Step |
Hyp |
Ref |
Expression |
1 |
|
cantnfs.s |
⊢ 𝑆 = dom ( 𝐴 CNF 𝐵 ) |
2 |
|
cantnfs.a |
⊢ ( 𝜑 → 𝐴 ∈ On ) |
3 |
|
cantnfs.b |
⊢ ( 𝜑 → 𝐵 ∈ On ) |
4 |
|
cantnfcl.g |
⊢ 𝐺 = OrdIso ( E , ( 𝐹 supp ∅ ) ) |
5 |
|
cantnfcl.f |
⊢ ( 𝜑 → 𝐹 ∈ 𝑆 ) |
6 |
|
cantnfval.h |
⊢ 𝐻 = seqω ( ( 𝑘 ∈ V , 𝑧 ∈ V ↦ ( ( ( 𝐴 ↑o ( 𝐺 ‘ 𝑘 ) ) ·o ( 𝐹 ‘ ( 𝐺 ‘ 𝑘 ) ) ) +o 𝑧 ) ) , ∅ ) |
7 |
1 2 3 4 5 6
|
cantnfval |
⊢ ( 𝜑 → ( ( 𝐴 CNF 𝐵 ) ‘ 𝐹 ) = ( 𝐻 ‘ dom 𝐺 ) ) |
8 |
|
ssid |
⊢ dom 𝐺 ⊆ dom 𝐺 |
9 |
1 2 3 4 5
|
cantnfcl |
⊢ ( 𝜑 → ( E We ( 𝐹 supp ∅ ) ∧ dom 𝐺 ∈ ω ) ) |
10 |
9
|
simprd |
⊢ ( 𝜑 → dom 𝐺 ∈ ω ) |
11 |
|
sseq1 |
⊢ ( 𝑢 = ∅ → ( 𝑢 ⊆ dom 𝐺 ↔ ∅ ⊆ dom 𝐺 ) ) |
12 |
|
fveq2 |
⊢ ( 𝑢 = ∅ → ( 𝐻 ‘ 𝑢 ) = ( 𝐻 ‘ ∅ ) ) |
13 |
|
0ex |
⊢ ∅ ∈ V |
14 |
6
|
seqom0g |
⊢ ( ∅ ∈ V → ( 𝐻 ‘ ∅ ) = ∅ ) |
15 |
13 14
|
ax-mp |
⊢ ( 𝐻 ‘ ∅ ) = ∅ |
16 |
12 15
|
eqtrdi |
⊢ ( 𝑢 = ∅ → ( 𝐻 ‘ 𝑢 ) = ∅ ) |
17 |
|
fveq2 |
⊢ ( 𝑢 = ∅ → ( seqω ( ( 𝑘 ∈ dom 𝐺 , 𝑧 ∈ On ↦ ( ( ( 𝐴 ↑o ( 𝐺 ‘ 𝑘 ) ) ·o ( 𝐹 ‘ ( 𝐺 ‘ 𝑘 ) ) ) +o 𝑧 ) ) , ∅ ) ‘ 𝑢 ) = ( seqω ( ( 𝑘 ∈ dom 𝐺 , 𝑧 ∈ On ↦ ( ( ( 𝐴 ↑o ( 𝐺 ‘ 𝑘 ) ) ·o ( 𝐹 ‘ ( 𝐺 ‘ 𝑘 ) ) ) +o 𝑧 ) ) , ∅ ) ‘ ∅ ) ) |
18 |
|
eqid |
⊢ seqω ( ( 𝑘 ∈ dom 𝐺 , 𝑧 ∈ On ↦ ( ( ( 𝐴 ↑o ( 𝐺 ‘ 𝑘 ) ) ·o ( 𝐹 ‘ ( 𝐺 ‘ 𝑘 ) ) ) +o 𝑧 ) ) , ∅ ) = seqω ( ( 𝑘 ∈ dom 𝐺 , 𝑧 ∈ On ↦ ( ( ( 𝐴 ↑o ( 𝐺 ‘ 𝑘 ) ) ·o ( 𝐹 ‘ ( 𝐺 ‘ 𝑘 ) ) ) +o 𝑧 ) ) , ∅ ) |
19 |
18
|
seqom0g |
