Step |
Hyp |
Ref |
Expression |
1 |
|
cantnfs.s |
⊢ 𝑆 = dom ( 𝐴 CNF 𝐵 ) |
2 |
|
cantnfs.a |
⊢ ( 𝜑 → 𝐴 ∈ On ) |
3 |
|
cantnfs.b |
⊢ ( 𝜑 → 𝐵 ∈ On ) |
4 |
|
cantnfrescl.d |
⊢ ( 𝜑 → 𝐷 ∈ On ) |
5 |
|
cantnfrescl.b |
⊢ ( 𝜑 → 𝐵 ⊆ 𝐷 ) |
6 |
|
cantnfrescl.x |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ( 𝐷 ∖ 𝐵 ) ) → 𝑋 = ∅ ) |
7 |
|
cantnfrescl.a |
⊢ ( 𝜑 → ∅ ∈ 𝐴 ) |
8 |
|
cantnfrescl.t |
⊢ 𝑇 = dom ( 𝐴 CNF 𝐷 ) |
9 |
|
cantnfres.m |
⊢ ( 𝜑 → ( 𝑛 ∈ 𝐵 ↦ 𝑋 ) ∈ 𝑆 ) |
10 |
4 5 6
|
extmptsuppeq |
⊢ ( 𝜑 → ( ( 𝑛 ∈ 𝐵 ↦ 𝑋 ) supp ∅ ) = ( ( 𝑛 ∈ 𝐷 ↦ 𝑋 ) supp ∅ ) ) |
11 |
|
oieq2 |
⊢ ( ( ( 𝑛 ∈ 𝐵 ↦ 𝑋 ) supp ∅ ) = ( ( 𝑛 ∈ 𝐷 ↦ 𝑋 ) supp ∅ ) → OrdIso ( E , ( ( 𝑛 ∈ 𝐵 ↦ 𝑋 ) supp ∅ ) ) = OrdIso ( E , ( ( 𝑛 ∈ 𝐷 ↦ 𝑋 ) supp ∅ ) ) ) |
12 |
10 11
|
syl |
⊢ ( 𝜑 → OrdIso ( E , ( ( 𝑛 ∈ 𝐵 ↦ 𝑋 ) supp ∅ ) ) = OrdIso ( E , ( ( 𝑛 ∈ 𝐷 ↦ 𝑋 ) supp ∅ ) ) ) |
13 |
12
|
fveq1d |
⊢ ( 𝜑 → ( OrdIso ( E , ( ( 𝑛 ∈ 𝐵 ↦ 𝑋 ) supp ∅ ) ) ‘ 𝑘 ) = ( OrdIso ( E , ( ( 𝑛 ∈ 𝐷 ↦ 𝑋 ) supp ∅ ) ) ‘ 𝑘 ) ) |
14 |
13
|
3ad2ant1 |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ dom OrdIso ( E , ( ( 𝑛 ∈ 𝐵 ↦ 𝑋 ) supp ∅ ) ) ∧ 𝑧 ∈ On ) → ( OrdIso ( E , ( ( 𝑛 ∈ 𝐵 ↦ 𝑋 ) supp ∅ ) ) ‘ 𝑘 ) = ( OrdIso ( E , ( ( 𝑛 ∈ 𝐷 ↦ 𝑋 ) supp ∅ ) ) ‘ 𝑘 ) ) |
15 |
14
|
oveq2d |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ dom OrdIso ( E , ( ( 𝑛 ∈ 𝐵 ↦ 𝑋 ) supp ∅ ) ) ∧ 𝑧 ∈ On ) → ( 𝐴 ↑o ( OrdIso ( E , ( ( 𝑛 ∈ 𝐵 ↦ 𝑋 ) supp ∅ ) ) ‘ 𝑘 ) ) = ( 𝐴 ↑o ( OrdIso ( E , ( ( 𝑛 ∈ 𝐷 ↦ 𝑋 ) supp ∅ ) ) ‘ 𝑘 ) ) ) |
