Step |
Hyp |
Ref |
Expression |
1 |
|
cantnfs.s |
⊢ 𝑆 = dom ( 𝐴 CNF 𝐵 ) |
2 |
|
cantnfs.a |
⊢ ( 𝜑 → 𝐴 ∈ On ) |
3 |
|
cantnfs.b |
⊢ ( 𝜑 → 𝐵 ∈ On ) |
4 |
|
cantnfcl.g |
⊢ 𝐺 = OrdIso ( E , ( 𝐹 supp ∅ ) ) |
5 |
|
cantnfcl.f |
⊢ ( 𝜑 → 𝐹 ∈ 𝑆 ) |
6 |
|
cantnfval.h |
⊢ 𝐻 = seqω ( ( 𝑘 ∈ V , 𝑧 ∈ V ↦ ( ( ( 𝐴 ↑o ( 𝐺 ‘ 𝑘 ) ) ·o ( 𝐹 ‘ ( 𝐺 ‘ 𝑘 ) ) ) +o 𝑧 ) ) , ∅ ) |
7 |
|
eqid |
⊢ { 𝑔 ∈ ( 𝐴 ↑m 𝐵 ) ∣ 𝑔 finSupp ∅ } = { 𝑔 ∈ ( 𝐴 ↑m 𝐵 ) ∣ 𝑔 finSupp ∅ } |
8 |
7 2 3
|
cantnffval |
⊢ ( 𝜑 → ( 𝐴 CNF 𝐵 ) = ( 𝑓 ∈ { 𝑔 ∈ ( 𝐴 ↑m 𝐵 ) ∣ 𝑔 finSupp ∅ } ↦ ⦋ OrdIso ( E , ( 𝑓 supp ∅ ) ) / ℎ ⦌ ( seqω ( ( 𝑘 ∈ V , 𝑧 ∈ V ↦ ( ( ( 𝐴 ↑o ( ℎ ‘ 𝑘 ) ) ·o ( 𝑓 ‘ ( ℎ ‘ 𝑘 ) ) ) +o 𝑧 ) ) , ∅ ) ‘ dom ℎ ) ) ) |
9 |
8
|
fveq1d |
⊢ ( 𝜑 → ( ( 𝐴 CNF 𝐵 ) ‘ 𝐹 ) = ( ( 𝑓 ∈ { 𝑔 ∈ ( 𝐴 ↑m 𝐵 ) ∣ 𝑔 finSupp ∅ } ↦ ⦋ OrdIso ( E , ( 𝑓 supp ∅ ) ) / ℎ ⦌ ( seqω ( ( 𝑘 ∈ V , 𝑧 ∈ V ↦ ( ( ( 𝐴 ↑o ( ℎ ‘ 𝑘 ) ) ·o ( 𝑓 ‘ ( ℎ ‘ 𝑘 ) ) ) +o 𝑧 ) ) , ∅ ) ‘ dom ℎ ) ) ‘ 𝐹 ) ) |
10 |
7 2 3
|
cantnfdm |
⊢ ( 𝜑 → dom ( 𝐴 CNF 𝐵 ) = { 𝑔 ∈ ( 𝐴 ↑m 𝐵 ) ∣ 𝑔 finSupp ∅ } ) |
11 |
1 10
|
eqtrid |
⊢ ( 𝜑 → 𝑆 = { 𝑔 ∈ ( 𝐴 ↑m 𝐵 ) ∣ 𝑔 finSupp ∅ } ) |
12 |
5 11
|
eleqtrd |
⊢ ( 𝜑 → 𝐹 ∈ { 𝑔 ∈ ( 𝐴 ↑m 𝐵 ) ∣ 𝑔 finSupp ∅ } ) |
13 |
|
ovex |
⊢ ( 𝑓 supp ∅ ) ∈ V |
14 |
|
eqid |
⊢ OrdIso ( E , ( 𝑓 supp ∅ ) ) = OrdIso ( E , ( 𝑓 supp ∅ ) ) |
15 |
14
|
oiexg |
⊢ ( ( 𝑓 supp ∅ ) ∈ V → OrdIso ( E , ( 𝑓 supp ∅ ) ) ∈ V ) |
16 |
