪ dom 𝑂 ) ∈ On ) |
87 |
|
eloni |
⊢ ( ( 𝑂 ‘ ∪ dom 𝑂 ) ∈ On → Ord ( 𝑂 ‘ ∪ dom 𝑂 ) ) |
88 |
86 87
|
syl |
⊢ ( 𝜑 → Ord ( 𝑂 ‘ ∪ dom 𝑂 ) ) |
89 |
|
ordn2lp |
⊢ ( Ord ( 𝑂 ‘ ∪ dom 𝑂 ) → ¬ ( ( 𝑂 ‘ ∪ dom 𝑂 ) ∈ 𝑋 ∧ 𝑋 ∈ ( 𝑂 ‘ ∪ dom 𝑂 ) ) ) |
90 |
88 89
|
syl |
⊢ ( 𝜑 → ¬ ( ( 𝑂 ‘ ∪ dom 𝑂 ) ∈ 𝑋 ∧ 𝑋 ∈ ( 𝑂 ‘ ∪ dom 𝑂 ) ) ) |
91 |
|
imnan |
⊢ ( ( ( 𝑂 ‘ ∪ dom 𝑂 ) ∈ 𝑋 → ¬ 𝑋 ∈ ( 𝑂 ‘ ∪ dom 𝑂 ) ) ↔ ¬ ( ( 𝑂 ‘ ∪ dom 𝑂 ) ∈ 𝑋 ∧ 𝑋 ∈ ( 𝑂 ‘ ∪ dom 𝑂 ) ) ) |
92 |
90 91
|
sylibr |
⊢ ( 𝜑 → ( ( 𝑂 ‘ ∪ dom 𝑂 ) ∈ 𝑋 → ¬ 𝑋 ∈ ( 𝑂 ‘ ∪ dom 𝑂 ) ) ) |
93 |
77 92
|
syld |
⊢ ( 𝜑 → ( ( 𝑂 ‘ ∪ dom 𝑂 ) ∈ ( 𝐺 supp ∅ ) → ¬ 𝑋 ∈ ( 𝑂 ‘ ∪ dom 𝑂 ) ) ) |
94 |
|
onelon |
⊢ ( ( 𝐵 ∈ On ∧ 𝑋 ∈ 𝐵 ) → 𝑋 ∈ On ) |
95 |
3 5 94
|
syl2anc |
⊢ ( 𝜑 → 𝑋 ∈ On ) |
96 |
|
eloni |
⊢ ( 𝑋 ∈ On → Ord 𝑋 ) |
97 |
95 96
|
syl |
⊢ ( 𝜑 → Ord 𝑋 ) |
98 |
|
ordirr |
⊢ ( Ord 𝑋 → ¬ 𝑋 ∈ 𝑋 ) |
99 |
97 98
|
syl |
⊢ ( 𝜑 → ¬ 𝑋 ∈ 𝑋 ) |
100 |
|
elsni |
⊢ ( ( 𝑂 ‘ ∪ dom 𝑂 ) ∈ { 𝑋 } → ( 𝑂 ‘ ∪ dom 𝑂 ) = 𝑋 ) |
101 |
100
|
eleq2d |
⊢ ( ( 𝑂 ‘ ∪ dom 𝑂 ) ∈ { 𝑋 } → ( 𝑋 ∈ ( 𝑂 ‘ ∪ dom 𝑂 ) ↔ 𝑋 ∈ 𝑋 ) ) |
102 |
101
|
notbid |
⊢ ( ( 𝑂 ‘ ∪ dom 𝑂 ) ∈ { 𝑋 } → ( ¬ 𝑋 ∈ ( 𝑂 ‘ ∪ dom 𝑂 ) ↔ ¬ 𝑋 ∈ 𝑋 ) ) |
103 |
99 102
|
syl5ibrcom |
⊢ ( 𝜑 → ( ( 𝑂 ‘ ∪ dom 𝑂 ) ∈ { 𝑋 } → ¬ 𝑋 ∈ ( 𝑂 ‘ ∪ dom 𝑂 ) ) ) |
104 |
|
eqeq1 |
⊢ ( 𝑡 = 𝑘 → ( 𝑡 = 𝑋 ↔ 𝑘 = 𝑋 ) ) |
105 |
|
fveq2 |
⊢ ( 𝑡 = 𝑘 → ( 𝐺 ‘ 𝑡 ) = ( 𝐺 ‘ 𝑘 ) ) |
106 |
104 105
|
ifbieq2d |
⊢ ( 𝑡 = 𝑘 → if ( 𝑡 = 𝑋 , 𝑌 , ( 𝐺 ‘ 𝑡 ) ) = if ( 𝑘 = 𝑋 , 𝑌 , ( 𝐺 ‘ 𝑘 ) ) ) |
107 |
|
eldifi |
⊢ ( 𝑘 ∈ ( 𝐵 ∖ ( ( 𝐺 supp ∅ ) ∪ { 𝑋 } ) ) → 𝑘 ∈ 𝐵 ) |
108 |
107
|
adantl |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( 𝐵 ∖ ( ( 𝐺 supp ∅ ) ∪ { 𝑋 } ) ) ) → 𝑘 ∈ 𝐵 ) |
109 |
6
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( 𝐵 ∖ ( ( 𝐺 supp ∅ ) ∪ { 𝑋 } ) ) ) → 𝑌 ∈ 𝐴 ) |
110 |
|
fvex |
⊢ ( 𝐺 ‘ 𝑘 ) ∈ V |
111 |
|
ifexg |
⊢ ( ( 𝑌 ∈ 𝐴 ∧ ( 𝐺 ‘ 𝑘 ) ∈ V ) → if ( 𝑘 = 𝑋 , 𝑌 , ( 𝐺 ‘ 𝑘 ) ) ∈ V ) |
112 |
109 110 111
|
sylancl |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( 𝐵 ∖ ( ( 𝐺 supp ∅ ) ∪ { 𝑋 } ) ) ) → if ( 𝑘 = 𝑋 , 𝑌 , ( 𝐺 ‘ 𝑘 ) ) ∈ V ) |
113 |
8 106 108 112
|
fvmptd3 |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( 𝐵 ∖ ( ( 𝐺 supp ∅ ) ∪ { 𝑋 } ) ) ) → ( 𝐹 ‘ 𝑘 ) = if ( 𝑘 = 𝑋 , 𝑌 , ( 𝐺 ‘ 𝑘 ) ) ) |
114 |
|
eldifn |
⊢ ( 𝑘 ∈ ( 𝐵 ∖ ( ( 𝐺 supp ∅ ) ∪ { 𝑋 } ) ) → ¬ 𝑘 ∈ ( ( 𝐺 supp ∅ ) ∪ { 𝑋 } ) ) |
115 |
114
|
adantl |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( 𝐵 ∖ ( ( 𝐺 supp ∅ ) ∪ { 𝑋 } ) ) ) → ¬ 𝑘 ∈ ( ( 𝐺 supp ∅ ) ∪ { 𝑋 } ) ) |
116 |
|
velsn |
⊢ ( 𝑘 ∈ { 𝑋 } ↔ 𝑘 = 𝑋 ) |
117 |
|
elun2 |
⊢ ( 𝑘 ∈ { 𝑋 } → 𝑘 ∈ ( ( 𝐺 supp ∅ ) ∪ { 𝑋 } ) ) |
118 |
116 117
|
sylbir |
⊢ ( 𝑘 = 𝑋 → 𝑘 ∈ ( ( 𝐺 supp ∅ ) ∪ { 𝑋 } ) ) |
119 |
115 118
|
nsyl |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( 𝐵 ∖ ( ( 𝐺 supp ∅ ) ∪ { 𝑋 } ) ) ) → ¬ 𝑘 = 𝑋 ) |