16 |
|
suppssdm |
⊢ ( ( 𝑛 ∈ 𝐵 ↦ 𝑋 ) supp ∅ ) ⊆ dom ( 𝑛 ∈ 𝐵 ↦ 𝑋 ) |
17 |
|
eqid |
⊢ ( 𝑛 ∈ 𝐵 ↦ 𝑋 ) = ( 𝑛 ∈ 𝐵 ↦ 𝑋 ) |
18 |
17
|
dmmptss |
⊢ dom ( 𝑛 ∈ 𝐵 ↦ 𝑋 ) ⊆ 𝐵 |
19 |
18
|
a1i |
⊢ ( 𝜑 → dom ( 𝑛 ∈ 𝐵 ↦ 𝑋 ) ⊆ 𝐵 ) |
20 |
16 19
|
sstrid |
⊢ ( 𝜑 → ( ( 𝑛 ∈ 𝐵 ↦ 𝑋 ) supp ∅ ) ⊆ 𝐵 ) |
21 |
20
|
3ad2ant1 |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ dom OrdIso ( E , ( ( 𝑛 ∈ 𝐵 ↦ 𝑋 ) supp ∅ ) ) ∧ 𝑧 ∈ On ) → ( ( 𝑛 ∈ 𝐵 ↦ 𝑋 ) supp ∅ ) ⊆ 𝐵 ) |
22 |
|
eqid |
⊢ OrdIso ( E , ( ( 𝑛 ∈ 𝐵 ↦ 𝑋 ) supp ∅ ) ) = OrdIso ( E , ( ( 𝑛 ∈ 𝐵 ↦ 𝑋 ) supp ∅ ) ) |
23 |
22
|
oif |
⊢ OrdIso ( E , ( ( 𝑛 ∈ 𝐵 ↦ 𝑋 ) supp ∅ ) ) : dom OrdIso ( E , ( ( 𝑛 ∈ 𝐵 ↦ 𝑋 ) supp ∅ ) ) ⟶ ( ( 𝑛 ∈ 𝐵 ↦ 𝑋 ) supp ∅ ) |
24 |
23
|
ffvelrni |
⊢ ( 𝑘 ∈ dom OrdIso ( E , ( ( 𝑛 ∈ 𝐵 ↦ 𝑋 ) supp ∅ ) ) → ( OrdIso ( E , ( ( 𝑛 ∈ 𝐵 ↦ 𝑋 ) supp ∅ ) ) ‘ 𝑘 ) ∈ ( ( 𝑛 ∈ 𝐵 ↦ 𝑋 ) supp ∅ ) ) |
25 |
24
|
3ad2ant2 |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ dom OrdIso ( E , ( ( 𝑛 ∈ 𝐵 ↦ 𝑋 ) supp ∅ ) ) ∧ 𝑧 ∈ On ) → ( OrdIso ( E , ( ( 𝑛 ∈ 𝐵 ↦ 𝑋 ) supp ∅ ) ) ‘ 𝑘 ) ∈ ( ( 𝑛 ∈ 𝐵 ↦ 𝑋 ) supp ∅ ) ) |
26 |
21 25
|
sseldd |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ dom OrdIso ( E , ( ( 𝑛 ∈ 𝐵 ↦ 𝑋 ) supp ∅ ) ) ∧ 𝑧 ∈ On ) → ( OrdIso ( E , ( ( 𝑛 ∈ 𝐵 ↦ 𝑋 ) supp ∅ ) ) ‘ 𝑘 ) ∈ 𝐵 ) |
