| Step |
Hyp |
Ref |
Expression |
| 1 |
|
cantnfs.s |
⊢ 𝑆 = dom ( 𝐴 CNF 𝐵 ) |
| 2 |
|
cantnfs.a |
⊢ ( 𝜑 → 𝐴 ∈ On ) |
| 3 |
|
cantnfs.b |
⊢ ( 𝜑 → 𝐵 ∈ On ) |
| 4 |
|
cantnfcl.g |
⊢ 𝐺 = OrdIso ( E , ( 𝐹 supp ∅ ) ) |
| 5 |
|
cantnfcl.f |
⊢ ( 𝜑 → 𝐹 ∈ 𝑆 ) |
| 6 |
|
cantnfval.h |
⊢ 𝐻 = seqω ( ( 𝑘 ∈ V , 𝑧 ∈ V ↦ ( ( ( 𝐴 ↑o ( 𝐺 ‘ 𝑘 ) ) ·o ( 𝐹 ‘ ( 𝐺 ‘ 𝑘 ) ) ) +o 𝑧 ) ) , ∅ ) |
| 7 |
6
|
seqomsuc |
⊢ ( 𝐾 ∈ ω → ( 𝐻 ‘ suc 𝐾 ) = ( 𝐾 ( 𝑘 ∈ V , 𝑧 ∈ V ↦ ( ( ( 𝐴 ↑o ( 𝐺 ‘ 𝑘 ) ) ·o ( 𝐹 ‘ ( 𝐺 ‘ 𝑘 ) ) ) +o 𝑧 ) ) ( 𝐻 ‘ 𝐾 ) ) ) |
| 8 |
7
|
adantl |
⊢ ( ( 𝜑 ∧ 𝐾 ∈ ω ) → ( 𝐻 ‘ suc 𝐾 ) = ( 𝐾 ( 𝑘 ∈ V , 𝑧 ∈ V ↦ ( ( ( 𝐴 ↑o ( 𝐺 ‘ 𝑘 ) ) ·o ( 𝐹 ‘ ( 𝐺 ‘ 𝑘 ) ) ) +o 𝑧 ) ) ( 𝐻 ‘ 𝐾 ) ) ) |
| 9 |
|
elex |
⊢ ( 𝐾 ∈ ω → 𝐾 ∈ V ) |
| 10 |
9
|
adantl |
⊢ ( ( 𝜑 ∧ 𝐾 ∈ ω ) → 𝐾 ∈ V ) |
| 11 |
|
fvex |
⊢ ( 𝐻 ‘ 𝐾 ) ∈ V |
| 12 |
|
simpl |
⊢ ( ( 𝑢 = 𝐾 ∧ 𝑣 = ( 𝐻 ‘ 𝐾 ) ) → 𝑢 = 𝐾 ) |
| 13 |
12
|
fveq2d |
⊢ ( ( 𝑢 = 𝐾 ∧ 𝑣 = ( 𝐻 ‘ 𝐾 ) ) → ( 𝐺 ‘ 𝑢 ) = ( 𝐺 ‘ 𝐾 ) ) |
| 14 |
13
|
oveq2d |
⊢ ( ( 𝑢 = 𝐾 ∧ 𝑣 = ( 𝐻 ‘ 𝐾 ) ) → ( 𝐴 ↑o ( 𝐺 ‘ 𝑢 ) ) = ( 𝐴 ↑o ( 𝐺 ‘ 𝐾 ) ) ) |
| 15 |
13
|
fveq2d |
⊢ ( ( 𝑢 = 𝐾 ∧ 𝑣 = ( 𝐻 ‘ 𝐾 ) ) → ( 𝐹 ‘ ( 𝐺 ‘ 𝑢 ) ) = ( 𝐹 ‘ ( 𝐺 ‘ 𝐾 ) ) ) |
| 16 |
14 15
|
oveq12d |
⊢ ( ( 𝑢 = 𝐾 ∧ 𝑣 = ( 𝐻 ‘ 𝐾 ) ) → ( ( 𝐴 ↑o ( 𝐺 ‘ 𝑢 ) ) ·o ( 𝐹 ‘ ( 𝐺 ‘ 𝑢 ) ) ) = ( ( 𝐴 ↑o ( 𝐺 ‘ 𝐾 ) ) ·o ( 𝐹 ‘ ( 𝐺 ‘ 𝐾 ) ) ) ) |
| 17 |
|
simpr |
⊢ ( ( 𝑢 = 𝐾 ∧ 𝑣 = ( 𝐻 ‘ 𝐾 ) ) → 𝑣 = ( 𝐻 ‘ 𝐾 ) ) |
| 18 |
16 17
|
oveq12d |
⊢ ( ( 𝑢 = 𝐾 ∧ 𝑣 = ( 𝐻 ‘ 𝐾 ) ) → ( ( ( 𝐴 ↑o ( 𝐺 ‘ 𝑢 ) ) ·o ( 𝐹 ‘ ( 𝐺 ‘ 𝑢 ) ) ) +o 𝑣 ) = ( ( ( 𝐴 ↑o ( 𝐺 ‘ 𝐾 ) ) ·o ( 𝐹 ‘ ( 𝐺 ‘ 𝐾 ) ) ) +o ( 𝐻 ‘ 𝐾 ) ) ) |