⊢ ( ∅ ∈ V → ( seqω ( ( 𝑘 ∈ dom 𝐺 , 𝑧 ∈ On ↦ ( ( ( 𝐴 ↑o ( 𝐺 ‘ 𝑘 ) ) ·o ( 𝐹 ‘ ( 𝐺 ‘ 𝑘 ) ) ) +o 𝑧 ) ) , ∅ ) ‘ ∅ ) = ∅ ) |
20 |
13 19
|
ax-mp |
⊢ ( seqω ( ( 𝑘 ∈ dom 𝐺 , 𝑧 ∈ On ↦ ( ( ( 𝐴 ↑o ( 𝐺 ‘ 𝑘 ) ) ·o ( 𝐹 ‘ ( 𝐺 ‘ 𝑘 ) ) ) +o 𝑧 ) ) , ∅ ) ‘ ∅ ) = ∅ |
21 |
17 20
|
eqtrdi |
⊢ ( 𝑢 = ∅ → ( seqω ( ( 𝑘 ∈ dom 𝐺 , 𝑧 ∈ On ↦ ( ( ( 𝐴 ↑o ( 𝐺 ‘ 𝑘 ) ) ·o ( 𝐹 ‘ ( 𝐺 ‘ 𝑘 ) ) ) +o 𝑧 ) ) , ∅ ) ‘ 𝑢 ) = ∅ ) |
22 |
16 21
|
eqeq12d |
⊢ ( 𝑢 = ∅ → ( ( 𝐻 ‘ 𝑢 ) = ( seqω ( ( 𝑘 ∈ dom 𝐺 , 𝑧 ∈ On ↦ ( ( ( 𝐴 ↑o ( 𝐺 ‘ 𝑘 ) ) ·o ( 𝐹 ‘ ( 𝐺 ‘ 𝑘 ) ) ) +o 𝑧 ) ) , ∅ ) ‘ 𝑢 ) ↔ ∅ = ∅ ) ) |
23 |
11 22
|
imbi12d |
⊢ ( 𝑢 = ∅ → ( ( 𝑢 ⊆ dom 𝐺 → ( 𝐻 ‘ 𝑢 ) = ( seqω ( ( 𝑘 ∈ dom 𝐺 , 𝑧 ∈ On ↦ ( ( ( 𝐴 ↑o ( 𝐺 ‘ 𝑘 ) ) ·o ( 𝐹 ‘ ( 𝐺 ‘ 𝑘 ) ) ) +o 𝑧 ) ) , ∅ ) ‘ 𝑢 ) ) ↔ ( ∅ ⊆ dom 𝐺 → ∅ = ∅ ) ) ) |
24 |
23
|
imbi2d |
⊢ ( 𝑢 = ∅ → ( ( 𝜑 → ( 𝑢 ⊆ dom 𝐺 → ( 𝐻 ‘ 𝑢 ) = ( seqω ( ( 𝑘 ∈ dom 𝐺 , 𝑧 ∈ On ↦ ( ( ( 𝐴 ↑o ( 𝐺 ‘ 𝑘 ) ) ·o ( 𝐹 ‘ ( 𝐺 ‘ 𝑘 ) ) ) +o 𝑧 ) ) , ∅ ) ‘ 𝑢 ) ) ) ↔ ( 𝜑 → ( ∅ ⊆ dom 𝐺 → ∅ = ∅ ) ) ) ) |
25 |
|
sseq1 |
⊢ ( 𝑢 = 𝑣 → ( 𝑢 ⊆ dom 𝐺 ↔ 𝑣 ⊆ dom 𝐺 ) ) |
26 |
|
fveq2 |
⊢ ( 𝑢 = 𝑣 → ( 𝐻 ‘ 𝑢 ) = ( 𝐻 ‘ 𝑣 ) ) |
27 |
|
fveq2 |
⊢ ( 𝑢 = 𝑣 → ( seqω ( ( 𝑘 ∈ dom 𝐺 , 𝑧 ∈ On ↦ ( ( ( 𝐴 ↑o ( 𝐺 ‘ 𝑘 ) ) ·o ( 𝐹 ‘ ( 𝐺 ‘ 𝑘 ) ) ) +o 𝑧 ) ) , ∅ ) ‘ 𝑢 ) = ( seqω ( ( 𝑘 ∈ dom 𝐺 , 𝑧 ∈ On ↦ ( ( ( 𝐴 ↑o ( 𝐺 ‘ 𝑘 ) ) ·o ( 𝐹 ‘ ( 𝐺 ‘ 𝑘 ) ) ) +o 𝑧 ) ) , ∅ ) ‘ 𝑣 ) ) |
28 |
26 27
|
eqeq12d |
