| Step | Hyp | Ref | Expression | 
						
							| 1 |  | cantnfs.s | ⊢ 𝑆  =  dom  ( 𝐴  CNF  𝐵 ) | 
						
							| 2 |  | cantnfs.a | ⊢ ( 𝜑  →  𝐴  ∈  On ) | 
						
							| 3 |  | cantnfs.b | ⊢ ( 𝜑  →  𝐵  ∈  On ) | 
						
							| 4 |  | cantnfcl.g | ⊢ 𝐺  =  OrdIso (  E  ,  ( 𝐹  supp  ∅ ) ) | 
						
							| 5 |  | cantnfcl.f | ⊢ ( 𝜑  →  𝐹  ∈  𝑆 ) | 
						
							| 6 |  | cantnfval.h | ⊢ 𝐻  =  seqω ( ( 𝑘  ∈  V ,  𝑧  ∈  V  ↦  ( ( ( 𝐴  ↑o  ( 𝐺 ‘ 𝑘 ) )  ·o  ( 𝐹 ‘ ( 𝐺 ‘ 𝑘 ) ) )  +o  𝑧 ) ) ,  ∅ ) | 
						
							| 7 | 6 | seqomsuc | ⊢ ( 𝐾  ∈  ω  →  ( 𝐻 ‘ suc  𝐾 )  =  ( 𝐾 ( 𝑘  ∈  V ,  𝑧  ∈  V  ↦  ( ( ( 𝐴  ↑o  ( 𝐺 ‘ 𝑘 ) )  ·o  ( 𝐹 ‘ ( 𝐺 ‘ 𝑘 ) ) )  +o  𝑧 ) ) ( 𝐻 ‘ 𝐾 ) ) ) | 
						
							| 8 | 7 | adantl | ⊢ ( ( 𝜑  ∧  𝐾  ∈  ω )  →  ( 𝐻 ‘ suc  𝐾 )  =  ( 𝐾 ( 𝑘  ∈  V ,  𝑧  ∈  V  ↦  ( ( ( 𝐴  ↑o  ( 𝐺 ‘ 𝑘 ) )  ·o  ( 𝐹 ‘ ( 𝐺 ‘ 𝑘 ) ) )  +o  𝑧 ) ) ( 𝐻 ‘ 𝐾 ) ) ) | 
						
							| 9 |  | elex | ⊢ ( 𝐾  ∈  ω  →  𝐾  ∈  V ) | 
						
							| 10 | 9 | adantl | ⊢ ( ( 𝜑  ∧  𝐾  ∈  ω )  →  𝐾  ∈  V ) | 
						
							| 11 |  | fvex | ⊢ ( 𝐻 ‘ 𝐾 )  ∈  V | 
						
							| 12 |  | simpl | ⊢ ( ( 𝑢  =  𝐾  ∧  𝑣  =  ( 𝐻 ‘ 𝐾 ) )  →  𝑢  =  𝐾 ) | 
						
							| 13 | 12 | fveq2d | ⊢ ( ( 𝑢  =  𝐾  ∧  𝑣  =  ( 𝐻 ‘ 𝐾 ) )  →  ( 𝐺 ‘ 𝑢 )  =  ( 𝐺 ‘ 𝐾 ) ) | 
						
							| 14 | 13 | oveq2d | ⊢ ( ( 𝑢  =  𝐾  ∧  𝑣  =  ( 𝐻 ‘ 𝐾 ) )  →  ( 𝐴  ↑o  ( 𝐺 ‘ 𝑢 ) )  =  ( 𝐴  ↑o  ( 𝐺 ‘ 𝐾 ) ) ) | 
						
							| 15 | 13 | fveq2d | ⊢ ( ( 𝑢  =  𝐾  ∧  𝑣  =  ( 𝐻 ‘ 𝐾 ) )  →  ( 𝐹 ‘ ( 𝐺 ‘ 𝑢 ) )  =  ( 𝐹 ‘ ( 𝐺 ‘ 𝐾 ) ) ) | 
						
							| 16 | 14 15 | oveq12d | ⊢ ( ( 𝑢  =  𝐾  ∧  𝑣  =  ( 𝐻 ‘ 𝐾 ) )  →  ( ( 𝐴  ↑o  ( 𝐺 ‘ 𝑢 ) )  ·o  ( 𝐹 ‘ ( 𝐺 ‘ 𝑢 ) ) )  =  ( ( 𝐴  ↑o  ( 𝐺 ‘ 𝐾 ) )  ·o  ( 𝐹 ‘ ( 𝐺 ‘ 𝐾 ) ) ) ) | 
						
							| 17 |  | simpr | ⊢ ( ( 𝑢  =  𝐾  ∧  𝑣  =  ( 𝐻 ‘ 𝐾 ) )  →  𝑣  =  ( 𝐻 ‘ 𝐾 ) ) | 
						
							| 18 | 16 17 | oveq12d | ⊢ ( ( 𝑢  =  𝐾  ∧  𝑣  =  ( 𝐻 ‘ 𝐾 ) )  →  ( ( ( 𝐴  ↑o  ( 𝐺 ‘ 𝑢 ) )  ·o  ( 𝐹 ‘ ( 𝐺 ‘ 𝑢 ) ) )  +o  𝑣 )  =  ( ( ( 𝐴  ↑o  ( 𝐺 ‘ 𝐾 ) )  ·o  ( 𝐹 ‘ ( 𝐺 ‘ 𝐾 ) ) )  +o  ( 𝐻 ‘ 𝐾 ) ) ) | 
						