120 |
119
|
iffalsed |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( 𝐵 ∖ ( ( 𝐺 supp ∅ ) ∪ { 𝑋 } ) ) ) → if ( 𝑘 = 𝑋 , 𝑌 , ( 𝐺 ‘ 𝑘 ) ) = ( 𝐺 ‘ 𝑘 ) ) |
121 |
|
ssun1 |
⊢ ( 𝐺 supp ∅ ) ⊆ ( ( 𝐺 supp ∅ ) ∪ { 𝑋 } ) |
122 |
|
sscon |
⊢ ( ( 𝐺 supp ∅ ) ⊆ ( ( 𝐺 supp ∅ ) ∪ { 𝑋 } ) → ( 𝐵 ∖ ( ( 𝐺 supp ∅ ) ∪ { 𝑋 } ) ) ⊆ ( 𝐵 ∖ ( 𝐺 supp ∅ ) ) ) |
123 |
121 122
|
ax-mp |
⊢ ( 𝐵 ∖ ( ( 𝐺 supp ∅ ) ∪ { 𝑋 } ) ) ⊆ ( 𝐵 ∖ ( 𝐺 supp ∅ ) ) |
124 |
123
|
sseli |
⊢ ( 𝑘 ∈ ( 𝐵 ∖ ( ( 𝐺 supp ∅ ) ∪ { 𝑋 } ) ) → 𝑘 ∈ ( 𝐵 ∖ ( 𝐺 supp ∅ ) ) ) |
125 |
|
ssidd |
⊢ ( 𝜑 → ( 𝐺 supp ∅ ) ⊆ ( 𝐺 supp ∅ ) ) |
126 |
41 125 3 9
|
suppssr |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( 𝐵 ∖ ( 𝐺 supp ∅ ) ) ) → ( 𝐺 ‘ 𝑘 ) = ∅ ) |
127 |
124 126
|
sylan2 |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( 𝐵 ∖ ( ( 𝐺 supp ∅ ) ∪ { 𝑋 } ) ) ) → ( 𝐺 ‘ 𝑘 ) = ∅ ) |
128 |
113 120 127
|
3eqtrd |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( 𝐵 ∖ ( ( 𝐺 supp ∅ ) ∪ { 𝑋 } ) ) ) → ( 𝐹 ‘ 𝑘 ) = ∅ ) |
129 |
44 128
|
suppss |
⊢ ( 𝜑 → ( 𝐹 supp ∅ ) ⊆ ( ( 𝐺 supp ∅ ) ∪ { 𝑋 } ) ) |
130 |
129 85
|
sseldd |
⊢ ( 𝜑 → ( 𝑂 ‘ ∪ dom 𝑂 ) ∈ ( ( 𝐺 supp ∅ ) ∪ { 𝑋 } ) ) |
131 |
|
elun |
⊢ ( ( 𝑂 ‘ ∪ dom 𝑂 ) ∈ ( ( 𝐺 supp ∅ ) ∪ { 𝑋 } ) ↔ ( ( 𝑂 ‘ ∪ dom 𝑂 ) ∈ ( 𝐺 supp ∅ ) ∨ ( 𝑂 ‘ ∪ dom 𝑂 ) ∈ { 𝑋 } ) ) |
132 |
130 131
|
sylib |
⊢ ( 𝜑 → ( ( 𝑂 ‘ ∪ dom 𝑂 ) ∈ ( 𝐺 supp ∅ ) ∨ ( 𝑂 ‘ ∪ dom 𝑂 ) ∈ { 𝑋 } ) ) |
133 |
93 103 132
|
mpjaod |
⊢ ( 𝜑 → ¬ 𝑋 ∈ ( 𝑂 ‘ ∪ dom 𝑂 ) ) |
134 |
|
ioran |
⊢ ( ¬ ( ( 𝑂 ‘ ∪ dom 𝑂 ) ∈ 𝑋 ∨ 𝑋 ∈ ( 𝑂 ‘ ∪ dom 𝑂 ) ) ↔ ( ¬ ( 𝑂 ‘ ∪ dom 𝑂 ) ∈ 𝑋 ∧ ¬ 𝑋 ∈ ( 𝑂 ‘ ∪ dom 𝑂 ) ) ) |
135 |
76 133 134
|
sylanbrc |
⊢ ( 𝜑 → ¬ ( ( 𝑂 ‘ ∪ dom 𝑂 ) ∈ 𝑋 ∨ 𝑋 ∈ ( 𝑂 ‘ ∪ dom 𝑂 ) ) ) |
136 |
|
ordtri3 |
⊢ ( ( Ord ( 𝑂 ‘ ∪ dom 𝑂 ) ∧ Ord 𝑋 ) → ( ( 𝑂 ‘ ∪ dom 𝑂 ) = 𝑋 ↔ ¬ ( ( 𝑂 ‘ ∪ dom 𝑂 ) ∈ 𝑋 ∨ 𝑋 ∈ ( 𝑂 ‘ ∪ dom 𝑂 ) ) ) ) |
137 |
88 97 136
|
syl2anc |
⊢ ( 𝜑 → ( ( 𝑂 ‘ ∪ dom 𝑂 ) = 𝑋 ↔ ¬ ( ( 𝑂 ‘ ∪ dom 𝑂 ) ∈ 𝑋 ∨ 𝑋 ∈ ( 𝑂 ‘ ∪ dom 𝑂 ) ) ) ) |
138 |
135 137
|
mpbird |
⊢ ( 𝜑 → ( 𝑂 ‘ ∪ dom 𝑂 ) = 𝑋 ) |
139 |
138
|
oveq2d |
⊢ ( 𝜑 → ( 𝐴 ↑o ( 𝑂 ‘ ∪ dom 𝑂 ) ) = ( 𝐴 ↑o 𝑋 ) ) |
140 |
138
|
fveq2d |
⊢ ( 𝜑 → ( 𝐹 ‘ ( 𝑂 ‘ ∪ dom 𝑂 ) ) = ( 𝐹 ‘ 𝑋 ) ) |
141 |
140 35
|
eqtrd |
⊢ ( 𝜑 → ( 𝐹 ‘ ( 𝑂 ‘ ∪ dom 𝑂 ) ) = 𝑌 ) |
142 |
139 141
|
oveq12d |
⊢ ( 𝜑 → ( ( 𝐴 ↑o ( 𝑂 ‘ ∪ dom 𝑂 ) ) ·o ( 𝐹 ‘ ( 𝑂 ‘ ∪ dom 𝑂 ) ) ) = ( ( 𝐴 ↑o 𝑋 ) ·o 𝑌 ) ) |
143 |
|
nnord |
⊢ ( ∪ dom 𝑂 ∈ ω → Ord ∪ dom 𝑂 ) |
144 |
22 143
|
syl |
⊢ ( 𝜑 → Ord ∪ dom 𝑂 ) |
145 |
|
sssucid |
⊢ ∪ dom 𝑂 ⊆ suc ∪ dom 𝑂 |
146 |
145 16
|
sseqtrrid |
⊢ ( 𝜑 → ∪ dom 𝑂 ⊆ dom 𝑂 ) |
147 |
|
f1ofo |
⊢ ( 𝑂 : dom 𝑂 –1-1-onto→ ( 𝐹 supp ∅ ) → 𝑂 : dom 𝑂 –onto→ ( 𝐹 supp ∅ ) ) |
148 |
30 147
|
syl |
⊢ ( 𝜑 → 𝑂 : dom 𝑂 –onto→ ( 𝐹 supp ∅ ) ) |
149 |
|
foima |