⊢ ( 𝑢 = 𝑣 → ( ( 𝐻 ‘ 𝑢 ) = ( seqω ( ( 𝑘 ∈ dom 𝐺 , 𝑧 ∈ On ↦ ( ( ( 𝐴 ↑o ( 𝐺 ‘ 𝑘 ) ) ·o ( 𝐹 ‘ ( 𝐺 ‘ 𝑘 ) ) ) +o 𝑧 ) ) , ∅ ) ‘ 𝑢 ) ↔ ( 𝐻 ‘ 𝑣 ) = ( seqω ( ( 𝑘 ∈ dom 𝐺 , 𝑧 ∈ On ↦ ( ( ( 𝐴 ↑o ( 𝐺 ‘ 𝑘 ) ) ·o ( 𝐹 ‘ ( 𝐺 ‘ 𝑘 ) ) ) +o 𝑧 ) ) , ∅ ) ‘ 𝑣 ) ) ) |
29 |
25 28
|
imbi12d |
⊢ ( 𝑢 = 𝑣 → ( ( 𝑢 ⊆ dom 𝐺 → ( 𝐻 ‘ 𝑢 ) = ( seqω ( ( 𝑘 ∈ dom 𝐺 , 𝑧 ∈ On ↦ ( ( ( 𝐴 ↑o ( 𝐺 ‘ 𝑘 ) ) ·o ( 𝐹 ‘ ( 𝐺 ‘ 𝑘 ) ) ) +o 𝑧 ) ) , ∅ ) ‘ 𝑢 ) ) ↔ ( 𝑣 ⊆ dom 𝐺 → ( 𝐻 ‘ 𝑣 ) = ( seqω ( ( 𝑘 ∈ dom 𝐺 , 𝑧 ∈ On ↦ ( ( ( 𝐴 ↑o ( 𝐺 ‘ 𝑘 ) ) ·o ( 𝐹 ‘ ( 𝐺 ‘ 𝑘 ) ) ) +o 𝑧 ) ) , ∅ ) ‘ 𝑣 ) ) ) ) |
30 |
29
|
imbi2d |
⊢ ( 𝑢 = 𝑣 → ( ( 𝜑 → ( 𝑢 ⊆ dom 𝐺 → ( 𝐻 ‘ 𝑢 ) = ( seqω ( ( 𝑘 ∈ dom 𝐺 , 𝑧 ∈ On ↦ ( ( ( 𝐴 ↑o ( 𝐺 ‘ 𝑘 ) ) ·o ( 𝐹 ‘ ( 𝐺 ‘ 𝑘 ) ) ) +o 𝑧 ) ) , ∅ ) ‘ 𝑢 ) ) ) ↔ ( 𝜑 → ( 𝑣 ⊆ dom 𝐺 → ( 𝐻 ‘ 𝑣 ) = ( seqω ( ( 𝑘 ∈ dom 𝐺 , 𝑧 ∈ On ↦ ( ( ( 𝐴 ↑o ( 𝐺 ‘ 𝑘 ) ) ·o ( 𝐹 ‘ ( 𝐺 ‘ 𝑘 ) ) ) +o 𝑧 ) ) , ∅ ) ‘ 𝑣 ) ) ) ) ) |
31 |
|
sseq1 |
⊢ ( 𝑢 = suc 𝑣 → ( 𝑢 ⊆ dom 𝐺 ↔ suc 𝑣 ⊆ dom 𝐺 ) ) |
32 |
|
fveq2 |
⊢ ( 𝑢 = suc 𝑣 → ( 𝐻 ‘ 𝑢 ) = ( 𝐻 ‘ suc 𝑣 ) ) |
33 |
|
fveq2 |
⊢ ( 𝑢 = suc 𝑣 → ( seqω ( ( 𝑘 ∈ dom 𝐺 , 𝑧 ∈ On ↦ ( ( ( 𝐴 ↑o ( 𝐺 ‘ 𝑘 ) ) ·o ( 𝐹 ‘ ( 𝐺 ‘ 𝑘 ) ) ) +o 𝑧 ) ) , ∅ ) ‘ 𝑢 ) = ( seqω ( ( 𝑘 ∈ dom 𝐺 , 𝑧 ∈ On ↦ ( ( ( 𝐴 ↑o ( 𝐺 ‘ 𝑘 ) ) ·o ( 𝐹 ‘ ( 𝐺 ‘ 𝑘 ) ) ) +o 𝑧 ) ) , ∅ ) ‘ suc 𝑣 ) ) |
34 |
32 33
|
eqeq12d |