27 |
26
|
fvresd |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ dom OrdIso ( E , ( ( 𝑛 ∈ 𝐵 ↦ 𝑋 ) supp ∅ ) ) ∧ 𝑧 ∈ On ) → ( ( ( 𝑛 ∈ 𝐷 ↦ 𝑋 ) ↾ 𝐵 ) ‘ ( OrdIso ( E , ( ( 𝑛 ∈ 𝐵 ↦ 𝑋 ) supp ∅ ) ) ‘ 𝑘 ) ) = ( ( 𝑛 ∈ 𝐷 ↦ 𝑋 ) ‘ ( OrdIso ( E , ( ( 𝑛 ∈ 𝐵 ↦ 𝑋 ) supp ∅ ) ) ‘ 𝑘 ) ) ) |
28 |
5
|
3ad2ant1 |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ dom OrdIso ( E , ( ( 𝑛 ∈ 𝐵 ↦ 𝑋 ) supp ∅ ) ) ∧ 𝑧 ∈ On ) → 𝐵 ⊆ 𝐷 ) |
29 |
28
|
resmptd |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ dom OrdIso ( E , ( ( 𝑛 ∈ 𝐵 ↦ 𝑋 ) supp ∅ ) ) ∧ 𝑧 ∈ On ) → ( ( 𝑛 ∈ 𝐷 ↦ 𝑋 ) ↾ 𝐵 ) = ( 𝑛 ∈ 𝐵 ↦ 𝑋 ) ) |
30 |
29
|
fveq1d |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ dom OrdIso ( E , ( ( 𝑛 ∈ 𝐵 ↦ 𝑋 ) supp ∅ ) ) ∧ 𝑧 ∈ On ) → ( ( ( 𝑛 ∈ 𝐷 ↦ 𝑋 ) ↾ 𝐵 ) ‘ ( OrdIso ( E , ( ( 𝑛 ∈ 𝐵 ↦ 𝑋 ) supp ∅ ) ) ‘ 𝑘 ) ) = ( ( 𝑛 ∈ 𝐵 ↦ 𝑋 ) ‘ ( OrdIso ( E , ( ( 𝑛 ∈ 𝐵 ↦ 𝑋 ) supp ∅ ) ) ‘ 𝑘 ) ) ) |
31 |
14
|
fveq2d |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ dom OrdIso ( E , ( ( 𝑛 ∈ 𝐵 ↦ 𝑋 ) supp ∅ ) ) ∧ 𝑧 ∈ On ) → ( ( 𝑛 ∈ 𝐷 ↦ 𝑋 ) ‘ ( OrdIso ( E , ( ( 𝑛 ∈ 𝐵 ↦ 𝑋 ) supp ∅ ) ) ‘ 𝑘 ) ) = ( ( 𝑛 ∈ 𝐷 ↦ 𝑋 ) ‘ ( OrdIso ( E , ( ( 𝑛 ∈ 𝐷 ↦ 𝑋 ) supp ∅ ) ) ‘ 𝑘 ) ) ) |
32 |
27 30 31
|
3eqtr3d |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ dom OrdIso ( E , ( ( 𝑛 ∈ 𝐵 ↦ 𝑋 ) supp ∅ ) ) ∧ 𝑧 ∈ On ) → ( ( 𝑛 ∈ 𝐵 ↦ 𝑋 ) ‘ ( OrdIso ( E , ( ( 𝑛 ∈ 𝐵 ↦ 𝑋 ) supp ∅ ) ) ‘ 𝑘 ) ) = ( ( 𝑛 ∈ 𝐷 ↦ 𝑋 ) ‘ ( OrdIso ( E , ( ( 𝑛 ∈ 𝐷 ↦ 𝑋 ) supp ∅ ) ) ‘ 𝑘 ) ) ) |