⊢ ( 𝑂 : dom 𝑂 –onto→ ( 𝐹 supp ∅ ) → ( 𝑂 “ dom 𝑂 ) = ( 𝐹 supp ∅ ) ) |
150 |
148 149
|
syl |
⊢ ( 𝜑 → ( 𝑂 “ dom 𝑂 ) = ( 𝐹 supp ∅ ) ) |
151 |
|
ffn |
⊢ ( 𝑂 : dom 𝑂 ⟶ ( 𝐹 supp ∅ ) → 𝑂 Fn dom 𝑂 ) |
152 |
83 151
|
ax-mp |
⊢ 𝑂 Fn dom 𝑂 |
153 |
|
fnsnfv |
⊢ ( ( 𝑂 Fn dom 𝑂 ∧ ∪ dom 𝑂 ∈ dom 𝑂 ) → { ( 𝑂 ‘ ∪ dom 𝑂 ) } = ( 𝑂 “ { ∪ dom 𝑂 } ) ) |
154 |
152 64 153
|
sylancr |
⊢ ( 𝜑 → { ( 𝑂 ‘ ∪ dom 𝑂 ) } = ( 𝑂 “ { ∪ dom 𝑂 } ) ) |
155 |
138
|
sneqd |
⊢ ( 𝜑 → { ( 𝑂 ‘ ∪ dom 𝑂 ) } = { 𝑋 } ) |
156 |
154 155
|
eqtr3d |
⊢ ( 𝜑 → ( 𝑂 “ { ∪ dom 𝑂 } ) = { 𝑋 } ) |
157 |
150 156
|
difeq12d |
⊢ ( 𝜑 → ( ( 𝑂 “ dom 𝑂 ) ∖ ( 𝑂 “ { ∪ dom 𝑂 } ) ) = ( ( 𝐹 supp ∅ ) ∖ { 𝑋 } ) ) |
158 |
|
ordirr |
⊢ ( Ord ∪ dom 𝑂 → ¬ ∪ dom 𝑂 ∈ ∪ dom 𝑂 ) |
159 |
144 158
|
syl |
⊢ ( 𝜑 → ¬ ∪ dom 𝑂 ∈ ∪ dom 𝑂 ) |
160 |
|
disjsn |
⊢ ( ( ∪ dom 𝑂 ∩ { ∪ dom 𝑂 } ) = ∅ ↔ ¬ ∪ dom 𝑂 ∈ ∪ dom 𝑂 ) |
161 |
159 160
|
sylibr |
⊢ ( 𝜑 → ( ∪ dom 𝑂 ∩ { ∪ dom 𝑂 } ) = ∅ ) |
162 |
|
disj3 |
⊢ ( ( ∪ dom 𝑂 ∩ { ∪ dom 𝑂 } ) = ∅ ↔ ∪ dom 𝑂 = ( ∪ dom 𝑂 ∖ { ∪ dom 𝑂 } ) ) |
163 |
161 162
|
sylib |
⊢ ( 𝜑 → ∪ dom 𝑂 = ( ∪ dom 𝑂 ∖ { ∪ dom 𝑂 } ) ) |
164 |
|
difun2 |
⊢ ( ( ∪ dom 𝑂 ∪ { ∪ dom 𝑂 } ) ∖ { ∪ dom 𝑂 } ) = ( ∪ dom 𝑂 ∖ { ∪ dom 𝑂 } ) |
165 |
163 164
|
eqtr4di |
⊢ ( 𝜑 → ∪ dom 𝑂 = ( ( ∪ dom 𝑂 ∪ { ∪ dom 𝑂 } ) ∖ { ∪ dom 𝑂 } ) ) |
166 |
|
df-suc |
⊢ suc ∪ dom 𝑂 = ( ∪ dom 𝑂 ∪ { ∪ dom 𝑂 } ) |
167 |
16 166
|
eqtrdi |
⊢ ( 𝜑 → dom 𝑂 = ( ∪ dom 𝑂 ∪ { ∪ dom 𝑂 } ) ) |
168 |
167
|
difeq1d |
⊢ ( 𝜑 → ( dom 𝑂 ∖ { ∪ dom 𝑂 } ) = ( ( ∪ dom 𝑂 ∪ { ∪ dom 𝑂 } ) ∖ { ∪ dom 𝑂 } ) ) |
169 |
165 168
|
eqtr4d |
⊢ ( 𝜑 → ∪ dom 𝑂 = ( dom 𝑂 ∖ { ∪ dom 𝑂 } ) ) |
170 |
169
|
imaeq2d |
⊢ ( 𝜑 → ( 𝑂 “ ∪ dom 𝑂 ) = ( 𝑂 “ ( dom 𝑂 ∖ { ∪ dom 𝑂 } ) ) ) |
171 |
|
dff1o3 |
⊢ ( 𝑂 : dom 𝑂 –1-1-onto→ ( 𝐹 supp ∅ ) ↔ ( 𝑂 : dom 𝑂 –onto→ ( 𝐹 supp ∅ ) ∧ Fun ◡ 𝑂 ) ) |
172 |
171
|
simprbi |
⊢ ( 𝑂 : dom 𝑂 –1-1-onto→ ( 𝐹 supp ∅ ) → Fun ◡ 𝑂 ) |
173 |
|
imadif |
⊢ ( Fun ◡ 𝑂 → ( 𝑂 “ ( dom 𝑂 ∖ { ∪ dom 𝑂 } ) ) = ( ( 𝑂 “ dom 𝑂 ) ∖ ( 𝑂 “ { ∪ dom 𝑂 } ) ) ) |
174 |
30 172 173
|
3syl |
⊢ ( 𝜑 → ( 𝑂 “ ( dom 𝑂 ∖ { ∪ dom 𝑂 } ) ) = ( ( 𝑂 “ dom 𝑂 ) ∖ ( 𝑂 “ { ∪ dom 𝑂 } ) ) ) |
175 |
170 174
|
eqtrd |
⊢ ( 𝜑 → ( 𝑂 “ ∪ dom 𝑂 ) = ( ( 𝑂 “ dom 𝑂 ) ∖ ( 𝑂 “ { ∪ dom 𝑂 } ) ) ) |
176 |
7 99
|
ssneldd |
⊢ ( 𝜑 → ¬ 𝑋 ∈ ( 𝐺 supp ∅ ) ) |
177 |
|
disjsn |
⊢ ( ( ( 𝐺 supp ∅ ) ∩ { 𝑋 } ) = ∅ ↔ ¬ 𝑋 ∈ ( 𝐺 supp ∅ ) ) |
178 |
176 177
|
sylibr |
⊢ ( 𝜑 → ( ( 𝐺 supp ∅ ) ∩ { 𝑋 } ) = ∅ ) |
179 |
|
fvex |
⊢ ( 𝐺 ‘ 𝑋 ) ∈ V |
180 |
|
dif1o |
⊢ ( ( 𝐺 ‘ 𝑋 ) ∈ ( V ∖ 1o ) ↔ ( ( 𝐺 ‘ 𝑋 ) ∈ V ∧ ( 𝐺 ‘ 𝑋 ) ≠ ∅ ) ) |
181 |
179 180
|
mpbiran |
⊢ ( ( 𝐺 ‘ 𝑋 ) ∈ ( V ∖ 1o ) ↔ ( 𝐺 ‘ 𝑋 ) ≠ ∅ ) |
182 |
41
|
ffnd |
⊢ ( 𝜑 → 𝐺 Fn 𝐵 ) |
183 |
|
elsuppfn |
⊢ ( ( 𝐺 Fn 𝐵 ∧ 𝐵 ∈ On ∧ ∅ ∈ V ) → ( 𝑋 ∈ ( 𝐺 supp ∅ ) ↔ ( 𝑋 ∈ 𝐵 ∧ ( 𝐺 ‘ 𝑋 ) ≠ ∅ ) ) ) |