⊢ ( 𝑢 = suc 𝑣 → ( ( 𝐻 ‘ 𝑢 ) = ( seqω ( ( 𝑘 ∈ dom 𝐺 , 𝑧 ∈ On ↦ ( ( ( 𝐴 ↑o ( 𝐺 ‘ 𝑘 ) ) ·o ( 𝐹 ‘ ( 𝐺 ‘ 𝑘 ) ) ) +o 𝑧 ) ) , ∅ ) ‘ 𝑢 ) ↔ ( 𝐻 ‘ suc 𝑣 ) = ( seqω ( ( 𝑘 ∈ dom 𝐺 , 𝑧 ∈ On ↦ ( ( ( 𝐴 ↑o ( 𝐺 ‘ 𝑘 ) ) ·o ( 𝐹 ‘ ( 𝐺 ‘ 𝑘 ) ) ) +o 𝑧 ) ) , ∅ ) ‘ suc 𝑣 ) ) ) |
35 |
31 34
|
imbi12d |
⊢ ( 𝑢 = suc 𝑣 → ( ( 𝑢 ⊆ dom 𝐺 → ( 𝐻 ‘ 𝑢 ) = ( seqω ( ( 𝑘 ∈ dom 𝐺 , 𝑧 ∈ On ↦ ( ( ( 𝐴 ↑o ( 𝐺 ‘ 𝑘 ) ) ·o ( 𝐹 ‘ ( 𝐺 ‘ 𝑘 ) ) ) +o 𝑧 ) ) , ∅ ) ‘ 𝑢 ) ) ↔ ( suc 𝑣 ⊆ dom 𝐺 → ( 𝐻 ‘ suc 𝑣 ) = ( seqω ( ( 𝑘 ∈ dom 𝐺 , 𝑧 ∈ On ↦ ( ( ( 𝐴 ↑o ( 𝐺 ‘ 𝑘 ) ) ·o ( 𝐹 ‘ ( 𝐺 ‘ 𝑘 ) ) ) +o 𝑧 ) ) , ∅ ) ‘ suc 𝑣 ) ) ) ) |
36 |
35
|
imbi2d |
⊢ ( 𝑢 = suc 𝑣 → ( ( 𝜑 → ( 𝑢 ⊆ dom 𝐺 → ( 𝐻 ‘ 𝑢 ) = ( seqω ( ( 𝑘 ∈ dom 𝐺 , 𝑧 ∈ On ↦ ( ( ( 𝐴 ↑o ( 𝐺 ‘ 𝑘 ) ) ·o ( 𝐹 ‘ ( 𝐺 ‘ 𝑘 ) ) ) +o 𝑧 ) ) , ∅ ) ‘ 𝑢 ) ) ) ↔ ( 𝜑 → ( suc 𝑣 ⊆ dom 𝐺 → ( 𝐻 ‘ suc 𝑣 ) = ( seqω ( ( 𝑘 ∈ dom 𝐺 , 𝑧 ∈ On ↦ ( ( ( 𝐴 ↑o ( 𝐺 ‘ 𝑘 ) ) ·o ( 𝐹 ‘ ( 𝐺 ‘ 𝑘 ) ) ) +o 𝑧 ) ) , ∅ ) ‘ suc 𝑣 ) ) ) ) ) |
37 |
|
sseq1 |
⊢ ( 𝑢 = dom 𝐺 → ( 𝑢 ⊆ dom 𝐺 ↔ dom 𝐺 ⊆ dom 𝐺 ) ) |
38 |
|
fveq2 |
⊢ ( 𝑢 = dom 𝐺 → ( 𝐻 ‘ 𝑢 ) = ( 𝐻 ‘ dom 𝐺 ) ) |
39 |
|
fveq2 |
⊢ ( 𝑢 = dom 𝐺 → ( seqω ( ( 𝑘 ∈ dom 𝐺 , 𝑧 ∈ On ↦ ( ( ( 𝐴 ↑o ( 𝐺 ‘ 𝑘 ) ) ·o ( 𝐹 ‘ ( 𝐺 ‘ 𝑘 ) ) ) +o 𝑧 ) ) , ∅ ) ‘ 𝑢 ) = ( seqω ( ( 𝑘 ∈ dom 𝐺 , 𝑧 ∈ On ↦ ( ( ( 𝐴 ↑o ( 𝐺 ‘ 𝑘 ) ) ·o ( 𝐹 ‘ ( 𝐺 ‘ 𝑘 ) ) ) +o 𝑧 ) ) , ∅ ) ‘ dom 𝐺 ) ) |
40 |
38 39
|
eqeq12d |
