| Step | Hyp | Ref | Expression | 
						
							| 1 |  | cantnfs.s | ⊢ 𝑆  =  dom  ( 𝐴  CNF  𝐵 ) | 
						
							| 2 |  | cantnfs.a | ⊢ ( 𝜑  →  𝐴  ∈  On ) | 
						
							| 3 |  | cantnfs.b | ⊢ ( 𝜑  →  𝐵  ∈  On ) | 
						
							| 4 |  | cantnfcl.g | ⊢ 𝐺  =  OrdIso (  E  ,  ( 𝐹  supp  ∅ ) ) | 
						
							| 5 |  | cantnfcl.f | ⊢ ( 𝜑  →  𝐹  ∈  𝑆 ) | 
						
							| 6 |  | cantnfval.h | ⊢ 𝐻  =  seqω ( ( 𝑘  ∈  V ,  𝑧  ∈  V  ↦  ( ( ( 𝐴  ↑o  ( 𝐺 ‘ 𝑘 ) )  ·o  ( 𝐹 ‘ ( 𝐺 ‘ 𝑘 ) ) )  +o  𝑧 ) ) ,  ∅ ) | 
						
							| 7 |  | eqid | ⊢ { 𝑔  ∈  ( 𝐴  ↑m  𝐵 )  ∣  𝑔  finSupp  ∅ }  =  { 𝑔  ∈  ( 𝐴  ↑m  𝐵 )  ∣  𝑔  finSupp  ∅ } | 
						
							| 8 | 7 2 3 | cantnffval | ⊢ ( 𝜑  →  ( 𝐴  CNF  𝐵 )  =  ( 𝑓  ∈  { 𝑔  ∈  ( 𝐴  ↑m  𝐵 )  ∣  𝑔  finSupp  ∅ }  ↦  ⦋ OrdIso (  E  ,  ( 𝑓  supp  ∅ ) )  /  ℎ ⦌ ( seqω ( ( 𝑘  ∈  V ,  𝑧  ∈  V  ↦  ( ( ( 𝐴  ↑o  ( ℎ ‘ 𝑘 ) )  ·o  ( 𝑓 ‘ ( ℎ ‘ 𝑘 ) ) )  +o  𝑧 ) ) ,  ∅ ) ‘ dom  ℎ ) ) ) | 
						
							| 9 | 8 | fveq1d | ⊢ ( 𝜑  →  ( ( 𝐴  CNF  𝐵 ) ‘ 𝐹 )  =  ( ( 𝑓  ∈  { 𝑔  ∈  ( 𝐴  ↑m  𝐵 )  ∣  𝑔  finSupp  ∅ }  ↦  ⦋ OrdIso (  E  ,  ( 𝑓  supp  ∅ ) )  /  ℎ ⦌ ( seqω ( ( 𝑘  ∈  V ,  𝑧  ∈  V  ↦  ( ( ( 𝐴  ↑o  ( ℎ ‘ 𝑘 ) )  ·o  ( 𝑓 ‘ ( ℎ ‘ 𝑘 ) ) )  +o  𝑧 ) ) ,  ∅ ) ‘ dom  ℎ ) ) ‘ 𝐹 ) ) | 
						
							| 10 | 7 2 3 | cantnfdm | ⊢ ( 𝜑  →  dom  ( 𝐴  CNF  𝐵 )  =  { 𝑔  ∈  ( 𝐴  ↑m  𝐵 )  ∣  𝑔  finSupp  ∅ } ) | 
						
							| 11 | 1 10 | eqtrid | ⊢ ( 𝜑  →  𝑆  =  { 𝑔  ∈  ( 𝐴  ↑m  𝐵 )  ∣  𝑔  finSupp  ∅ } ) | 
						
							| 12 | 5 11 | eleqtrd | ⊢ ( 𝜑  →  𝐹  ∈  { 𝑔  ∈  ( 𝐴  ↑m  𝐵 )  ∣  𝑔  finSupp  ∅ } ) | 
						
							| 13 |  | ovex | ⊢ ( 𝑓  supp  ∅ )  ∈  V | 
						
							| 14 |  | eqid | ⊢ OrdIso (  E  ,  ( 𝑓  supp  ∅ ) )  =  OrdIso (  E  ,  ( 𝑓  supp  ∅ ) ) | 
						
							| 15 | 14 | oiexg | ⊢ ( ( 𝑓  supp  ∅ )  ∈  V  →  OrdIso (  E  ,  ( 𝑓  supp  ∅ ) )  ∈  V ) | 
						