184 |
182 3 47 183
|
syl3anc |
⊢ ( 𝜑 → ( 𝑋 ∈ ( 𝐺 supp ∅ ) ↔ ( 𝑋 ∈ 𝐵 ∧ ( 𝐺 ‘ 𝑋 ) ≠ ∅ ) ) ) |
185 |
181
|
a1i |
⊢ ( 𝜑 → ( ( 𝐺 ‘ 𝑋 ) ∈ ( V ∖ 1o ) ↔ ( 𝐺 ‘ 𝑋 ) ≠ ∅ ) ) |
186 |
185
|
bicomd |
⊢ ( 𝜑 → ( ( 𝐺 ‘ 𝑋 ) ≠ ∅ ↔ ( 𝐺 ‘ 𝑋 ) ∈ ( V ∖ 1o ) ) ) |
187 |
186
|
anbi2d |
⊢ ( 𝜑 → ( ( 𝑋 ∈ 𝐵 ∧ ( 𝐺 ‘ 𝑋 ) ≠ ∅ ) ↔ ( 𝑋 ∈ 𝐵 ∧ ( 𝐺 ‘ 𝑋 ) ∈ ( V ∖ 1o ) ) ) ) |
188 |
184 187
|
bitrd |
⊢ ( 𝜑 → ( 𝑋 ∈ ( 𝐺 supp ∅ ) ↔ ( 𝑋 ∈ 𝐵 ∧ ( 𝐺 ‘ 𝑋 ) ∈ ( V ∖ 1o ) ) ) ) |
189 |
7
|
sseld |
⊢ ( 𝜑 → ( 𝑋 ∈ ( 𝐺 supp ∅ ) → 𝑋 ∈ 𝑋 ) ) |
190 |
188 189
|
sylbird |
⊢ ( 𝜑 → ( ( 𝑋 ∈ 𝐵 ∧ ( 𝐺 ‘ 𝑋 ) ∈ ( V ∖ 1o ) ) → 𝑋 ∈ 𝑋 ) ) |
191 |
5 190
|
mpand |
⊢ ( 𝜑 → ( ( 𝐺 ‘ 𝑋 ) ∈ ( V ∖ 1o ) → 𝑋 ∈ 𝑋 ) ) |
192 |
181 191
|
syl5bir |
⊢ ( 𝜑 → ( ( 𝐺 ‘ 𝑋 ) ≠ ∅ → 𝑋 ∈ 𝑋 ) ) |
193 |
192
|
necon1bd |
⊢ ( 𝜑 → ( ¬ 𝑋 ∈ 𝑋 → ( 𝐺 ‘ 𝑋 ) = ∅ ) ) |
194 |
99 193
|
mpd |
⊢ ( 𝜑 → ( 𝐺 ‘ 𝑋 ) = ∅ ) |
195 |
194
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( 𝐵 ∖ ( 𝐹 supp ∅ ) ) ) → ( 𝐺 ‘ 𝑋 ) = ∅ ) |
196 |
|
fveqeq2 |
⊢ ( 𝑘 = 𝑋 → ( ( 𝐺 ‘ 𝑘 ) = ∅ ↔ ( 𝐺 ‘ 𝑋 ) = ∅ ) ) |
197 |
195 196
|
syl5ibrcom |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( 𝐵 ∖ ( 𝐹 supp ∅ ) ) ) → ( 𝑘 = 𝑋 → ( 𝐺 ‘ 𝑘 ) = ∅ ) ) |
198 |
|
eldifi |
⊢ ( 𝑘 ∈ ( 𝐵 ∖ ( 𝐹 supp ∅ ) ) → 𝑘 ∈ 𝐵 ) |
199 |
198
|
adantl |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( 𝐵 ∖ ( 𝐹 supp ∅ ) ) ) → 𝑘 ∈ 𝐵 ) |
200 |
6
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( 𝐵 ∖ ( 𝐹 supp ∅ ) ) ) → 𝑌 ∈ 𝐴 ) |
201 |
200 110 111
|
sylancl |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( 𝐵 ∖ ( 𝐹 supp ∅ ) ) ) → if ( 𝑘 = 𝑋 , 𝑌 , ( 𝐺 ‘ 𝑘 ) ) ∈ V ) |
202 |
8 106 199 201
|
fvmptd3 |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( 𝐵 ∖ ( 𝐹 supp ∅ ) ) ) → ( 𝐹 ‘ 𝑘 ) = if ( 𝑘 = 𝑋 , 𝑌 , ( 𝐺 ‘ 𝑘 ) ) ) |
203 |
|
ssidd |
⊢ ( 𝜑 → ( 𝐹 supp ∅ ) ⊆ ( 𝐹 supp ∅ ) ) |
204 |
44 203 3 9
|
suppssr |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( 𝐵 ∖ ( 𝐹 supp ∅ ) ) ) → ( 𝐹 ‘ 𝑘 ) = ∅ ) |
205 |
202 204
|
eqtr3d |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( 𝐵 ∖ ( 𝐹 supp ∅ ) ) ) → if ( 𝑘 = 𝑋 , 𝑌 , ( 𝐺 ‘ 𝑘 ) ) = ∅ ) |
206 |
|
iffalse |
⊢ ( ¬ 𝑘 = 𝑋 → if ( 𝑘 = 𝑋 , 𝑌 , ( 𝐺 ‘ 𝑘 ) ) = ( 𝐺 ‘ 𝑘 ) ) |
207 |
206
|
eqeq1d |
⊢ ( ¬ 𝑘 = 𝑋 → ( if ( 𝑘 = 𝑋 , 𝑌 , ( 𝐺 ‘ 𝑘 ) ) = ∅ ↔ ( 𝐺 ‘ 𝑘 ) = ∅ ) ) |
208 |
205 207
|
syl5ibcom |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( 𝐵 ∖ ( 𝐹 supp ∅ ) ) ) → ( ¬ 𝑘 = 𝑋 → ( 𝐺 ‘ 𝑘 ) = ∅ ) ) |
209 |
197 208
|
pm2.61d |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( 𝐵 ∖ ( 𝐹 supp ∅ ) ) ) → ( 𝐺 ‘ 𝑘 ) = ∅ ) |
210 |
41 209
|
suppss |
⊢ ( 𝜑 → ( 𝐺 supp ∅ ) ⊆ ( 𝐹 supp ∅ ) ) |
211 |
|
reldisj |
⊢ ( ( 𝐺 supp ∅ ) ⊆ ( 𝐹 supp ∅ ) → ( ( ( 𝐺 supp ∅ ) ∩ { 𝑋 } ) = ∅ ↔ ( 𝐺 supp ∅ ) ⊆ ( ( 𝐹 supp ∅ ) ∖ { 𝑋 } ) ) ) |
212 |
210 211