⊢ ( 𝑢 = dom 𝐺 → ( ( 𝐻 ‘ 𝑢 ) = ( seqω ( ( 𝑘 ∈ dom 𝐺 , 𝑧 ∈ On ↦ ( ( ( 𝐴 ↑o ( 𝐺 ‘ 𝑘 ) ) ·o ( 𝐹 ‘ ( 𝐺 ‘ 𝑘 ) ) ) +o 𝑧 ) ) , ∅ ) ‘ 𝑢 ) ↔ ( 𝐻 ‘ dom 𝐺 ) = ( seqω ( ( 𝑘 ∈ dom 𝐺 , 𝑧 ∈ On ↦ ( ( ( 𝐴 ↑o ( 𝐺 ‘ 𝑘 ) ) ·o ( 𝐹 ‘ ( 𝐺 ‘ 𝑘 ) ) ) +o 𝑧 ) ) , ∅ ) ‘ dom 𝐺 ) ) ) |
41 |
37 40
|
imbi12d |
⊢ ( 𝑢 = dom 𝐺 → ( ( 𝑢 ⊆ dom 𝐺 → ( 𝐻 ‘ 𝑢 ) = ( seqω ( ( 𝑘 ∈ dom 𝐺 , 𝑧 ∈ On ↦ ( ( ( 𝐴 ↑o ( 𝐺 ‘ 𝑘 ) ) ·o ( 𝐹 ‘ ( 𝐺 ‘ 𝑘 ) ) ) +o 𝑧 ) ) , ∅ ) ‘ 𝑢 ) ) ↔ ( dom 𝐺 ⊆ dom 𝐺 → ( 𝐻 ‘ dom 𝐺 ) = ( seqω ( ( 𝑘 ∈ dom 𝐺 , 𝑧 ∈ On ↦ ( ( ( 𝐴 ↑o ( 𝐺 ‘ 𝑘 ) ) ·o ( 𝐹 ‘ ( 𝐺 ‘ 𝑘 ) ) ) +o 𝑧 ) ) , ∅ ) ‘ dom 𝐺 ) ) ) ) |
42 |
41
|
imbi2d |
⊢ ( 𝑢 = dom 𝐺 → ( ( 𝜑 → ( 𝑢 ⊆ dom 𝐺 → ( 𝐻 ‘ 𝑢 ) = ( seqω ( ( 𝑘 ∈ dom 𝐺 , 𝑧 ∈ On ↦ ( ( ( 𝐴 ↑o ( 𝐺 ‘ 𝑘 ) ) ·o ( 𝐹 ‘ ( 𝐺 ‘ 𝑘 ) ) ) +o 𝑧 ) ) , ∅ ) ‘ 𝑢 ) ) ) ↔ ( 𝜑 → ( dom 𝐺 ⊆ dom 𝐺 → ( 𝐻 ‘ dom 𝐺 ) = ( seqω ( ( 𝑘 ∈ dom 𝐺 , 𝑧 ∈ On ↦ ( ( ( 𝐴 ↑o ( 𝐺 ‘ 𝑘 ) ) ·o ( 𝐹 ‘ ( 𝐺 ‘ 𝑘 ) ) ) +o 𝑧 ) ) , ∅ ) ‘ dom 𝐺 ) ) ) ) ) |
43 |
|
eqid |
⊢ ∅ = ∅ |
44 |
43
|
2a1i |
⊢ ( 𝜑 → ( ∅ ⊆ dom 𝐺 → ∅ = ∅ ) ) |
45 |
|
sssucid |
⊢ 𝑣 ⊆ suc 𝑣 |
46 |
|
sstr |
⊢ ( ( 𝑣 ⊆ suc 𝑣 ∧ suc 𝑣 ⊆ dom 𝐺 ) → 𝑣 ⊆ dom 𝐺 ) |
47 |
45 46
|
mpan |
⊢ ( suc 𝑣 ⊆ dom 𝐺 → 𝑣 ⊆ dom 𝐺 ) |
48 |
47
|
imim1i |
⊢ ( ( 𝑣 ⊆ dom 𝐺 → ( 𝐻 ‘ 𝑣 ) = ( seqω ( ( 𝑘 ∈ dom 𝐺 , 𝑧 ∈ On ↦ ( ( ( 𝐴 ↑o ( 𝐺 ‘ 𝑘 ) ) ·o ( 𝐹 ‘ ( 𝐺 ‘ 𝑘 ) ) ) +o 𝑧 ) ) , ∅ ) ‘ 𝑣 ) ) → ( suc 𝑣 ⊆ dom 𝐺 → ( 𝐻 ‘ 𝑣 ) = ( seqω ( ( 𝑘 ∈ dom 𝐺 , 𝑧 ∈ On ↦ ( ( ( 𝐴 ↑o ( 𝐺 ‘ 𝑘 ) ) ·o ( 𝐹 ‘ ( 𝐺 ‘ 𝑘 ) ) ) +o 𝑧 ) ) , ∅ ) ‘ 𝑣 ) ) ) |
49 |
|
oveq2 |