							| 16 | 13 15 | mp1i | ⊢ ( 𝑓  =  𝐹  →  OrdIso (  E  ,  ( 𝑓  supp  ∅ ) )  ∈  V ) | 
						
							| 17 |  | simpr | ⊢ ( ( 𝑓  =  𝐹  ∧  ℎ  =  OrdIso (  E  ,  ( 𝑓  supp  ∅ ) ) )  →  ℎ  =  OrdIso (  E  ,  ( 𝑓  supp  ∅ ) ) ) | 
						
							| 18 |  | oveq1 | ⊢ ( 𝑓  =  𝐹  →  ( 𝑓  supp  ∅ )  =  ( 𝐹  supp  ∅ ) ) | 
						
							| 19 | 18 | adantr | ⊢ ( ( 𝑓  =  𝐹  ∧  ℎ  =  OrdIso (  E  ,  ( 𝑓  supp  ∅ ) ) )  →  ( 𝑓  supp  ∅ )  =  ( 𝐹  supp  ∅ ) ) | 
						
							| 20 |  | oieq2 | ⊢ ( ( 𝑓  supp  ∅ )  =  ( 𝐹  supp  ∅ )  →  OrdIso (  E  ,  ( 𝑓  supp  ∅ ) )  =  OrdIso (  E  ,  ( 𝐹  supp  ∅ ) ) ) | 
						
							| 21 | 19 20 | syl | ⊢ ( ( 𝑓  =  𝐹  ∧  ℎ  =  OrdIso (  E  ,  ( 𝑓  supp  ∅ ) ) )  →  OrdIso (  E  ,  ( 𝑓  supp  ∅ ) )  =  OrdIso (  E  ,  ( 𝐹  supp  ∅ ) ) ) | 
						
							| 22 | 17 21 | eqtrd | ⊢ ( ( 𝑓  =  𝐹  ∧  ℎ  =  OrdIso (  E  ,  ( 𝑓  supp  ∅ ) ) )  →  ℎ  =  OrdIso (  E  ,  ( 𝐹  supp  ∅ ) ) ) | 
						
							| 23 | 22 4 | eqtr4di | ⊢ ( ( 𝑓  =  𝐹  ∧  ℎ  =  OrdIso (  E  ,  ( 𝑓  supp  ∅ ) ) )  →  ℎ  =  𝐺 ) | 
						
							| 24 | 23 | fveq1d | ⊢ ( ( 𝑓  =  𝐹  ∧  ℎ  =  OrdIso (  E  ,  ( 𝑓  supp  ∅ ) ) )  →  ( ℎ ‘ 𝑘 )  =  ( 𝐺 ‘ 𝑘 ) ) | 
						
							| 25 | 24 | oveq2d | ⊢ ( ( 𝑓  =  𝐹  ∧  ℎ  =  OrdIso (  E  ,  ( 𝑓  supp  ∅ ) ) )  →  ( 𝐴  ↑o  ( ℎ ‘ 𝑘 ) )  =  ( 𝐴  ↑o  ( 𝐺 ‘ 𝑘 ) ) ) | 
						
							| 26 |  | simpl | ⊢ ( ( 𝑓  =  𝐹  ∧  ℎ  =  OrdIso (  E  ,  ( 𝑓  supp  ∅ ) ) )  →  𝑓  =  𝐹 ) | 
						
							| 27 | 26 24 | fveq12d | ⊢ ( ( 𝑓  =  𝐹  ∧  ℎ  =  OrdIso (  E  ,  ( 𝑓  supp  ∅ ) ) )  →  ( 𝑓 ‘ ( ℎ ‘ 𝑘 ) )  =  ( 𝐹 ‘ ( 𝐺 ‘ 𝑘 ) ) ) | 
						
							| 28 | 25 27 | oveq12d | ⊢ ( ( 𝑓  =  𝐹  ∧  ℎ  =  OrdIso (  E  ,  ( 𝑓  supp  ∅ ) ) )  →  ( ( 𝐴  ↑o  ( ℎ ‘ 𝑘 ) )  ·o  ( 𝑓 ‘ ( ℎ ‘ 𝑘 ) ) )  =  ( ( 𝐴  ↑o  ( 𝐺 ‘ 𝑘 ) )  ·o  ( 𝐹 ‘ ( 𝐺 ‘ 𝑘 ) ) ) ) | 
						
							| 29 | 28 | oveq1d | ⊢ ( ( 𝑓  =  𝐹  ∧  ℎ  =  OrdIso (  E  ,  ( 𝑓  supp  ∅ ) ) )  →  ( ( ( 𝐴  ↑o  ( ℎ ‘ 𝑘 ) )  ·o  ( 𝑓 ‘ ( ℎ ‘ 𝑘 ) ) )  +o  𝑧 )  =  ( ( ( 𝐴  ↑o  ( 𝐺 ‘ 𝑘 ) )  ·o  ( 𝐹 ‘ ( 𝐺 ‘ 𝑘 ) ) )  +o  𝑧 ) ) | 
						