|
syl |
⊢ ( 𝜑 → ( ( ( 𝐺 supp ∅ ) ∩ { 𝑋 } ) = ∅ ↔ ( 𝐺 supp ∅ ) ⊆ ( ( 𝐹 supp ∅ ) ∖ { 𝑋 } ) ) ) |
213 |
178 212
|
mpbid |
⊢ ( 𝜑 → ( 𝐺 supp ∅ ) ⊆ ( ( 𝐹 supp ∅ ) ∖ { 𝑋 } ) ) |
214 |
|
uncom |
⊢ ( ( 𝐺 supp ∅ ) ∪ { 𝑋 } ) = ( { 𝑋 } ∪ ( 𝐺 supp ∅ ) ) |
215 |
129 214
|
sseqtrdi |
⊢ ( 𝜑 → ( 𝐹 supp ∅ ) ⊆ ( { 𝑋 } ∪ ( 𝐺 supp ∅ ) ) ) |
216 |
|
ssundif |
⊢ ( ( 𝐹 supp ∅ ) ⊆ ( { 𝑋 } ∪ ( 𝐺 supp ∅ ) ) ↔ ( ( 𝐹 supp ∅ ) ∖ { 𝑋 } ) ⊆ ( 𝐺 supp ∅ ) ) |
217 |
215 216
|
sylib |
⊢ ( 𝜑 → ( ( 𝐹 supp ∅ ) ∖ { 𝑋 } ) ⊆ ( 𝐺 supp ∅ ) ) |
218 |
213 217
|
eqssd |
⊢ ( 𝜑 → ( 𝐺 supp ∅ ) = ( ( 𝐹 supp ∅ ) ∖ { 𝑋 } ) ) |
219 |
157 175 218
|
3eqtr4rd |
⊢ ( 𝜑 → ( 𝐺 supp ∅ ) = ( 𝑂 “ ∪ dom 𝑂 ) ) |
220 |
|
isores3 |
⊢ ( ( 𝑂 Isom E , E ( dom 𝑂 , ( 𝐹 supp ∅ ) ) ∧ ∪ dom 𝑂 ⊆ dom 𝑂 ∧ ( 𝐺 supp ∅ ) = ( 𝑂 “ ∪ dom 𝑂 ) ) → ( 𝑂 ↾ ∪ dom 𝑂 ) Isom E , E ( ∪ dom 𝑂 , ( 𝐺 supp ∅ ) ) ) |
221 |
28 146 219 220
|
syl3anc |
⊢ ( 𝜑 → ( 𝑂 ↾ ∪ dom 𝑂 ) Isom E , E ( ∪ dom 𝑂 , ( 𝐺 supp ∅ ) ) ) |
222 |
1 2 3 12 4
|
cantnfcl |
⊢ ( 𝜑 → ( E We ( 𝐺 supp ∅ ) ∧ dom 𝐾 ∈ ω ) ) |
223 |
222
|
simpld |
⊢ ( 𝜑 → E We ( 𝐺 supp ∅ ) ) |
224 |
|
epse |
⊢ E Se ( 𝐺 supp ∅ ) |
225 |
12
|
oieu |
⊢ ( ( E We ( 𝐺 supp ∅ ) ∧ E Se ( 𝐺 supp ∅ ) ) → ( ( Ord ∪ dom 𝑂 ∧ ( 𝑂 ↾ ∪ dom 𝑂 ) Isom E , E ( ∪ dom 𝑂 , ( 𝐺 supp ∅ ) ) ) ↔ ( ∪ dom 𝑂 = dom 𝐾 ∧ ( 𝑂 ↾ ∪ dom 𝑂 ) = 𝐾 ) ) ) |
226 |
223 224 225
|
sylancl |
⊢ ( 𝜑 → ( ( Ord ∪ dom 𝑂 ∧ ( 𝑂 ↾ ∪ dom 𝑂 ) Isom E , E ( ∪ dom 𝑂 , ( 𝐺 supp ∅ ) ) ) ↔ ( ∪ dom 𝑂 = dom 𝐾 ∧ ( 𝑂 ↾ ∪ dom 𝑂 ) = 𝐾 ) ) ) |
227 |
144 221 226
|
mpbi2and |
⊢ ( 𝜑 → ( ∪ dom 𝑂 = dom 𝐾 ∧ ( 𝑂 ↾ ∪ dom 𝑂 ) = 𝐾 ) ) |
228 |
227
|
simpld |
⊢ ( 𝜑 → ∪ dom 𝑂 = dom 𝐾 ) |
229 |
228
|
fveq2d |
⊢ ( 𝜑 → ( 𝑀 ‘ ∪ dom 𝑂 ) = ( 𝑀 ‘ dom 𝐾 ) ) |
230 |
|
eleq1 |
⊢ ( 𝑥 = ∅ → ( 𝑥 ∈ dom 𝑂 ↔ ∅ ∈ dom 𝑂 ) ) |
231 |
|
fveq2 |
⊢ ( 𝑥 = ∅ → ( 𝐻 ‘ 𝑥 ) = ( 𝐻 ‘ ∅ ) ) |
232 |
|
fveq2 |
⊢ ( 𝑥 = ∅ → ( 𝑀 ‘ 𝑥 ) = ( 𝑀 ‘ ∅ ) ) |
233 |
13
|
seqom0g |
⊢ ( ∅ ∈ V → ( 𝑀 ‘ ∅ ) = ∅ ) |
234 |
46 233
|
ax-mp |
⊢ ( 𝑀 ‘ ∅ ) = ∅ |
235 |
232 234
|
eqtrdi |
⊢ ( 𝑥 = ∅ → ( 𝑀 ‘ 𝑥 ) = ∅ ) |
236 |
231 235
|
eqeq12d |
⊢ ( 𝑥 = ∅ → ( ( 𝐻 ‘ 𝑥 ) = ( 𝑀 ‘ 𝑥 ) ↔ ( 𝐻 ‘ ∅ ) = ∅ ) ) |
237 |
230 236
|
imbi12d |
⊢ ( 𝑥 = ∅ → ( ( 𝑥 ∈ dom 𝑂 → ( 𝐻 ‘ 𝑥 ) = ( 𝑀 ‘ 𝑥 ) ) ↔ ( ∅ ∈ dom 𝑂 → ( 𝐻 ‘ ∅ ) = ∅ ) ) ) |
238 |
237
|
imbi2d |
⊢ ( 𝑥 = ∅ → ( ( 𝜑 → ( 𝑥 ∈ dom 𝑂 → ( 𝐻 ‘ 𝑥 ) = ( 𝑀 ‘ 𝑥 ) ) ) ↔ ( 𝜑 → ( ∅ ∈ dom 𝑂 → ( 𝐻 ‘ ∅ ) = ∅ ) ) ) ) |
239 |
|
eleq1 |
⊢ ( 𝑥 = 𝑦 → ( 𝑥 ∈ dom 𝑂 ↔ 𝑦 ∈ dom 𝑂 ) ) |
240 |
|
fveq2 |
⊢ ( 𝑥 = 𝑦 → ( 𝐻 ‘ 𝑥 ) = ( 𝐻 ‘ 𝑦 ) ) |
241 |
|
fveq2 |
⊢ ( 𝑥 = 𝑦 → ( 𝑀 ‘ 𝑥 ) = ( 𝑀 ‘ 𝑦 ) ) |
242 |
240 241
|
eqeq12d |
⊢ ( 𝑥 = 𝑦 → ( ( 𝐻 ‘ 𝑥 ) = ( 𝑀 ‘ 𝑥 ) ↔ ( 𝐻 ‘ 𝑦 ) = ( 𝑀 ‘ 𝑦 ) ) ) |
243 |
239 242
|
imbi12d |
⊢ ( 𝑥 = 𝑦 → ( ( 𝑥 ∈ dom 𝑂 → ( 𝐻 ‘ 𝑥 ) = ( 𝑀 ‘ 𝑥 ) ) ↔ ( 𝑦 ∈ dom 𝑂 → ( 𝐻 ‘ 𝑦 ) = ( 𝑀 ‘ 𝑦 ) ) ) ) |