33 |
15 32
|
oveq12d |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ dom OrdIso ( E , ( ( 𝑛 ∈ 𝐵 ↦ 𝑋 ) supp ∅ ) ) ∧ 𝑧 ∈ On ) → ( ( 𝐴 ↑o ( OrdIso ( E , ( ( 𝑛 ∈ 𝐵 ↦ 𝑋 ) supp ∅ ) ) ‘ 𝑘 ) ) ·o ( ( 𝑛 ∈ 𝐵 ↦ 𝑋 ) ‘ ( OrdIso ( E , ( ( 𝑛 ∈ 𝐵 ↦ 𝑋 ) supp ∅ ) ) ‘ 𝑘 ) ) ) = ( ( 𝐴 ↑o ( OrdIso ( E , ( ( 𝑛 ∈ 𝐷 ↦ 𝑋 ) supp ∅ ) ) ‘ 𝑘 ) ) ·o ( ( 𝑛 ∈ 𝐷 ↦ 𝑋 ) ‘ ( OrdIso ( E , ( ( 𝑛 ∈ 𝐷 ↦ 𝑋 ) supp ∅ ) ) ‘ 𝑘 ) ) ) ) |
34 |
33
|
oveq1d |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ dom OrdIso ( E , ( ( 𝑛 ∈ 𝐵 ↦ 𝑋 ) supp ∅ ) ) ∧ 𝑧 ∈ On ) → ( ( ( 𝐴 ↑o ( OrdIso ( E , ( ( 𝑛 ∈ 𝐵 ↦ 𝑋 ) supp ∅ ) ) ‘ 𝑘 ) ) ·o ( ( 𝑛 ∈ 𝐵 ↦ 𝑋 ) ‘ ( OrdIso ( E , ( ( 𝑛 ∈ 𝐵 ↦ 𝑋 ) supp ∅ ) ) ‘ 𝑘 ) ) ) +o 𝑧 ) = ( ( ( 𝐴 ↑o ( OrdIso ( E , ( ( 𝑛 ∈ 𝐷 ↦ 𝑋 ) supp ∅ ) ) ‘ 𝑘 ) ) ·o ( ( 𝑛 ∈ 𝐷 ↦ 𝑋 ) ‘ ( OrdIso ( E , ( ( 𝑛 ∈ 𝐷 ↦ 𝑋 ) supp ∅ ) ) ‘ 𝑘 ) ) ) +o 𝑧 ) ) |
35 |
34
|
mpoeq3dva |
⊢ ( 𝜑 → ( 𝑘 ∈ dom OrdIso ( E , ( ( 𝑛 ∈ 𝐵 ↦ 𝑋 ) supp ∅ ) ) , 𝑧 ∈ On ↦ ( ( ( 𝐴 ↑o ( OrdIso ( E , ( ( 𝑛 ∈ 𝐵 ↦ 𝑋 ) supp ∅ ) ) ‘ 𝑘 ) ) ·o ( ( 𝑛 ∈ 𝐵 ↦ 𝑋 ) ‘ ( OrdIso ( E , ( ( 𝑛 ∈ 𝐵 ↦ 𝑋 ) supp ∅ ) ) ‘ 𝑘 ) ) ) +o 𝑧 ) ) = ( 𝑘 ∈ dom OrdIso ( E , ( ( 𝑛 ∈ 𝐵 ↦ 𝑋 ) supp ∅ ) ) , 𝑧 ∈ On ↦ ( ( ( 𝐴 ↑o ( OrdIso ( E , ( ( 𝑛 ∈ 𝐷 ↦ 𝑋 ) supp ∅ ) ) ‘ 𝑘 ) ) ·o ( ( 𝑛 ∈ 𝐷 ↦ 𝑋 ) ‘ ( OrdIso ( E , ( ( 𝑛 ∈ 𝐷 ↦ 𝑋 ) supp ∅ ) ) ‘ 𝑘 ) ) ) +o 𝑧 ) ) ) |