							| 30 | 29 | mpoeq3dv | ⊢ ( ( 𝑓  =  𝐹  ∧  ℎ  =  OrdIso (  E  ,  ( 𝑓  supp  ∅ ) ) )  →  ( 𝑘  ∈  V ,  𝑧  ∈  V  ↦  ( ( ( 𝐴  ↑o  ( ℎ ‘ 𝑘 ) )  ·o  ( 𝑓 ‘ ( ℎ ‘ 𝑘 ) ) )  +o  𝑧 ) )  =  ( 𝑘  ∈  V ,  𝑧  ∈  V  ↦  ( ( ( 𝐴  ↑o  ( 𝐺 ‘ 𝑘 ) )  ·o  ( 𝐹 ‘ ( 𝐺 ‘ 𝑘 ) ) )  +o  𝑧 ) ) ) | 
						
							| 31 |  | eqid | ⊢ ∅  =  ∅ | 
						
							| 32 |  | seqomeq12 | ⊢ ( ( ( 𝑘  ∈  V ,  𝑧  ∈  V  ↦  ( ( ( 𝐴  ↑o  ( ℎ ‘ 𝑘 ) )  ·o  ( 𝑓 ‘ ( ℎ ‘ 𝑘 ) ) )  +o  𝑧 ) )  =  ( 𝑘  ∈  V ,  𝑧  ∈  V  ↦  ( ( ( 𝐴  ↑o  ( 𝐺 ‘ 𝑘 ) )  ·o  ( 𝐹 ‘ ( 𝐺 ‘ 𝑘 ) ) )  +o  𝑧 ) )  ∧  ∅  =  ∅ )  →  seqω ( ( 𝑘  ∈  V ,  𝑧  ∈  V  ↦  ( ( ( 𝐴  ↑o  ( ℎ ‘ 𝑘 ) )  ·o  ( 𝑓 ‘ ( ℎ ‘ 𝑘 ) ) )  +o  𝑧 ) ) ,  ∅ )  =  seqω ( ( 𝑘  ∈  V ,  𝑧  ∈  V  ↦  ( ( ( 𝐴  ↑o  ( 𝐺 ‘ 𝑘 ) )  ·o  ( 𝐹 ‘ ( 𝐺 ‘ 𝑘 ) ) )  +o  𝑧 ) ) ,  ∅ ) ) | 
						
							| 33 | 30 31 32 | sylancl | ⊢ ( ( 𝑓  =  𝐹  ∧  ℎ  =  OrdIso (  E  ,  ( 𝑓  supp  ∅ ) ) )  →  seqω ( ( 𝑘  ∈  V ,  𝑧  ∈  V  ↦  ( ( ( 𝐴  ↑o  ( ℎ ‘ 𝑘 ) )  ·o  ( 𝑓 ‘ ( ℎ ‘ 𝑘 ) ) )  +o  𝑧 ) ) ,  ∅ )  =  seqω ( ( 𝑘  ∈  V ,  𝑧  ∈  V  ↦  ( ( ( 𝐴  ↑o  ( 𝐺 ‘ 𝑘 ) )  ·o  ( 𝐹 ‘ ( 𝐺 ‘ 𝑘 ) ) )  +o  𝑧 ) ) ,  ∅ ) ) | 
						
							| 34 | 33 6 | eqtr4di | ⊢ ( ( 𝑓  =  𝐹  ∧  ℎ  =  OrdIso (  E  ,  ( 𝑓  supp  ∅ ) ) )  →  seqω ( ( 𝑘  ∈  V ,  𝑧  ∈  V  ↦  ( ( ( 𝐴  ↑o  ( ℎ ‘ 𝑘 ) )  ·o  ( 𝑓 ‘ ( ℎ ‘ 𝑘 ) ) )  +o  𝑧 ) ) ,  ∅ )  =  𝐻 ) | 
						
							| 35 | 23 | dmeqd | ⊢ ( ( 𝑓  =  𝐹  ∧  ℎ  =  OrdIso (  E  ,  ( 𝑓  supp  ∅ ) ) )  →  dom  ℎ  =  dom  𝐺 ) | 
						