244 |
243
|
imbi2d |
⊢ ( 𝑥 = 𝑦 → ( ( 𝜑 → ( 𝑥 ∈ dom 𝑂 → ( 𝐻 ‘ 𝑥 ) = ( 𝑀 ‘ 𝑥 ) ) ) ↔ ( 𝜑 → ( 𝑦 ∈ dom 𝑂 → ( 𝐻 ‘ 𝑦 ) = ( 𝑀 ‘ 𝑦 ) ) ) ) ) |
245 |
|
eleq1 |
⊢ ( 𝑥 = suc 𝑦 → ( 𝑥 ∈ dom 𝑂 ↔ suc 𝑦 ∈ dom 𝑂 ) ) |
246 |
|
fveq2 |
⊢ ( 𝑥 = suc 𝑦 → ( 𝐻 ‘ 𝑥 ) = ( 𝐻 ‘ suc 𝑦 ) ) |
247 |
|
fveq2 |
⊢ ( 𝑥 = suc 𝑦 → ( 𝑀 ‘ 𝑥 ) = ( 𝑀 ‘ suc 𝑦 ) ) |
248 |
246 247
|
eqeq12d |
⊢ ( 𝑥 = suc 𝑦 → ( ( 𝐻 ‘ 𝑥 ) = ( 𝑀 ‘ 𝑥 ) ↔ ( 𝐻 ‘ suc 𝑦 ) = ( 𝑀 ‘ suc 𝑦 ) ) ) |
249 |
245 248
|
imbi12d |
⊢ ( 𝑥 = suc 𝑦 → ( ( 𝑥 ∈ dom 𝑂 → ( 𝐻 ‘ 𝑥 ) = ( 𝑀 ‘ 𝑥 ) ) ↔ ( suc 𝑦 ∈ dom 𝑂 → ( 𝐻 ‘ suc 𝑦 ) = ( 𝑀 ‘ suc 𝑦 ) ) ) ) |
250 |
249
|
imbi2d |
⊢ ( 𝑥 = suc 𝑦 → ( ( 𝜑 → ( 𝑥 ∈ dom 𝑂 → ( 𝐻 ‘ 𝑥 ) = ( 𝑀 ‘ 𝑥 ) ) ) ↔ ( 𝜑 → ( suc 𝑦 ∈ dom 𝑂 → ( 𝐻 ‘ suc 𝑦 ) = ( 𝑀 ‘ suc 𝑦 ) ) ) ) ) |
251 |
|
eleq1 |
⊢ ( 𝑥 = ∪ dom 𝑂 → ( 𝑥 ∈ dom 𝑂 ↔ ∪ dom 𝑂 ∈ dom 𝑂 ) ) |
252 |
|
fveq2 |
⊢ ( 𝑥 = ∪ dom 𝑂 → ( 𝐻 ‘ 𝑥 ) = ( 𝐻 ‘ ∪ dom 𝑂 ) ) |
253 |
|
fveq2 |
⊢ ( 𝑥 = ∪ dom 𝑂 → ( 𝑀 ‘ 𝑥 ) = ( 𝑀 ‘ ∪ dom 𝑂 ) ) |
254 |
252 253
|
eqeq12d |
⊢ ( 𝑥 = ∪ dom 𝑂 → ( ( 𝐻 ‘ 𝑥 ) = ( 𝑀 ‘ 𝑥 ) ↔ ( 𝐻 ‘ ∪ dom 𝑂 ) = ( 𝑀 ‘ ∪ dom 𝑂 ) ) ) |
255 |
251 254
|
imbi12d |
⊢ ( 𝑥 = ∪ dom 𝑂 → ( ( 𝑥 ∈ dom 𝑂 → ( 𝐻 ‘ 𝑥 ) = ( 𝑀 ‘ 𝑥 ) ) ↔ ( ∪ dom 𝑂 ∈ dom 𝑂 → ( 𝐻 ‘ ∪ dom 𝑂 ) = ( 𝑀 ‘ ∪ dom 𝑂 ) ) ) ) |
256 |
255
|
imbi2d |
⊢ ( 𝑥 = ∪ dom 𝑂 → ( ( 𝜑 → ( 𝑥 ∈ dom 𝑂 → ( 𝐻 ‘ 𝑥 ) = ( 𝑀 ‘ 𝑥 ) ) ) ↔ ( 𝜑 → ( ∪ dom 𝑂 ∈ dom 𝑂 → ( 𝐻 ‘ ∪ dom 𝑂 ) = ( 𝑀 ‘ ∪ dom 𝑂 ) ) ) ) ) |
257 |
11
|
seqom0g |
⊢ ( ∅ ∈ dom 𝑂 → ( 𝐻 ‘ ∅ ) = ∅ ) |
258 |
257
|
a1i |
⊢ ( 𝜑 → ( ∅ ∈ dom 𝑂 → ( 𝐻 ‘ ∅ ) = ∅ ) ) |
259 |
|
nnord |
⊢ ( dom 𝑂 ∈ ω → Ord dom 𝑂 ) |
260 |
19 259
|
syl |
⊢ ( 𝜑 → Ord dom 𝑂 ) |
261 |
|
ordtr |
⊢ ( Ord dom 𝑂 → Tr dom 𝑂 ) |
262 |
260 261
|
syl |
⊢ ( 𝜑 → Tr dom 𝑂 ) |
263 |
|
trsuc |
⊢ ( ( Tr dom 𝑂 ∧ suc 𝑦 ∈ dom 𝑂 ) → 𝑦 ∈ dom 𝑂 ) |
264 |
262 263
|
sylan |
⊢ ( ( 𝜑 ∧ suc 𝑦 ∈ dom 𝑂 ) → 𝑦 ∈ dom 𝑂 ) |
265 |
264
|
ex |
⊢ ( 𝜑 → ( suc 𝑦 ∈ dom 𝑂 → 𝑦 ∈ dom 𝑂 ) ) |
266 |
265
|
imim1d |
⊢ ( 𝜑 → ( ( 𝑦 ∈ dom 𝑂 → ( 𝐻 ‘ 𝑦 ) = ( 𝑀 ‘ 𝑦 ) ) → ( suc 𝑦 ∈ dom 𝑂 → ( 𝐻 ‘ 𝑦 ) = ( 𝑀 ‘ 𝑦 ) ) ) ) |
267 |
|
oveq2 |
⊢ ( ( 𝐻 ‘ 𝑦 ) = ( 𝑀 ‘ 𝑦 ) → ( ( ( 𝐴 ↑o ( 𝑂 ‘ 𝑦 ) ) ·o ( 𝐹 ‘ ( 𝑂 ‘ 𝑦 ) ) ) +o ( 𝐻 ‘ 𝑦 ) ) = ( ( ( 𝐴 ↑o ( 𝑂 ‘ 𝑦 ) ) ·o ( 𝐹 ‘ ( 𝑂 ‘ 𝑦 ) ) ) +o ( 𝑀 ‘ 𝑦 ) ) ) |
268 |
|
elnn |
⊢ ( ( 𝑦 ∈ dom 𝑂 ∧ dom 𝑂 ∈ ω ) → 𝑦 ∈ ω ) |
269 |
268
|
ancoms |
⊢ ( ( dom 𝑂 ∈ ω ∧ 𝑦 ∈ dom 𝑂 ) → 𝑦 ∈ ω ) |
270 |
19 264 269
|
syl2an2r |
⊢ ( ( 𝜑 ∧ suc 𝑦 ∈ dom 𝑂 ) → 𝑦 ∈ ω ) |
271 |
1 2 3 10 14 11
|
cantnfsuc |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ ω ) → ( 𝐻 ‘ suc 𝑦 ) = ( ( ( 𝐴 ↑o ( 𝑂 ‘ 𝑦 ) ) ·o ( 𝐹 ‘ ( 𝑂 ‘ 𝑦 ) ) ) +o ( 𝐻 ‘ 𝑦 ) ) ) |
272 |
270 271
|
syldan |
⊢ ( ( 𝜑 ∧ suc 𝑦 ∈ dom 𝑂 ) → ( 𝐻 ‘ suc 𝑦 ) = ( ( ( 𝐴 ↑o ( 𝑂 ‘ 𝑦 ) ) ·o ( 𝐹 ‘ ( 𝑂 ‘ 𝑦 ) ) ) +o ( 𝐻 ‘ 𝑦 ) ) ) |
273 |
1 2 3 12 4 13
|
