Step |
Hyp |
Ref |
Expression |
1 |
|
cantnfs.s |
⊢ 𝑆 = dom ( 𝐴 CNF 𝐵 ) |
2 |
|
cantnfs.a |
⊢ ( 𝜑 → 𝐴 ∈ On ) |
3 |
|
cantnfs.b |
⊢ ( 𝜑 → 𝐵 ∈ On ) |
4 |
|
cantnfrescl.d |
⊢ ( 𝜑 → 𝐷 ∈ On ) |
5 |
|
cantnfrescl.b |
⊢ ( 𝜑 → 𝐵 ⊆ 𝐷 ) |
6 |
|
cantnfrescl.x |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ( 𝐷 ∖ 𝐵 ) ) → 𝑋 = ∅ ) |
7 |
|
cantnfrescl.a |
⊢ ( 𝜑 → ∅ ∈ 𝐴 ) |
8 |
|
cantnfrescl.t |
⊢ 𝑇 = dom ( 𝐴 CNF 𝐷 ) |
9 |
7
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ( 𝐷 ∖ 𝐵 ) ) → ∅ ∈ 𝐴 ) |
10 |
6 9
|
eqeltrd |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ( 𝐷 ∖ 𝐵 ) ) → 𝑋 ∈ 𝐴 ) |
11 |
10
|
ralrimiva |
⊢ ( 𝜑 → ∀ 𝑛 ∈ ( 𝐷 ∖ 𝐵 ) 𝑋 ∈ 𝐴 ) |
12 |
5 11
|
raldifeq |
⊢ ( 𝜑 → ( ∀ 𝑛 ∈ 𝐵 𝑋 ∈ 𝐴 ↔ ∀ 𝑛 ∈ 𝐷 𝑋 ∈ 𝐴 ) ) |
13 |
|
eqid |
⊢ ( 𝑛 ∈ 𝐵 ↦ 𝑋 ) = ( 𝑛 ∈ 𝐵 ↦ 𝑋 ) |
14 |
13
|
fmpt |
⊢ ( ∀ 𝑛 ∈ 𝐵 𝑋 ∈ 𝐴 ↔ ( 𝑛 ∈ 𝐵 ↦ 𝑋 ) : 𝐵 ⟶ 𝐴 ) |
15 |
|
eqid |
⊢ ( 𝑛 ∈ 𝐷 ↦ 𝑋 ) = ( 𝑛 ∈ 𝐷 ↦ 𝑋 ) |
16 |
15
|
fmpt |
⊢ ( ∀ 𝑛 ∈ 𝐷 𝑋 ∈ 𝐴 ↔ ( 𝑛 ∈ 𝐷 ↦ 𝑋 ) : 𝐷 ⟶ 𝐴 ) |
17 |
12 14 16
|
3bitr3g |
⊢ ( 𝜑 → ( ( 𝑛 ∈ 𝐵 ↦ 𝑋 ) : 𝐵 ⟶ 𝐴 ↔ ( 𝑛 ∈ 𝐷 ↦ 𝑋 ) : 𝐷 ⟶ 𝐴 ) ) |
18 |
3
|
mptexd |
⊢ ( 𝜑 → ( 𝑛 ∈ 𝐵 ↦ 𝑋 ) ∈ V ) |
19 |
|
funmpt |
⊢ Fun ( 𝑛 ∈ 𝐵 ↦ 𝑋 ) |
20 |
19
|
a1i |
⊢ ( 𝜑 → Fun ( 𝑛 ∈ 𝐵 ↦ 𝑋 ) ) |