36 |
12
|
dmeqd |
⊢ ( 𝜑 → dom OrdIso ( E , ( ( 𝑛 ∈ 𝐵 ↦ 𝑋 ) supp ∅ ) ) = dom OrdIso ( E , ( ( 𝑛 ∈ 𝐷 ↦ 𝑋 ) supp ∅ ) ) ) |
37 |
|
eqid |
⊢ On = On |
38 |
|
mpoeq12 |
⊢ ( ( dom OrdIso ( E , ( ( 𝑛 ∈ 𝐵 ↦ 𝑋 ) supp ∅ ) ) = dom OrdIso ( E , ( ( 𝑛 ∈ 𝐷 ↦ 𝑋 ) supp ∅ ) ) ∧ On = On ) → ( 𝑘 ∈ dom OrdIso ( E , ( ( 𝑛 ∈ 𝐵 ↦ 𝑋 ) supp ∅ ) ) , 𝑧 ∈ On ↦ ( ( ( 𝐴 ↑o ( OrdIso ( E , ( ( 𝑛 ∈ 𝐷 ↦ 𝑋 ) supp ∅ ) ) ‘ 𝑘 ) ) ·o ( ( 𝑛 ∈ 𝐷 ↦ 𝑋 ) ‘ ( OrdIso ( E , ( ( 𝑛 ∈ 𝐷 ↦ 𝑋 ) supp ∅ ) ) ‘ 𝑘 ) ) ) +o 𝑧 ) ) = ( 𝑘 ∈ dom OrdIso ( E , ( ( 𝑛 ∈ 𝐷 ↦ 𝑋 ) supp ∅ ) ) , 𝑧 ∈ On ↦ ( ( ( 𝐴 ↑o ( OrdIso ( E , ( ( 𝑛 ∈ 𝐷 ↦ 𝑋 ) supp ∅ ) ) ‘ 𝑘 ) ) ·o ( ( 𝑛 ∈ 𝐷 ↦ 𝑋 ) ‘ ( OrdIso ( E , ( ( 𝑛 ∈ 𝐷 ↦ 𝑋 ) supp ∅ ) ) ‘ 𝑘 ) ) ) +o 𝑧 ) ) ) |
39 |
36 37 38
|
sylancl |
⊢ ( 𝜑 → ( 𝑘 ∈ dom OrdIso ( E , ( ( 𝑛 ∈ 𝐵 ↦ 𝑋 ) supp ∅ ) ) , 𝑧 ∈ On ↦ ( ( ( 𝐴 ↑o ( OrdIso ( E , ( ( 𝑛 ∈ 𝐷 ↦ 𝑋 ) supp ∅ ) ) ‘ 𝑘 ) ) ·o ( ( 𝑛 ∈ 𝐷 ↦ 𝑋 ) ‘ ( OrdIso ( E , ( ( 𝑛 ∈ 𝐷 ↦ 𝑋 ) supp ∅ ) ) ‘ 𝑘 ) ) ) +o 𝑧 ) ) = ( 𝑘 ∈ dom OrdIso ( E , ( ( 𝑛 ∈ 𝐷 ↦ 𝑋 ) supp ∅ ) ) , 𝑧 ∈ On ↦ ( ( ( 𝐴 ↑o ( OrdIso ( E , ( ( 𝑛 ∈ 𝐷 ↦ 𝑋 ) supp ∅ ) ) ‘ 𝑘 ) ) ·o ( ( 𝑛 ∈ 𝐷 ↦ 𝑋 ) ‘ ( OrdIso ( E , ( ( 𝑛 ∈ 𝐷 ↦ 𝑋 ) supp ∅ ) ) ‘ 𝑘 ) ) ) +o 𝑧 ) ) ) |
40 |
35 39
|
eqtrd |