cantnfsuc |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ ω ) → ( 𝑀 ‘ suc 𝑦 ) = ( ( ( 𝐴 ↑o ( 𝐾 ‘ 𝑦 ) ) ·o ( 𝐺 ‘ ( 𝐾 ‘ 𝑦 ) ) ) +o ( 𝑀 ‘ 𝑦 ) ) ) |
274 |
270 273
|
syldan |
⊢ ( ( 𝜑 ∧ suc 𝑦 ∈ dom 𝑂 ) → ( 𝑀 ‘ suc 𝑦 ) = ( ( ( 𝐴 ↑o ( 𝐾 ‘ 𝑦 ) ) ·o ( 𝐺 ‘ ( 𝐾 ‘ 𝑦 ) ) ) +o ( 𝑀 ‘ 𝑦 ) ) ) |
275 |
227
|
simprd |
⊢ ( 𝜑 → ( 𝑂 ↾ ∪ dom 𝑂 ) = 𝐾 ) |
276 |
275
|
fveq1d |
⊢ ( 𝜑 → ( ( 𝑂 ↾ ∪ dom 𝑂 ) ‘ 𝑦 ) = ( 𝐾 ‘ 𝑦 ) ) |
277 |
276
|
adantr |
⊢ ( ( 𝜑 ∧ suc 𝑦 ∈ dom 𝑂 ) → ( ( 𝑂 ↾ ∪ dom 𝑂 ) ‘ 𝑦 ) = ( 𝐾 ‘ 𝑦 ) ) |
278 |
16
|
eleq2d |
⊢ ( 𝜑 → ( suc 𝑦 ∈ dom 𝑂 ↔ suc 𝑦 ∈ suc ∪ dom 𝑂 ) ) |
279 |
278
|
biimpa |
⊢ ( ( 𝜑 ∧ suc 𝑦 ∈ dom 𝑂 ) → suc 𝑦 ∈ suc ∪ dom 𝑂 ) |
280 |
144
|
adantr |
⊢ ( ( 𝜑 ∧ suc 𝑦 ∈ dom 𝑂 ) → Ord ∪ dom 𝑂 ) |
281 |
|
ordsucelsuc |
⊢ ( Ord ∪ dom 𝑂 → ( 𝑦 ∈ ∪ dom 𝑂 ↔ suc 𝑦 ∈ suc ∪ dom 𝑂 ) ) |
282 |
280 281
|
syl |
⊢ ( ( 𝜑 ∧ suc 𝑦 ∈ dom 𝑂 ) → ( 𝑦 ∈ ∪ dom 𝑂 ↔ suc 𝑦 ∈ suc ∪ dom 𝑂 ) ) |
283 |
279 282
|
mpbird |
⊢ ( ( 𝜑 ∧ suc 𝑦 ∈ dom 𝑂 ) → 𝑦 ∈ ∪ dom 𝑂 ) |
284 |
283
|
fvresd |
⊢ ( ( 𝜑 ∧ suc 𝑦 ∈ dom 𝑂 ) → ( ( 𝑂 ↾ ∪ dom 𝑂 ) ‘ 𝑦 ) = ( 𝑂 ‘ 𝑦 ) ) |
285 |
277 284
|
eqtr3d |
⊢ ( ( 𝜑 ∧ suc 𝑦 ∈ dom 𝑂 ) → ( 𝐾 ‘ 𝑦 ) = ( 𝑂 ‘ 𝑦 ) ) |
286 |
285
|
oveq2d |
⊢ ( ( 𝜑 ∧ suc 𝑦 ∈ dom 𝑂 ) → ( 𝐴 ↑o ( 𝐾 ‘ 𝑦 ) ) = ( 𝐴 ↑o ( 𝑂 ‘ 𝑦 ) ) ) |
287 |
|
eqeq1 |
⊢ ( 𝑡 = ( 𝐾 ‘ 𝑦 ) → ( 𝑡 = 𝑋 ↔ ( 𝐾 ‘ 𝑦 ) = 𝑋 ) ) |
288 |
|
fveq2 |
⊢ ( 𝑡 = ( 𝐾 ‘ 𝑦 ) → ( 𝐺 ‘ 𝑡 ) = ( 𝐺 ‘ ( 𝐾 ‘ 𝑦 ) ) ) |
289 |
287 288
|
ifbieq2d |
⊢ ( 𝑡 = ( 𝐾 ‘ 𝑦 ) → if ( 𝑡 = 𝑋 , 𝑌 , ( 𝐺 ‘ 𝑡 ) ) = if ( ( 𝐾 ‘ 𝑦 ) = 𝑋 , 𝑌 , ( 𝐺 ‘ ( 𝐾 ‘ 𝑦 ) ) ) ) |
290 |
|
suppssdm |
⊢ ( 𝐺 supp ∅ ) ⊆ dom 𝐺 |
291 |
290 41
|
fssdm |
⊢ ( 𝜑 → ( 𝐺 supp ∅ ) ⊆ 𝐵 ) |
292 |
291
|
adantr |
⊢ ( ( 𝜑 ∧ suc 𝑦 ∈ dom 𝑂 ) → ( 𝐺 supp ∅ ) ⊆ 𝐵 ) |
293 |
228
|
adantr |
⊢ ( ( 𝜑 ∧ suc 𝑦 ∈ dom 𝑂 ) → ∪ dom 𝑂 = dom 𝐾 ) |
294 |
283 293
|
eleqtrd |
⊢ ( ( 𝜑 ∧ suc 𝑦 ∈ dom 𝑂 ) → 𝑦 ∈ dom 𝐾 ) |
295 |
12
|
oif |
⊢ 𝐾 : dom 𝐾 ⟶ ( 𝐺 supp ∅ ) |
296 |
295
|
ffvelrni |
⊢ ( 𝑦 ∈ dom 𝐾 → ( 𝐾 ‘ 𝑦 ) ∈ ( 𝐺 supp ∅ ) ) |
297 |
294 296
|
syl |
⊢ ( ( 𝜑 ∧ suc 𝑦 ∈ dom 𝑂 ) → ( 𝐾 ‘ 𝑦 ) ∈ ( 𝐺 supp ∅ ) ) |
298 |
292 297
|
sseldd |
⊢ ( ( 𝜑 ∧ suc 𝑦 ∈ dom 𝑂 ) → ( 𝐾 ‘ 𝑦 ) ∈ 𝐵 ) |
299 |
6
|
adantr |
⊢ ( ( 𝜑 ∧ suc 𝑦 ∈ dom 𝑂 ) → 𝑌 ∈ 𝐴 ) |
300 |
|
fvex |
⊢ ( 𝐺 ‘ ( 𝐾 ‘ 𝑦 ) ) ∈ V |
301 |
|
ifexg |
⊢ ( ( 𝑌 ∈ 𝐴 ∧ ( 𝐺 ‘ ( 𝐾 ‘ 𝑦 ) ) ∈ V ) → if ( ( 𝐾 ‘ 𝑦 ) = 𝑋 , 𝑌 , ( 𝐺 ‘ ( 𝐾 ‘ 𝑦 ) ) ) ∈ V ) |
302 |
299 300 301
|
sylancl |
⊢ ( ( 𝜑 ∧ suc 𝑦 ∈ dom 𝑂 ) → if ( ( 𝐾 ‘ 𝑦 ) = 𝑋 , 𝑌 , ( 𝐺 ‘ ( 𝐾 ‘ 𝑦 ) ) ) ∈ V ) |
303 |
8 289 298 302
|
fvmptd3 |
⊢ ( ( 𝜑 ∧ suc 𝑦 ∈ dom 𝑂 ) → ( 𝐹 ‘ ( 𝐾 ‘ 𝑦 ) ) = if ( ( 𝐾 ‘ 𝑦 ) = 𝑋 , 𝑌 , ( 𝐺 ‘ ( 𝐾 ‘ 𝑦 ) ) ) ) |
304 |
285
|
fveq2d |
⊢ ( ( 𝜑 ∧ suc 𝑦 ∈ dom 𝑂 ) → ( 𝐹 ‘ ( 𝐾 ‘ 𝑦 ) ) = ( 𝐹 ‘ ( 𝑂 ‘ 𝑦 ) ) ) |
305 |
176
|
adantr |
⊢ ( ( 𝜑 ∧ suc 𝑦 ∈ dom 𝑂 ) → ¬ 𝑋 ∈ ( 𝐺 supp ∅ ) ) |