13 15
|
mp1i |
⊢ ( 𝑓 = 𝐹 → OrdIso ( E , ( 𝑓 supp ∅ ) ) ∈ V ) |
17 |
|
simpr |
⊢ ( ( 𝑓 = 𝐹 ∧ ℎ = OrdIso ( E , ( 𝑓 supp ∅ ) ) ) → ℎ = OrdIso ( E , ( 𝑓 supp ∅ ) ) ) |
18 |
|
oveq1 |
⊢ ( 𝑓 = 𝐹 → ( 𝑓 supp ∅ ) = ( 𝐹 supp ∅ ) ) |
19 |
18
|
adantr |
⊢ ( ( 𝑓 = 𝐹 ∧ ℎ = OrdIso ( E , ( 𝑓 supp ∅ ) ) ) → ( 𝑓 supp ∅ ) = ( 𝐹 supp ∅ ) ) |
20 |
|
oieq2 |
⊢ ( ( 𝑓 supp ∅ ) = ( 𝐹 supp ∅ ) → OrdIso ( E , ( 𝑓 supp ∅ ) ) = OrdIso ( E , ( 𝐹 supp ∅ ) ) ) |
21 |
19 20
|
syl |
⊢ ( ( 𝑓 = 𝐹 ∧ ℎ = OrdIso ( E , ( 𝑓 supp ∅ ) ) ) → OrdIso ( E , ( 𝑓 supp ∅ ) ) = OrdIso ( E , ( 𝐹 supp ∅ ) ) ) |
22 |
17 21
|
eqtrd |
⊢ ( ( 𝑓 = 𝐹 ∧ ℎ = OrdIso ( E , ( 𝑓 supp ∅ ) ) ) → ℎ = OrdIso ( E , ( 𝐹 supp ∅ ) ) ) |
23 |
22 4
|
eqtr4di |
⊢ ( ( 𝑓 = 𝐹 ∧ ℎ = OrdIso ( E , ( 𝑓 supp ∅ ) ) ) → ℎ = 𝐺 ) |
24 |
23
|
fveq1d |
⊢ ( ( 𝑓 = 𝐹 ∧ ℎ = OrdIso ( E , ( 𝑓 supp ∅ ) ) ) → ( ℎ ‘ 𝑘 ) = ( 𝐺 ‘ 𝑘 ) ) |
25 |
24
|
oveq2d |
⊢ ( ( 𝑓 = 𝐹 ∧ ℎ = OrdIso ( E , ( 𝑓 supp ∅ ) ) ) → ( 𝐴 ↑o ( ℎ ‘ 𝑘 ) ) = ( 𝐴 ↑o ( 𝐺 ‘ 𝑘 ) ) ) |
26 |
|
simpl |
⊢ ( ( 𝑓 = 𝐹 ∧ ℎ = OrdIso ( E , ( 𝑓 supp ∅ ) ) ) → 𝑓 = 𝐹 ) |
27 |
26 24
|
fveq12d |
⊢ ( ( 𝑓 = 𝐹 ∧ ℎ = OrdIso ( E , ( 𝑓 supp ∅ ) ) ) → ( 𝑓 ‘ ( ℎ ‘ 𝑘 ) ) = ( 𝐹 ‘ ( 𝐺 ‘ 𝑘 ) ) ) |
28 |
25 27
|
oveq12d |
⊢ ( ( 𝑓 = 𝐹 ∧ ℎ = OrdIso ( E , ( 𝑓 supp ∅ ) ) ) → ( ( 𝐴 ↑o ( ℎ ‘ 𝑘 ) ) ·o ( 𝑓 ‘ ( ℎ ‘ 𝑘 ) ) ) = ( ( 𝐴 ↑o ( 𝐺 ‘ 𝑘 ) ) ·o ( 𝐹 ‘ ( 𝐺 ‘ 𝑘 ) ) ) ) |
29 |