⊢ ( ( 𝐻 ‘ 𝑣 ) = ( seqω ( ( 𝑘 ∈ dom 𝐺 , 𝑧 ∈ On ↦ ( ( ( 𝐴 ↑o ( 𝐺 ‘ 𝑘 ) ) ·o ( 𝐹 ‘ ( 𝐺 ‘ 𝑘 ) ) ) +o 𝑧 ) ) , ∅ ) ‘ 𝑣 ) → ( 𝑣 ( 𝑘 ∈ V , 𝑧 ∈ V ↦ ( ( ( 𝐴 ↑o ( 𝐺 ‘ 𝑘 ) ) ·o ( 𝐹 ‘ ( 𝐺 ‘ 𝑘 ) ) ) +o 𝑧 ) ) ( 𝐻 ‘ 𝑣 ) ) = ( 𝑣 ( 𝑘 ∈ V , 𝑧 ∈ V ↦ ( ( ( 𝐴 ↑o ( 𝐺 ‘ 𝑘 ) ) ·o ( 𝐹 ‘ ( 𝐺 ‘ 𝑘 ) ) ) +o 𝑧 ) ) ( seqω ( ( 𝑘 ∈ dom 𝐺 , 𝑧 ∈ On ↦ ( ( ( 𝐴 ↑o ( 𝐺 ‘ 𝑘 ) ) ·o ( 𝐹 ‘ ( 𝐺 ‘ 𝑘 ) ) ) +o 𝑧 ) ) , ∅ ) ‘ 𝑣 ) ) ) |
50 |
6
|
seqomsuc |
⊢ ( 𝑣 ∈ ω → ( 𝐻 ‘ suc 𝑣 ) = ( 𝑣 ( 𝑘 ∈ V , 𝑧 ∈ V ↦ ( ( ( 𝐴 ↑o ( 𝐺 ‘ 𝑘 ) ) ·o ( 𝐹 ‘ ( 𝐺 ‘ 𝑘 ) ) ) +o 𝑧 ) ) ( 𝐻 ‘ 𝑣 ) ) ) |
51 |
50
|
ad2antrl |
⊢ ( ( 𝜑 ∧ ( 𝑣 ∈ ω ∧ suc 𝑣 ⊆ dom 𝐺 ) ) → ( 𝐻 ‘ suc 𝑣 ) = ( 𝑣 ( 𝑘 ∈ V , 𝑧 ∈ V ↦ ( ( ( 𝐴 ↑o ( 𝐺 ‘ 𝑘 ) ) ·o ( 𝐹 ‘ ( 𝐺 ‘ 𝑘 ) ) ) +o 𝑧 ) ) ( 𝐻 ‘ 𝑣 ) ) ) |
52 |
18
|
seqomsuc |
⊢ ( 𝑣 ∈ ω → ( seqω ( ( 𝑘 ∈ dom 𝐺 , 𝑧 ∈ On ↦ ( ( ( 𝐴 ↑o ( 𝐺 ‘ 𝑘 ) ) ·o ( 𝐹 ‘ ( 𝐺 ‘ 𝑘 ) ) ) +o 𝑧 ) ) , ∅ ) ‘ suc 𝑣 ) = ( 𝑣 ( 𝑘 ∈ dom 𝐺 , 𝑧 ∈ On ↦ ( ( ( 𝐴 ↑o ( 𝐺 ‘ 𝑘 ) ) ·o ( 𝐹 ‘ ( 𝐺 ‘ 𝑘 ) ) ) +o 𝑧 ) ) ( seqω ( ( 𝑘 ∈ dom 𝐺 , 𝑧 ∈ On ↦ ( ( ( 𝐴 ↑o ( 𝐺 ‘ 𝑘 ) ) ·o ( 𝐹 ‘ ( 𝐺 ‘ 𝑘 ) ) ) +o 𝑧 ) ) , ∅ ) ‘ 𝑣 ) ) ) |
53 |
52
|
ad2antrl |
⊢ ( ( 𝜑 ∧ ( 𝑣 ∈ ω ∧ suc 𝑣 ⊆ dom 𝐺 ) ) → ( seqω ( ( 𝑘 ∈ dom 𝐺 , 𝑧 ∈ On ↦ ( ( ( 𝐴 ↑o ( 𝐺 ‘ 𝑘 ) ) ·o ( 𝐹 ‘ ( 𝐺 ‘ 𝑘 ) ) ) +o 𝑧 ) ) , ∅ ) ‘ suc 𝑣 ) = ( 𝑣 ( 𝑘 ∈ dom 𝐺 , 𝑧 ∈ On ↦ ( ( ( 𝐴 ↑o ( 𝐺 ‘ 𝑘 ) ) ·o ( 𝐹 ‘ ( 𝐺 ‘ 𝑘 ) ) ) +o 𝑧 ) ) ( seqω ( ( 𝑘 ∈ dom 𝐺 , 𝑧 ∈ On ↦ ( ( ( 𝐴 ↑o ( 𝐺 ‘ 𝑘 ) ) ·o ( 𝐹 ‘ ( 𝐺 ‘ 𝑘 ) ) ) +o 𝑧 ) ) , ∅ ) ‘ 𝑣 ) ) ) |