⊢ ( 𝜑 → ( 𝑘 ∈ dom OrdIso ( E , ( ( 𝑛 ∈ 𝐵 ↦ 𝑋 ) supp ∅ ) ) , 𝑧 ∈ On ↦ ( ( ( 𝐴 ↑o ( OrdIso ( E , ( ( 𝑛 ∈ 𝐵 ↦ 𝑋 ) supp ∅ ) ) ‘ 𝑘 ) ) ·o ( ( 𝑛 ∈ 𝐵 ↦ 𝑋 ) ‘ ( OrdIso ( E , ( ( 𝑛 ∈ 𝐵 ↦ 𝑋 ) supp ∅ ) ) ‘ 𝑘 ) ) ) +o 𝑧 ) ) = ( 𝑘 ∈ dom OrdIso ( E , ( ( 𝑛 ∈ 𝐷 ↦ 𝑋 ) supp ∅ ) ) , 𝑧 ∈ On ↦ ( ( ( 𝐴 ↑o ( OrdIso ( E , ( ( 𝑛 ∈ 𝐷 ↦ 𝑋 ) supp ∅ ) ) ‘ 𝑘 ) ) ·o ( ( 𝑛 ∈ 𝐷 ↦ 𝑋 ) ‘ ( OrdIso ( E , ( ( 𝑛 ∈ 𝐷 ↦ 𝑋 ) supp ∅ ) ) ‘ 𝑘 ) ) ) +o 𝑧 ) ) ) |
41 |
|
eqid |
⊢ ∅ = ∅ |
42 |
|
seqomeq12 |
⊢ ( ( ( 𝑘 ∈ dom OrdIso ( E , ( ( 𝑛 ∈ 𝐵 ↦ 𝑋 ) supp ∅ ) ) , 𝑧 ∈ On ↦ ( ( ( 𝐴 ↑o ( OrdIso ( E , ( ( 𝑛 ∈ 𝐵 ↦ 𝑋 ) supp ∅ ) ) ‘ 𝑘 ) ) ·o ( ( 𝑛 ∈ 𝐵 ↦ 𝑋 ) ‘ ( OrdIso ( E , ( ( 𝑛 ∈ 𝐵 ↦ 𝑋 ) supp ∅ ) ) ‘ 𝑘 ) ) ) +o 𝑧 ) ) = ( 𝑘 ∈ dom OrdIso ( E , ( ( 𝑛 ∈ 𝐷 ↦ 𝑋 ) supp ∅ ) ) , 𝑧 ∈ On ↦ ( ( ( 𝐴 ↑o ( OrdIso ( E , ( ( 𝑛 ∈ 𝐷 ↦ 𝑋 ) supp ∅ ) ) ‘ 𝑘 ) ) ·o ( ( 𝑛 ∈ 𝐷 ↦ 𝑋 ) ‘ ( OrdIso ( E , ( ( 𝑛 ∈ 𝐷 ↦ 𝑋 ) supp ∅ ) ) ‘ 𝑘 ) ) ) +o 𝑧 ) ) ∧ ∅ = ∅ ) → seqω ( ( 𝑘 ∈ dom OrdIso ( E , ( ( 𝑛 ∈ 𝐵 ↦ 𝑋 ) supp ∅ ) ) , 𝑧 ∈ On ↦ ( ( ( 𝐴 ↑o ( OrdIso ( E , ( ( 𝑛 ∈ 𝐵 ↦ 𝑋 ) supp ∅ ) ) ‘ 𝑘 ) ) ·o ( ( 𝑛 ∈ 𝐵 ↦ 𝑋 ) ‘ ( OrdIso ( E , ( ( 𝑛 ∈ 𝐵 ↦ 𝑋 ) supp ∅ ) ) ‘ 𝑘 ) ) ) +o 𝑧 ) ) , ∅ ) = seqω ( ( 𝑘 ∈ dom OrdIso ( E , ( ( 𝑛 ∈ 𝐷 ↦ 𝑋 ) supp ∅ ) ) , 𝑧 ∈ On ↦ ( ( ( 𝐴 ↑o ( OrdIso ( E , ( ( 𝑛 ∈ 𝐷 ↦ 𝑋 ) supp ∅ ) ) ‘ 𝑘 ) ) ·o ( ( 𝑛 ∈ 𝐷 ↦ 𝑋 ) ‘ ( OrdIso ( E , ( ( 𝑛 ∈ 𝐷 ↦ 𝑋 ) supp ∅ ) ) ‘ 𝑘 ) ) ) +o 𝑧 ) ) , ∅ ) ) |
43 |
40 41 42
|
sylancl |