							| 36 | 34 35 | fveq12d | ⊢ ( ( 𝑓  =  𝐹  ∧  ℎ  =  OrdIso (  E  ,  ( 𝑓  supp  ∅ ) ) )  →  ( seqω ( ( 𝑘  ∈  V ,  𝑧  ∈  V  ↦  ( ( ( 𝐴  ↑o  ( ℎ ‘ 𝑘 ) )  ·o  ( 𝑓 ‘ ( ℎ ‘ 𝑘 ) ) )  +o  𝑧 ) ) ,  ∅ ) ‘ dom  ℎ )  =  ( 𝐻 ‘ dom  𝐺 ) ) | 
						
							| 37 | 16 36 | csbied | ⊢ ( 𝑓  =  𝐹  →  ⦋ OrdIso (  E  ,  ( 𝑓  supp  ∅ ) )  /  ℎ ⦌ ( seqω ( ( 𝑘  ∈  V ,  𝑧  ∈  V  ↦  ( ( ( 𝐴  ↑o  ( ℎ ‘ 𝑘 ) )  ·o  ( 𝑓 ‘ ( ℎ ‘ 𝑘 ) ) )  +o  𝑧 ) ) ,  ∅ ) ‘ dom  ℎ )  =  ( 𝐻 ‘ dom  𝐺 ) ) | 
						
							| 38 |  | eqid | ⊢ ( 𝑓  ∈  { 𝑔  ∈  ( 𝐴  ↑m  𝐵 )  ∣  𝑔  finSupp  ∅ }  ↦  ⦋ OrdIso (  E  ,  ( 𝑓  supp  ∅ ) )  /  ℎ ⦌ ( seqω ( ( 𝑘  ∈  V ,  𝑧  ∈  V  ↦  ( ( ( 𝐴  ↑o  ( ℎ ‘ 𝑘 ) )  ·o  ( 𝑓 ‘ ( ℎ ‘ 𝑘 ) ) )  +o  𝑧 ) ) ,  ∅ ) ‘ dom  ℎ ) )  =  ( 𝑓  ∈  { 𝑔  ∈  ( 𝐴  ↑m  𝐵 )  ∣  𝑔  finSupp  ∅ }  ↦  ⦋ OrdIso (  E  ,  ( 𝑓  supp  ∅ ) )  /  ℎ ⦌ ( seqω ( ( 𝑘  ∈  V ,  𝑧  ∈  V  ↦  ( ( ( 𝐴  ↑o  ( ℎ ‘ 𝑘 ) )  ·o  ( 𝑓 ‘ ( ℎ ‘ 𝑘 ) ) )  +o  𝑧 ) ) ,  ∅ ) ‘ dom  ℎ ) ) | 
						
							| 39 |  | fvex | ⊢ ( 𝐻 ‘ dom  𝐺 )  ∈  V | 
						
							| 40 | 37 38 39 | fvmpt | ⊢ ( 𝐹  ∈  { 𝑔  ∈  ( 𝐴  ↑m  𝐵 )  ∣  𝑔  finSupp  ∅ }  →  ( ( 𝑓  ∈  { 𝑔  ∈  ( 𝐴  ↑m  𝐵 )  ∣  𝑔  finSupp  ∅ }  ↦  ⦋ OrdIso (  E  ,  ( 𝑓  supp  ∅ ) )  /  ℎ ⦌ ( seqω ( ( 𝑘  ∈  V ,  𝑧  ∈  V  ↦  ( ( ( 𝐴  ↑o  ( ℎ ‘ 𝑘 ) )  ·o  ( 𝑓 ‘ ( ℎ ‘ 𝑘 ) ) )  +o  𝑧 ) ) ,  ∅ ) ‘ dom  ℎ ) ) ‘ 𝐹 )  =  ( 𝐻 ‘ dom  𝐺 ) ) | 
						
							| 41 | 12 40 | syl | ⊢ ( 𝜑  →  ( ( 𝑓  ∈  { 𝑔  ∈  ( 𝐴  ↑m  𝐵 )  ∣  𝑔  finSupp  ∅ }  ↦  ⦋ OrdIso (  E  ,  ( 𝑓  supp  ∅ ) )  /  ℎ ⦌ ( seqω ( ( 𝑘  ∈  V ,  𝑧  ∈  V  ↦  ( ( ( 𝐴  ↑o  ( ℎ ‘ 𝑘 ) )  ·o  ( 𝑓 ‘ ( ℎ ‘ 𝑘 ) ) )  +o  𝑧 ) ) ,  ∅ ) ‘ dom  ℎ ) ) ‘ 𝐹 )  =  ( 𝐻 ‘ dom  𝐺 ) ) | 
						
							| 42 | 9 41 | eqtrd | ⊢ ( 𝜑  →  ( ( 𝐴  CNF  𝐵 ) ‘ 𝐹 )  =  ( 𝐻 ‘ dom  𝐺 ) ) |