54 |
|
ssv |
⊢ dom 𝐺 ⊆ V |
55 |
|
ssv |
⊢ On ⊆ V |
56 |
|
resmpo |
⊢ ( ( dom 𝐺 ⊆ V ∧ On ⊆ V ) → ( ( 𝑘 ∈ V , 𝑧 ∈ V ↦ ( ( ( 𝐴 ↑o ( 𝐺 ‘ 𝑘 ) ) ·o ( 𝐹 ‘ ( 𝐺 ‘ 𝑘 ) ) ) +o 𝑧 ) ) ↾ ( dom 𝐺 × On ) ) = ( 𝑘 ∈ dom 𝐺 , 𝑧 ∈ On ↦ ( ( ( 𝐴 ↑o ( 𝐺 ‘ 𝑘 ) ) ·o ( 𝐹 ‘ ( 𝐺 ‘ 𝑘 ) ) ) +o 𝑧 ) ) ) |
57 |
54 55 56
|
mp2an |
⊢ ( ( 𝑘 ∈ V , 𝑧 ∈ V ↦ ( ( ( 𝐴 ↑o ( 𝐺 ‘ 𝑘 ) ) ·o ( 𝐹 ‘ ( 𝐺 ‘ 𝑘 ) ) ) +o 𝑧 ) ) ↾ ( dom 𝐺 × On ) ) = ( 𝑘 ∈ dom 𝐺 , 𝑧 ∈ On ↦ ( ( ( 𝐴 ↑o ( 𝐺 ‘ 𝑘 ) ) ·o ( 𝐹 ‘ ( 𝐺 ‘ 𝑘 ) ) ) +o 𝑧 ) ) |
58 |
57
|
oveqi |
⊢ ( 𝑣 ( ( 𝑘 ∈ V , 𝑧 ∈ V ↦ ( ( ( 𝐴 ↑o ( 𝐺 ‘ 𝑘 ) ) ·o ( 𝐹 ‘ ( 𝐺 ‘ 𝑘 ) ) ) +o 𝑧 ) ) ↾ ( dom 𝐺 × On ) ) ( seqω ( ( 𝑘 ∈ dom 𝐺 , 𝑧 ∈ On ↦ ( ( ( 𝐴 ↑o ( 𝐺 ‘ 𝑘 ) ) ·o ( 𝐹 ‘ ( 𝐺 ‘ 𝑘 ) ) ) +o 𝑧 ) ) , ∅ ) ‘ 𝑣 ) ) = ( 𝑣 ( 𝑘 ∈ dom 𝐺 , 𝑧 ∈ On ↦ ( ( ( 𝐴 ↑o ( 𝐺 ‘ 𝑘 ) ) ·o ( 𝐹 ‘ ( 𝐺 ‘ 𝑘 ) ) ) +o 𝑧 ) ) ( seqω ( ( 𝑘 ∈ dom 𝐺 , 𝑧 ∈ On ↦ ( ( ( 𝐴 ↑o ( 𝐺 ‘ 𝑘 ) ) ·o ( 𝐹 ‘ ( 𝐺 ‘ 𝑘 ) ) ) +o 𝑧 ) ) , ∅ ) ‘ 𝑣 ) ) |
59 |
|
simprr |
⊢ ( ( 𝜑 ∧ ( 𝑣 ∈ ω ∧ suc 𝑣 ⊆ dom 𝐺 ) ) → suc 𝑣 ⊆ dom 𝐺 ) |
60 |
|
vex |
⊢ 𝑣 ∈ V |
61 |
60
|
sucid |
⊢ 𝑣 ∈ suc 𝑣 |
62 |
61
|
a1i |
⊢ ( ( 𝜑 ∧ ( 𝑣 ∈ ω ∧ suc 𝑣 ⊆ dom 𝐺 ) ) → 𝑣 ∈ suc 𝑣 ) |
63 |
59 62
|
sseldd |
⊢ ( ( 𝜑 ∧ ( 𝑣 ∈ ω ∧ suc 𝑣 ⊆ dom 𝐺 ) ) → 𝑣 ∈ dom 𝐺 ) |
64 |
18
|
cantnfvalf |
⊢ seqω ( ( 𝑘 ∈ dom 𝐺 , 𝑧 ∈ On ↦ ( ( ( 𝐴 ↑o ( 𝐺 ‘ 𝑘 ) ) ·o ( 𝐹 ‘ ( 𝐺 ‘ 𝑘 ) ) ) +o 𝑧 ) ) , ∅ ) : ω ⟶ On |