306 |
|
nelneq |
⊢ ( ( ( 𝐾 ‘ 𝑦 ) ∈ ( 𝐺 supp ∅ ) ∧ ¬ 𝑋 ∈ ( 𝐺 supp ∅ ) ) → ¬ ( 𝐾 ‘ 𝑦 ) = 𝑋 ) |
307 |
297 305 306
|
syl2anc |
⊢ ( ( 𝜑 ∧ suc 𝑦 ∈ dom 𝑂 ) → ¬ ( 𝐾 ‘ 𝑦 ) = 𝑋 ) |
308 |
307
|
iffalsed |
⊢ ( ( 𝜑 ∧ suc 𝑦 ∈ dom 𝑂 ) → if ( ( 𝐾 ‘ 𝑦 ) = 𝑋 , 𝑌 , ( 𝐺 ‘ ( 𝐾 ‘ 𝑦 ) ) ) = ( 𝐺 ‘ ( 𝐾 ‘ 𝑦 ) ) ) |
309 |
303 304 308
|
3eqtr3rd |
⊢ ( ( 𝜑 ∧ suc 𝑦 ∈ dom 𝑂 ) → ( 𝐺 ‘ ( 𝐾 ‘ 𝑦 ) ) = ( 𝐹 ‘ ( 𝑂 ‘ 𝑦 ) ) ) |
310 |
286 309
|
oveq12d |
⊢ ( ( 𝜑 ∧ suc 𝑦 ∈ dom 𝑂 ) → ( ( 𝐴 ↑o ( 𝐾 ‘ 𝑦 ) ) ·o ( 𝐺 ‘ ( 𝐾 ‘ 𝑦 ) ) ) = ( ( 𝐴 ↑o ( 𝑂 ‘ 𝑦 ) ) ·o ( 𝐹 ‘ ( 𝑂 ‘ 𝑦 ) ) ) ) |
311 |
310
|
oveq1d |
⊢ ( ( 𝜑 ∧ suc 𝑦 ∈ dom 𝑂 ) → ( ( ( 𝐴 ↑o ( 𝐾 ‘ 𝑦 ) ) ·o ( 𝐺 ‘ ( 𝐾 ‘ 𝑦 ) ) ) +o ( 𝑀 ‘ 𝑦 ) ) = ( ( ( 𝐴 ↑o ( 𝑂 ‘ 𝑦 ) ) ·o ( 𝐹 ‘ ( 𝑂 ‘ 𝑦 ) ) ) +o ( 𝑀 ‘ 𝑦 ) ) ) |
312 |
274 311
|
eqtrd |
⊢ ( ( 𝜑 ∧ suc 𝑦 ∈ dom 𝑂 ) → ( 𝑀 ‘ suc 𝑦 ) = ( ( ( 𝐴 ↑o ( 𝑂 ‘ 𝑦 ) ) ·o ( 𝐹 ‘ ( 𝑂 ‘ 𝑦 ) ) ) +o ( 𝑀 ‘ 𝑦 ) ) ) |
313 |
272 312
|
eqeq12d |
⊢ ( ( 𝜑 ∧ suc 𝑦 ∈ dom 𝑂 ) → ( ( 𝐻 ‘ suc 𝑦 ) = ( 𝑀 ‘ suc 𝑦 ) ↔ ( ( ( 𝐴 ↑o ( 𝑂 ‘ 𝑦 ) ) ·o ( 𝐹 ‘ ( 𝑂 ‘ 𝑦 ) ) ) +o ( 𝐻 ‘ 𝑦 ) ) = ( ( ( 𝐴 ↑o ( 𝑂 ‘ 𝑦 ) ) ·o ( 𝐹 ‘ ( 𝑂 ‘ 𝑦 ) ) ) +o ( 𝑀 ‘ 𝑦 ) ) ) ) |
314 |
267 313
|
syl5ibr |
⊢ ( ( 𝜑 ∧ suc 𝑦 ∈ dom 𝑂 ) → ( ( 𝐻 ‘ 𝑦 ) = ( 𝑀 ‘ 𝑦 ) → ( 𝐻 ‘ suc 𝑦 ) = ( 𝑀 ‘ suc 𝑦 ) ) ) |
315 |
314
|
ex |
⊢ ( 𝜑 → ( suc 𝑦 ∈ dom 𝑂 → ( ( 𝐻 ‘ 𝑦 ) = ( 𝑀 ‘ 𝑦 ) → ( 𝐻 ‘ suc 𝑦 ) = ( 𝑀 ‘ suc 𝑦 ) ) ) ) |
316 |
315
|
a2d |
⊢ ( 𝜑 → ( ( suc 𝑦 ∈ dom 𝑂 → ( 𝐻 ‘ 𝑦 ) = ( 𝑀 ‘ 𝑦 ) ) → ( suc 𝑦 ∈ dom 𝑂 → ( 𝐻 ‘ suc 𝑦 ) = ( 𝑀 ‘ suc 𝑦 ) ) ) ) |
317 |
266 316
|
syld |
⊢ ( 𝜑 → ( ( 𝑦 ∈ dom 𝑂 → ( 𝐻 ‘ 𝑦 ) = ( 𝑀 ‘ 𝑦 ) ) → ( suc 𝑦 ∈ dom 𝑂 → ( 𝐻 ‘ suc 𝑦 ) = ( 𝑀 ‘ suc 𝑦 ) ) ) ) |
318 |
317
|
a2i |
⊢ ( ( 𝜑 → ( 𝑦 ∈ dom 𝑂 → ( 𝐻 ‘ 𝑦 ) = ( 𝑀 ‘ 𝑦 ) ) ) → ( 𝜑 → ( suc 𝑦 ∈ dom 𝑂 → ( 𝐻 ‘ suc 𝑦 ) = ( 𝑀 ‘ suc 𝑦 ) ) ) ) |
319 |
318
|
a1i |
⊢ ( 𝑦 ∈ ω → ( ( 𝜑 → ( 𝑦 ∈ dom 𝑂 → ( 𝐻 ‘ 𝑦 ) = ( 𝑀 ‘ 𝑦 ) ) ) → ( 𝜑 → ( suc 𝑦 ∈ dom 𝑂 → ( 𝐻 ‘ suc 𝑦 ) = ( 𝑀 ‘ suc 𝑦 ) ) ) ) ) |
320 |
238 244 250 256 258 319
|
finds |
⊢ ( ∪ dom 𝑂 ∈ ω → ( 𝜑 → ( ∪ dom 𝑂 ∈ dom 𝑂 → ( 𝐻 ‘ ∪ dom 𝑂 ) = ( 𝑀 ‘ ∪ dom 𝑂 ) ) ) ) |
321 |
22 320
|
mpcom |
⊢ ( 𝜑 → ( ∪ dom 𝑂 ∈ dom 𝑂 → ( 𝐻 ‘ ∪ dom 𝑂 ) = ( 𝑀 ‘ ∪ dom 𝑂 ) ) ) |
322 |
64 321
|
mpd |
⊢ ( 𝜑 → ( 𝐻 ‘ ∪ dom 𝑂 ) = ( 𝑀 ‘ ∪ dom 𝑂 ) ) |
323 |
1 2 3 12 4 13
|
cantnfval |
⊢ ( 𝜑 → ( ( 𝐴 CNF 𝐵 ) ‘ 𝐺 ) = ( 𝑀 ‘ dom 𝐾 ) ) |
324 |
229 322 323
|
3eqtr4d |
⊢ ( 𝜑 → ( 𝐻 ‘ ∪ dom 𝑂 ) = ( ( 𝐴 CNF 𝐵 ) ‘ 𝐺 ) ) |
325 |
142 324
|
oveq12d |
⊢ ( 𝜑 → ( ( ( 𝐴 ↑o ( 𝑂 ‘ ∪ dom 𝑂 ) ) ·o ( 𝐹 ‘ ( 𝑂 ‘ ∪ dom 𝑂 ) ) ) +o ( 𝐻 ‘ ∪ dom 𝑂 ) ) = ( ( ( 𝐴 ↑o 𝑋 ) ·o 𝑌 ) +o ( ( 𝐴 CNF 𝐵 ) ‘ 𝐺 ) ) ) |
326 |
24 325
|
eqtrd |
⊢ ( 𝜑 → ( 𝐻 ‘ suc ∪ dom 𝑂 ) = ( ( ( 𝐴 ↑o 𝑋 ) ·o 𝑌 ) +o ( ( 𝐴 CNF 𝐵 ) ‘ 𝐺 ) ) ) |
327 |
15 17 326
|
3eqtrd |
⊢ ( 𝜑 → ( ( 𝐴 CNF 𝐵 ) ‘ 𝐹 ) = ( ( ( 𝐴 ↑o 𝑋 ) ·o 𝑌 ) +o ( ( 𝐴 CNF 𝐵 ) ‘ 𝐺 ) ) ) |