							| 19 |  | fveq2 | ⊢ ( 𝑘  =  𝑢  →  ( 𝐺 ‘ 𝑘 )  =  ( 𝐺 ‘ 𝑢 ) ) | 
						
							| 20 | 19 | oveq2d | ⊢ ( 𝑘  =  𝑢  →  ( 𝐴  ↑o  ( 𝐺 ‘ 𝑘 ) )  =  ( 𝐴  ↑o  ( 𝐺 ‘ 𝑢 ) ) ) | 
						
							| 21 | 19 | fveq2d | ⊢ ( 𝑘  =  𝑢  →  ( 𝐹 ‘ ( 𝐺 ‘ 𝑘 ) )  =  ( 𝐹 ‘ ( 𝐺 ‘ 𝑢 ) ) ) | 
						
							| 22 | 20 21 | oveq12d | ⊢ ( 𝑘  =  𝑢  →  ( ( 𝐴  ↑o  ( 𝐺 ‘ 𝑘 ) )  ·o  ( 𝐹 ‘ ( 𝐺 ‘ 𝑘 ) ) )  =  ( ( 𝐴  ↑o  ( 𝐺 ‘ 𝑢 ) )  ·o  ( 𝐹 ‘ ( 𝐺 ‘ 𝑢 ) ) ) ) | 
						
							| 23 | 22 | oveq1d | ⊢ ( 𝑘  =  𝑢  →  ( ( ( 𝐴  ↑o  ( 𝐺 ‘ 𝑘 ) )  ·o  ( 𝐹 ‘ ( 𝐺 ‘ 𝑘 ) ) )  +o  𝑧 )  =  ( ( ( 𝐴  ↑o  ( 𝐺 ‘ 𝑢 ) )  ·o  ( 𝐹 ‘ ( 𝐺 ‘ 𝑢 ) ) )  +o  𝑧 ) ) | 
						
							| 24 |  | oveq2 | ⊢ ( 𝑧  =  𝑣  →  ( ( ( 𝐴  ↑o  ( 𝐺 ‘ 𝑢 ) )  ·o  ( 𝐹 ‘ ( 𝐺 ‘ 𝑢 ) ) )  +o  𝑧 )  =  ( ( ( 𝐴  ↑o  ( 𝐺 ‘ 𝑢 ) )  ·o  ( 𝐹 ‘ ( 𝐺 ‘ 𝑢 ) ) )  +o  𝑣 ) ) | 
						
							| 25 | 23 24 | cbvmpov | ⊢ ( 𝑘  ∈  V ,  𝑧  ∈  V  ↦  ( ( ( 𝐴  ↑o  ( 𝐺 ‘ 𝑘 ) )  ·o  ( 𝐹 ‘ ( 𝐺 ‘ 𝑘 ) ) )  +o  𝑧 ) )  =  ( 𝑢  ∈  V ,  𝑣  ∈  V  ↦  ( ( ( 𝐴  ↑o  ( 𝐺 ‘ 𝑢 ) )  ·o  ( 𝐹 ‘ ( 𝐺 ‘ 𝑢 ) ) )  +o  𝑣 ) ) | 
						
							| 26 |  | ovex | ⊢ ( ( ( 𝐴  ↑o  ( 𝐺 ‘ 𝐾 ) )  ·o  ( 𝐹 ‘ ( 𝐺 ‘ 𝐾 ) ) )  +o  ( 𝐻 ‘ 𝐾 ) )  ∈  V | 
						
							| 27 | 18 25 26 | ovmpoa | ⊢ ( ( 𝐾  ∈  V  ∧  ( 𝐻 ‘ 𝐾 )  ∈  V )  →  ( 𝐾 ( 𝑘  ∈  V ,  𝑧  ∈  V  ↦  ( ( ( 𝐴  ↑o  ( 𝐺 ‘ 𝑘 ) )  ·o  ( 𝐹 ‘ ( 𝐺 ‘ 𝑘 ) ) )  +o  𝑧 ) ) ( 𝐻 ‘ 𝐾 ) )  =  ( ( ( 𝐴  ↑o  ( 𝐺 ‘ 𝐾 ) )  ·o  ( 𝐹 ‘ ( 𝐺 ‘ 𝐾 ) ) )  +o  ( 𝐻 ‘ 𝐾 ) ) ) | 
						
							| 28 | 10 11 27 | sylancl | ⊢ ( ( 𝜑  ∧  𝐾  ∈  ω )  →  ( 𝐾 ( 𝑘  ∈  V ,  𝑧  ∈  V  ↦  ( ( ( 𝐴  ↑o  ( 𝐺 ‘ 𝑘 ) )  ·o  ( 𝐹 ‘ ( 𝐺 ‘ 𝑘 ) ) )  +o  𝑧 ) ) ( 𝐻 ‘ 𝐾 ) )  =  ( ( ( 𝐴  ↑o  ( 𝐺 ‘ 𝐾 ) )  ·o  ( 𝐹 ‘ ( 𝐺 ‘ 𝐾 ) ) )  +o  ( 𝐻 ‘ 𝐾 ) ) ) | 
						
							| 29 | 8 28 | eqtrd | ⊢ ( ( 𝜑  ∧  𝐾  ∈  ω )  →  ( 𝐻 ‘ suc  𝐾 )  =  ( ( ( 𝐴  ↑o  ( 𝐺 ‘ 𝐾 ) )  ·o  ( 𝐹 ‘ ( 𝐺 ‘ 𝐾 ) ) )  +o  ( 𝐻 ‘ 𝐾 ) ) ) |