| 19 |
|
fveq2 |
⊢ ( 𝑘 = 𝑢 → ( 𝐺 ‘ 𝑘 ) = ( 𝐺 ‘ 𝑢 ) ) |
| 20 |
19
|
oveq2d |
⊢ ( 𝑘 = 𝑢 → ( 𝐴 ↑o ( 𝐺 ‘ 𝑘 ) ) = ( 𝐴 ↑o ( 𝐺 ‘ 𝑢 ) ) ) |
| 21 |
19
|
fveq2d |
⊢ ( 𝑘 = 𝑢 → ( 𝐹 ‘ ( 𝐺 ‘ 𝑘 ) ) = ( 𝐹 ‘ ( 𝐺 ‘ 𝑢 ) ) ) |
| 22 |
20 21
|
oveq12d |
⊢ ( 𝑘 = 𝑢 → ( ( 𝐴 ↑o ( 𝐺 ‘ 𝑘 ) ) ·o ( 𝐹 ‘ ( 𝐺 ‘ 𝑘 ) ) ) = ( ( 𝐴 ↑o ( 𝐺 ‘ 𝑢 ) ) ·o ( 𝐹 ‘ ( 𝐺 ‘ 𝑢 ) ) ) ) |
| 23 |
22
|
oveq1d |
⊢ ( 𝑘 = 𝑢 → ( ( ( 𝐴 ↑o ( 𝐺 ‘ 𝑘 ) ) ·o ( 𝐹 ‘ ( 𝐺 ‘ 𝑘 ) ) ) +o 𝑧 ) = ( ( ( 𝐴 ↑o ( 𝐺 ‘ 𝑢 ) ) ·o ( 𝐹 ‘ ( 𝐺 ‘ 𝑢 ) ) ) +o 𝑧 ) ) |
| 24 |
|
oveq2 |
⊢ ( 𝑧 = 𝑣 → ( ( ( 𝐴 ↑o ( 𝐺 ‘ 𝑢 ) ) ·o ( 𝐹 ‘ ( 𝐺 ‘ 𝑢 ) ) ) +o 𝑧 ) = ( ( ( 𝐴 ↑o ( 𝐺 ‘ 𝑢 ) ) ·o ( 𝐹 ‘ ( 𝐺 ‘ 𝑢 ) ) ) +o 𝑣 ) ) |
| 25 |
23 24
|
cbvmpov |
⊢ ( 𝑘 ∈ V , 𝑧 ∈ V ↦ ( ( ( 𝐴 ↑o ( 𝐺 ‘ 𝑘 ) ) ·o ( 𝐹 ‘ ( 𝐺 ‘ 𝑘 ) ) ) +o 𝑧 ) ) = ( 𝑢 ∈ V , 𝑣 ∈ V ↦ ( ( ( 𝐴 ↑o ( 𝐺 ‘ 𝑢 ) ) ·o ( 𝐹 ‘ ( 𝐺 ‘ 𝑢 ) ) ) +o 𝑣 ) ) |
| 26 |
|
ovex |
⊢ ( ( ( 𝐴 ↑o ( 𝐺 ‘ 𝐾 ) ) ·o ( 𝐹 ‘ ( 𝐺 ‘ 𝐾 ) ) ) +o ( 𝐻 ‘ 𝐾 ) ) ∈ V |
| 27 |
18 25 26
|
ovmpoa |
⊢ ( ( 𝐾 ∈ V ∧ ( 𝐻 ‘ 𝐾 ) ∈ V ) → ( 𝐾 ( 𝑘 ∈ V , 𝑧 ∈ V ↦ ( ( ( 𝐴 ↑o ( 𝐺 ‘ 𝑘 ) ) ·o ( 𝐹 ‘ ( 𝐺 ‘ 𝑘 ) ) ) +o 𝑧 ) ) ( 𝐻 ‘ 𝐾 ) ) = ( ( ( 𝐴 ↑o ( 𝐺 ‘ 𝐾 ) ) ·o ( 𝐹 ‘ ( 𝐺 ‘ 𝐾 ) ) ) +o ( 𝐻 ‘ 𝐾 ) ) ) |
| 28 |
10 11 27
|
sylancl |
⊢ ( ( 𝜑 ∧ 𝐾 ∈ ω ) → ( 𝐾 ( 𝑘 ∈ V , 𝑧 ∈ V ↦ ( ( ( 𝐴 ↑o ( 𝐺 ‘ 𝑘 ) ) ·o ( 𝐹 ‘ ( 𝐺 ‘ 𝑘 ) ) ) +o 𝑧 ) ) ( 𝐻 ‘ 𝐾 ) ) = ( ( ( 𝐴 ↑o ( 𝐺 ‘ 𝐾 ) ) ·o ( 𝐹 ‘ ( 𝐺 ‘ 𝐾 ) ) ) +o ( 𝐻 ‘ 𝐾 ) ) ) |
| 29 |
8 28
|
eqtrd |
⊢ ( ( 𝜑 ∧ 𝐾 ∈ ω ) → ( 𝐻 ‘ suc 𝐾 ) = ( ( ( 𝐴 ↑o ( 𝐺 ‘ 𝐾 ) ) ·o ( 𝐹 ‘ ( 𝐺 ‘ 𝐾 ) ) ) +o ( 𝐻 ‘ 𝐾 ) ) ) |