21 |
4
|
mptexd |
⊢ ( 𝜑 → ( 𝑛 ∈ 𝐷 ↦ 𝑋 ) ∈ V ) |
22 |
|
funmpt |
⊢ Fun ( 𝑛 ∈ 𝐷 ↦ 𝑋 ) |
23 |
21 22
|
jctir |
⊢ ( 𝜑 → ( ( 𝑛 ∈ 𝐷 ↦ 𝑋 ) ∈ V ∧ Fun ( 𝑛 ∈ 𝐷 ↦ 𝑋 ) ) ) |
24 |
18 20 23
|
jca31 |
⊢ ( 𝜑 → ( ( ( 𝑛 ∈ 𝐵 ↦ 𝑋 ) ∈ V ∧ Fun ( 𝑛 ∈ 𝐵 ↦ 𝑋 ) ) ∧ ( ( 𝑛 ∈ 𝐷 ↦ 𝑋 ) ∈ V ∧ Fun ( 𝑛 ∈ 𝐷 ↦ 𝑋 ) ) ) ) |
25 |
4 5 6
|
extmptsuppeq |
⊢ ( 𝜑 → ( ( 𝑛 ∈ 𝐵 ↦ 𝑋 ) supp ∅ ) = ( ( 𝑛 ∈ 𝐷 ↦ 𝑋 ) supp ∅ ) ) |
26 |
|
suppeqfsuppbi |
⊢ ( ( ( ( 𝑛 ∈ 𝐵 ↦ 𝑋 ) ∈ V ∧ Fun ( 𝑛 ∈ 𝐵 ↦ 𝑋 ) ) ∧ ( ( 𝑛 ∈ 𝐷 ↦ 𝑋 ) ∈ V ∧ Fun ( 𝑛 ∈ 𝐷 ↦ 𝑋 ) ) ) → ( ( ( 𝑛 ∈ 𝐵 ↦ 𝑋 ) supp ∅ ) = ( ( 𝑛 ∈ 𝐷 ↦ 𝑋 ) supp ∅ ) → ( ( 𝑛 ∈ 𝐵 ↦ 𝑋 ) finSupp ∅ ↔ ( 𝑛 ∈ 𝐷 ↦ 𝑋 ) finSupp ∅ ) ) ) |
27 |
24 25 26
|
sylc |
⊢ ( 𝜑 → ( ( 𝑛 ∈ 𝐵 ↦ 𝑋 ) finSupp ∅ ↔ ( 𝑛 ∈ 𝐷 ↦ 𝑋 ) finSupp ∅ ) ) |
28 |
17 27
|
anbi12d |
⊢ ( 𝜑 → ( ( ( 𝑛 ∈ 𝐵 ↦ 𝑋 ) : 𝐵 ⟶ 𝐴 ∧ ( 𝑛 ∈ 𝐵 ↦ 𝑋 ) finSupp ∅ ) ↔ ( ( 𝑛 ∈ 𝐷 ↦ 𝑋 ) : 𝐷 ⟶ 𝐴 ∧ ( 𝑛 ∈ 𝐷 ↦ 𝑋 ) finSupp ∅ ) ) ) |
29 |
1 2 3
|
cantnfs |
⊢ ( 𝜑 → ( ( 𝑛 ∈ 𝐵 ↦ 𝑋 ) ∈ 𝑆 ↔ ( ( 𝑛 ∈ 𝐵 ↦ 𝑋 ) : 𝐵 ⟶ 𝐴 ∧ ( 𝑛 ∈ 𝐵 ↦ 𝑋 ) finSupp ∅ ) ) ) |
30 |
8 2 4
|
cantnfs |
⊢ ( 𝜑 → ( ( 𝑛 ∈ 𝐷 ↦ 𝑋 ) ∈ 𝑇 ↔ ( ( 𝑛 ∈ 𝐷 ↦ 𝑋 ) : 𝐷 ⟶ 𝐴 ∧ ( 𝑛 ∈ 𝐷 ↦ 𝑋 ) finSupp ∅ ) ) ) |
31 |
28 29 30
|
3bitr4d |
⊢ ( 𝜑 → ( ( 𝑛 ∈ 𝐵 ↦ 𝑋 ) ∈ 𝑆 ↔ ( 𝑛 ∈ 𝐷 ↦ 𝑋 ) ∈ 𝑇 ) ) |