28
|
oveq1d |
⊢ ( ( 𝑓 = 𝐹 ∧ ℎ = OrdIso ( E , ( 𝑓 supp ∅ ) ) ) → ( ( ( 𝐴 ↑o ( ℎ ‘ 𝑘 ) ) ·o ( 𝑓 ‘ ( ℎ ‘ 𝑘 ) ) ) +o 𝑧 ) = ( ( ( 𝐴 ↑o ( 𝐺 ‘ 𝑘 ) ) ·o ( 𝐹 ‘ ( 𝐺 ‘ 𝑘 ) ) ) +o 𝑧 ) ) |
30 |
29
|
mpoeq3dv |
⊢ ( ( 𝑓 = 𝐹 ∧ ℎ = OrdIso ( E , ( 𝑓 supp ∅ ) ) ) → ( 𝑘 ∈ V , 𝑧 ∈ V ↦ ( ( ( 𝐴 ↑o ( ℎ ‘ 𝑘 ) ) ·o ( 𝑓 ‘ ( ℎ ‘ 𝑘 ) ) ) +o 𝑧 ) ) = ( 𝑘 ∈ V , 𝑧 ∈ V ↦ ( ( ( 𝐴 ↑o ( 𝐺 ‘ 𝑘 ) ) ·o ( 𝐹 ‘ ( 𝐺 ‘ 𝑘 ) ) ) +o 𝑧 ) ) ) |
31 |
|
eqid |
⊢ ∅ = ∅ |
32 |
|
seqomeq12 |
⊢ ( ( ( 𝑘 ∈ V , 𝑧 ∈ V ↦ ( ( ( 𝐴 ↑o ( ℎ ‘ 𝑘 ) ) ·o ( 𝑓 ‘ ( ℎ ‘ 𝑘 ) ) ) +o 𝑧 ) ) = ( 𝑘 ∈ V , 𝑧 ∈ V ↦ ( ( ( 𝐴 ↑o ( 𝐺 ‘ 𝑘 ) ) ·o ( 𝐹 ‘ ( 𝐺 ‘ 𝑘 ) ) ) +o 𝑧 ) ) ∧ ∅ = ∅ ) → seqω ( ( 𝑘 ∈ V , 𝑧 ∈ V ↦ ( ( ( 𝐴 ↑o ( ℎ ‘ 𝑘 ) ) ·o ( 𝑓 ‘ ( ℎ ‘ 𝑘 ) ) ) +o 𝑧 ) ) , ∅ ) = seqω ( ( 𝑘 ∈ V , 𝑧 ∈ V ↦ ( ( ( 𝐴 ↑o ( 𝐺 ‘ 𝑘 ) ) ·o ( 𝐹 ‘ ( 𝐺 ‘ 𝑘 ) ) ) +o 𝑧 ) ) , ∅ ) ) |
33 |
30 31 32
|
sylancl |
⊢ ( ( 𝑓 = 𝐹 ∧ ℎ = OrdIso ( E , ( 𝑓 supp ∅ ) ) ) → seqω ( ( 𝑘 ∈ V , 𝑧 ∈ V ↦ ( ( ( 𝐴 ↑o ( ℎ ‘ 𝑘 ) ) ·o ( 𝑓 ‘ ( ℎ ‘ 𝑘 ) ) ) +o 𝑧 ) ) , ∅ ) = seqω ( ( 𝑘 ∈ V , 𝑧 ∈ V ↦ ( ( ( 𝐴 ↑o ( 𝐺 ‘ 𝑘 ) ) ·o ( 𝐹 ‘ ( 𝐺 ‘ 𝑘 ) ) ) +o 𝑧 ) ) , ∅ ) ) |
34 |
33 6
|
eqtr4di |
⊢ ( ( 𝑓 = 𝐹 ∧ ℎ = OrdIso ( E , ( 𝑓 supp ∅ ) ) ) → seqω ( ( 𝑘 ∈ V , 𝑧 ∈ V ↦ ( ( ( 𝐴 ↑o ( ℎ ‘ 𝑘 ) ) ·o ( 𝑓 ‘ ( ℎ ‘ 𝑘 ) ) ) +o 𝑧 ) ) , ∅ ) = 𝐻 ) |
35 |
23
|
dmeqd |
⊢ ( ( 𝑓 = 𝐹 ∧ ℎ = OrdIso ( E , ( 𝑓 supp ∅ ) ) ) → dom ℎ = dom 𝐺 ) |
36 |
34 35
|
fveq12d |