⊢ ( 𝜑 → seqω ( ( 𝑘 ∈ dom OrdIso ( E , ( ( 𝑛 ∈ 𝐵 ↦ 𝑋 ) supp ∅ ) ) , 𝑧 ∈ On ↦ ( ( ( 𝐴 ↑o ( OrdIso ( E , ( ( 𝑛 ∈ 𝐵 ↦ 𝑋 ) supp ∅ ) ) ‘ 𝑘 ) ) ·o ( ( 𝑛 ∈ 𝐵 ↦ 𝑋 ) ‘ ( OrdIso ( E , ( ( 𝑛 ∈ 𝐵 ↦ 𝑋 ) supp ∅ ) ) ‘ 𝑘 ) ) ) +o 𝑧 ) ) , ∅ ) = seqω ( ( 𝑘 ∈ dom OrdIso ( E , ( ( 𝑛 ∈ 𝐷 ↦ 𝑋 ) supp ∅ ) ) , 𝑧 ∈ On ↦ ( ( ( 𝐴 ↑o ( OrdIso ( E , ( ( 𝑛 ∈ 𝐷 ↦ 𝑋 ) supp ∅ ) ) ‘ 𝑘 ) ) ·o ( ( 𝑛 ∈ 𝐷 ↦ 𝑋 ) ‘ ( OrdIso ( E , ( ( 𝑛 ∈ 𝐷 ↦ 𝑋 ) supp ∅ ) ) ‘ 𝑘 ) ) ) +o 𝑧 ) ) , ∅ ) ) |
44 |
43 36
|
fveq12d |
⊢ ( 𝜑 → ( seqω ( ( 𝑘 ∈ dom OrdIso ( E , ( ( 𝑛 ∈ 𝐵 ↦ 𝑋 ) supp ∅ ) ) , 𝑧 ∈ On ↦ ( ( ( 𝐴 ↑o ( OrdIso ( E , ( ( 𝑛 ∈ 𝐵 ↦ 𝑋 ) supp ∅ ) ) ‘ 𝑘 ) ) ·o ( ( 𝑛 ∈ 𝐵 ↦ 𝑋 ) ‘ ( OrdIso ( E , ( ( 𝑛 ∈ 𝐵 ↦ 𝑋 ) supp ∅ ) ) ‘ 𝑘 ) ) ) +o 𝑧 ) ) , ∅ ) ‘ dom OrdIso ( E , ( ( 𝑛 ∈ 𝐵 ↦ 𝑋 ) supp ∅ ) ) ) = ( seqω ( ( 𝑘 ∈ dom OrdIso ( E , ( ( 𝑛 ∈ 𝐷 ↦ 𝑋 ) supp ∅ ) ) , 𝑧 ∈ On ↦ ( ( ( 𝐴 ↑o ( OrdIso ( E , ( ( 𝑛 ∈ 𝐷 ↦ 𝑋 ) supp ∅ ) ) ‘ 𝑘 ) ) ·o ( ( 𝑛 ∈ 𝐷 ↦ 𝑋 ) ‘ ( OrdIso ( E , ( ( 𝑛 ∈ 𝐷 ↦ 𝑋 ) supp ∅ ) ) ‘ 𝑘 ) ) ) +o 𝑧 ) ) , ∅ ) ‘ dom OrdIso ( E , ( ( 𝑛 ∈ 𝐷 ↦ 𝑋 ) supp ∅ ) ) ) ) |
45 |
|
eqid |
⊢ seqω ( ( 𝑘 ∈ V , 𝑧 ∈ V ↦ ( ( ( 𝐴 ↑o ( OrdIso ( E , ( ( 𝑛 ∈ 𝐵 ↦ 𝑋 ) supp ∅ ) ) ‘ 𝑘 ) ) ·o ( ( 𝑛 ∈ 𝐵 ↦ 𝑋 ) ‘ ( OrdIso ( E , ( ( 𝑛 ∈ 𝐵 ↦ 𝑋 ) supp ∅ ) ) ‘ 𝑘 ) ) ) +o 𝑧 ) ) , ∅ ) = seqω ( ( 𝑘 ∈ V , 𝑧 ∈ V ↦ ( ( ( 𝐴 ↑o ( OrdIso ( E , ( ( 𝑛 ∈ 𝐵 ↦ 𝑋 ) supp ∅ ) ) ‘ 𝑘 ) ) ·o ( ( 𝑛 ∈ 𝐵 ↦ 𝑋 ) ‘ ( OrdIso ( E , ( ( 𝑛 ∈ 𝐵 ↦ 𝑋 ) supp ∅ ) ) ‘ 𝑘 ) ) ) +o 𝑧 ) ) , ∅ ) |
46 |
1 2 3 22 9 45
|
cantnfval2 |
⊢ ( 𝜑 → ( ( 𝐴 CNF 𝐵 ) ‘ ( 𝑛 ∈ 𝐵 ↦ 𝑋 ) ) = ( seqω ( ( 𝑘 ∈ dom OrdIso ( E , ( ( 𝑛 ∈ 𝐵 ↦ 𝑋 ) supp ∅ ) ) , 𝑧 ∈ On ↦ ( ( ( 𝐴 ↑o ( OrdIso ( E , ( ( 𝑛 ∈ 𝐵 ↦ 𝑋 ) supp ∅ ) ) ‘ 𝑘 ) ) ·o ( ( 𝑛 ∈ 𝐵 ↦ 𝑋 ) ‘ ( OrdIso ( E , ( ( 𝑛 ∈ 𝐵 ↦ 𝑋 ) supp ∅ ) ) ‘ 𝑘 ) ) ) +o 𝑧 ) ) , ∅ ) ‘ dom OrdIso ( E , ( ( 𝑛 ∈ 𝐵 ↦ 𝑋 ) supp ∅ ) ) ) ) |
47 |
|
eqid |
⊢ OrdIso ( E , ( ( 𝑛 ∈ 𝐷 ↦ 𝑋 ) supp ∅ ) ) = OrdIso ( E , ( ( 𝑛 ∈ 𝐷 ↦ 𝑋 ) supp ∅ ) ) |
48 |
1 2 3 4 5 6 7 8
|
cantnfrescl |
⊢ ( 𝜑 → ( ( 𝑛 ∈ 𝐵 ↦ 𝑋 ) ∈ 𝑆 ↔ ( 𝑛 ∈ 𝐷 ↦ 𝑋 ) ∈ 𝑇 ) ) |
49 |
9 48
|
mpbid |
⊢ ( 𝜑 → ( 𝑛 ∈ 𝐷 ↦ 𝑋 ) ∈ 𝑇 ) |
50 |
|
eqid |
⊢ seqω ( ( 𝑘 ∈ V , 𝑧 ∈ V ↦ ( ( ( 𝐴 ↑o ( OrdIso ( E , ( ( 𝑛 ∈ 𝐷 ↦ 𝑋 ) supp ∅ ) ) ‘ 𝑘 ) ) ·o ( ( 𝑛 ∈ 𝐷 ↦ 𝑋 ) ‘ ( OrdIso ( E , ( ( 𝑛 ∈ 𝐷 ↦ 𝑋 ) supp ∅ ) ) ‘ 𝑘 ) ) ) +o 𝑧 ) ) , ∅ ) = seqω ( ( 𝑘 ∈ V , 𝑧 ∈ V ↦ ( ( ( 𝐴 ↑o ( OrdIso ( E , ( ( 𝑛 ∈ 𝐷 ↦ 𝑋 ) supp ∅ ) ) ‘ 𝑘 ) ) ·o ( ( 𝑛 ∈ 𝐷 ↦ 𝑋 ) ‘ ( OrdIso ( E , ( ( 𝑛 ∈ 𝐷 ↦ 𝑋 ) supp ∅ ) ) ‘ 𝑘 ) ) ) +o 𝑧 ) ) , ∅ ) |
51 |
8 2 4 47 49 50
|
cantnfval2 |
⊢ ( 𝜑 → ( ( 𝐴 CNF 𝐷 ) ‘ ( 𝑛 ∈ 𝐷 ↦ 𝑋 ) ) = ( seqω ( ( 𝑘 ∈ dom OrdIso ( E , ( ( 𝑛 ∈ 𝐷 ↦ 𝑋 ) supp ∅ ) ) , 𝑧 ∈ On ↦ ( ( ( 𝐴 ↑o ( OrdIso ( E , ( ( 𝑛 ∈ 𝐷 ↦ 𝑋 ) supp ∅ ) ) ‘ 𝑘 ) ) ·o ( ( 𝑛 ∈ 𝐷 ↦ 𝑋 ) ‘ ( OrdIso ( E , ( ( 𝑛 ∈ 𝐷 ↦ 𝑋 ) supp ∅ ) ) ‘ 𝑘 ) ) ) +o 𝑧 ) ) , ∅ ) ‘ dom OrdIso ( E , ( ( 𝑛 ∈ 𝐷 ↦ 𝑋 ) supp ∅ ) ) ) ) |
52 |
44 46 51
|
3eqtr4d |
⊢ ( 𝜑 → ( ( 𝐴 CNF 𝐵 ) ‘ ( 𝑛 ∈ 𝐵 ↦ 𝑋 ) ) = ( ( 𝐴 CNF 𝐷 ) ‘ ( 𝑛 ∈ 𝐷 ↦ 𝑋 ) ) ) |