⊢ ( ( 𝑓 = 𝐹 ∧ ℎ = OrdIso ( E , ( 𝑓 supp ∅ ) ) ) → ( seqω ( ( 𝑘 ∈ V , 𝑧 ∈ V ↦ ( ( ( 𝐴 ↑o ( ℎ ‘ 𝑘 ) ) ·o ( 𝑓 ‘ ( ℎ ‘ 𝑘 ) ) ) +o 𝑧 ) ) , ∅ ) ‘ dom ℎ ) = ( 𝐻 ‘ dom 𝐺 ) ) |
37 |
16 36
|
csbied |
⊢ ( 𝑓 = 𝐹 → ⦋ OrdIso ( E , ( 𝑓 supp ∅ ) ) / ℎ ⦌ ( seqω ( ( 𝑘 ∈ V , 𝑧 ∈ V ↦ ( ( ( 𝐴 ↑o ( ℎ ‘ 𝑘 ) ) ·o ( 𝑓 ‘ ( ℎ ‘ 𝑘 ) ) ) +o 𝑧 ) ) , ∅ ) ‘ dom ℎ ) = ( 𝐻 ‘ dom 𝐺 ) ) |
38 |
|
eqid |
⊢ ( 𝑓 ∈ { 𝑔 ∈ ( 𝐴 ↑m 𝐵 ) ∣ 𝑔 finSupp ∅ } ↦ ⦋ OrdIso ( E , ( 𝑓 supp ∅ ) ) / ℎ ⦌ ( seqω ( ( 𝑘 ∈ V , 𝑧 ∈ V ↦ ( ( ( 𝐴 ↑o ( ℎ ‘ 𝑘 ) ) ·o ( 𝑓 ‘ ( ℎ ‘ 𝑘 ) ) ) +o 𝑧 ) ) , ∅ ) ‘ dom ℎ ) ) = ( 𝑓 ∈ { 𝑔 ∈ ( 𝐴 ↑m 𝐵 ) ∣ 𝑔 finSupp ∅ } ↦ ⦋ OrdIso ( E , ( 𝑓 supp ∅ ) ) / ℎ ⦌ ( seqω ( ( 𝑘 ∈ V , 𝑧 ∈ V ↦ ( ( ( 𝐴 ↑o ( ℎ ‘ 𝑘 ) ) ·o ( 𝑓 ‘ ( ℎ ‘ 𝑘 ) ) ) +o 𝑧 ) ) , ∅ ) ‘ dom ℎ ) ) |
39 |
|
fvex |
⊢ ( 𝐻 ‘ dom 𝐺 ) ∈ V |
40 |
37 38 39
|
fvmpt |
⊢ ( 𝐹 ∈ { 𝑔 ∈ ( 𝐴 ↑m 𝐵 ) ∣ 𝑔 finSupp ∅ } → ( ( 𝑓 ∈ { 𝑔 ∈ ( 𝐴 ↑m 𝐵 ) ∣ 𝑔 finSupp ∅ } ↦ ⦋ OrdIso ( E , ( 𝑓 supp ∅ ) ) / ℎ ⦌ ( seqω ( ( 𝑘 ∈ V , 𝑧 ∈ V ↦ ( ( ( 𝐴 ↑o ( ℎ ‘ 𝑘 ) ) ·o ( 𝑓 ‘ ( ℎ ‘ 𝑘 ) ) ) +o 𝑧 ) ) , ∅ ) ‘ dom ℎ ) ) ‘ 𝐹 ) = ( 𝐻 ‘ dom 𝐺 ) ) |
41 |
12 40
|
syl |
⊢ ( 𝜑 → ( ( 𝑓 ∈ { 𝑔 ∈ ( 𝐴 ↑m 𝐵 ) ∣ 𝑔 finSupp ∅ } ↦ ⦋ OrdIso ( E , ( 𝑓 supp ∅ ) ) / ℎ ⦌ ( seqω ( ( 𝑘 ∈ V , 𝑧 ∈ V ↦ ( ( ( 𝐴 ↑o ( ℎ ‘ 𝑘 ) ) ·o ( 𝑓 ‘ ( ℎ ‘ 𝑘 ) ) ) +o 𝑧 ) ) , ∅ ) ‘ dom ℎ ) ) ‘ 𝐹 ) = ( 𝐻 ‘ dom 𝐺 ) ) |
42 |
9 41
|
eqtrd |
⊢ ( 𝜑 → ( ( 𝐴 CNF 𝐵 ) ‘ 𝐹 ) = ( 𝐻 ‘ dom 𝐺 ) ) |