65 |
64
|
ffvelrni |
⊢ ( 𝑣 ∈ ω → ( seqω ( ( 𝑘 ∈ dom 𝐺 , 𝑧 ∈ On ↦ ( ( ( 𝐴 ↑o ( 𝐺 ‘ 𝑘 ) ) ·o ( 𝐹 ‘ ( 𝐺 ‘ 𝑘 ) ) ) +o 𝑧 ) ) , ∅ ) ‘ 𝑣 ) ∈ On ) |
66 |
65
|
ad2antrl |
⊢ ( ( 𝜑 ∧ ( 𝑣 ∈ ω ∧ suc 𝑣 ⊆ dom 𝐺 ) ) → ( seqω ( ( 𝑘 ∈ dom 𝐺 , 𝑧 ∈ On ↦ ( ( ( 𝐴 ↑o ( 𝐺 ‘ 𝑘 ) ) ·o ( 𝐹 ‘ ( 𝐺 ‘ 𝑘 ) ) ) +o 𝑧 ) ) , ∅ ) ‘ 𝑣 ) ∈ On ) |
67 |
|
ovres |
⊢ ( ( 𝑣 ∈ dom 𝐺 ∧ ( seqω ( ( 𝑘 ∈ dom 𝐺 , 𝑧 ∈ On ↦ ( ( ( 𝐴 ↑o ( 𝐺 ‘ 𝑘 ) ) ·o ( 𝐹 ‘ ( 𝐺 ‘ 𝑘 ) ) ) +o 𝑧 ) ) , ∅ ) ‘ 𝑣 ) ∈ On ) → ( 𝑣 ( ( 𝑘 ∈ V , 𝑧 ∈ V ↦ ( ( ( 𝐴 ↑o ( 𝐺 ‘ 𝑘 ) ) ·o ( 𝐹 ‘ ( 𝐺 ‘ 𝑘 ) ) ) +o 𝑧 ) ) ↾ ( dom 𝐺 × On ) ) ( seqω ( ( 𝑘 ∈ dom 𝐺 , 𝑧 ∈ On ↦ ( ( ( 𝐴 ↑o ( 𝐺 ‘ 𝑘 ) ) ·o ( 𝐹 ‘ ( 𝐺 ‘ 𝑘 ) ) ) +o 𝑧 ) ) , ∅ ) ‘ 𝑣 ) ) = ( 𝑣 ( 𝑘 ∈ V , 𝑧 ∈ V ↦ ( ( ( 𝐴 ↑o ( 𝐺 ‘ 𝑘 ) ) ·o ( 𝐹 ‘ ( 𝐺 ‘ 𝑘 ) ) ) +o 𝑧 ) ) ( seqω ( ( 𝑘 ∈ dom 𝐺 , 𝑧 ∈ On ↦ ( ( ( 𝐴 ↑o ( 𝐺 ‘ 𝑘 ) ) ·o ( 𝐹 ‘ ( 𝐺 ‘ 𝑘 ) ) ) +o 𝑧 ) ) , ∅ ) ‘ 𝑣 ) ) ) |
68 |
63 66 67
|
syl2anc |
⊢ ( ( 𝜑 ∧ ( 𝑣 ∈ ω ∧ suc 𝑣 ⊆ dom 𝐺 ) ) → ( 𝑣 ( ( 𝑘 ∈ V , 𝑧 ∈ V ↦ ( ( ( 𝐴 ↑o ( 𝐺 ‘ 𝑘 ) ) ·o ( 𝐹 ‘ ( 𝐺 ‘ 𝑘 ) ) ) +o 𝑧 ) ) ↾ ( dom 𝐺 × On ) ) ( seqω ( ( 𝑘 ∈ dom 𝐺 , 𝑧 ∈ On ↦ ( ( ( 𝐴 ↑o ( 𝐺 ‘ 𝑘 ) ) ·o ( 𝐹 ‘ ( 𝐺 ‘ 𝑘 ) ) ) +o 𝑧 ) ) , ∅ ) ‘ 𝑣 ) ) = ( 𝑣 ( 𝑘 ∈ V , 𝑧 ∈ V ↦ ( ( ( 𝐴 ↑o ( 𝐺 ‘ 𝑘 ) ) ·o ( 𝐹 ‘ ( 𝐺 ‘ 𝑘 ) ) ) +o 𝑧 ) ) ( seqω ( ( 𝑘 ∈ dom 𝐺 , 𝑧 ∈ On ↦ ( ( ( 𝐴 ↑o ( 𝐺 ‘ 𝑘 ) ) ·o ( 𝐹 ‘ ( 𝐺 ‘ 𝑘 ) ) ) +o 𝑧 ) ) , ∅ ) ‘ 𝑣 ) ) ) |
69 |
58 68
|
eqtr3id |
⊢ ( ( 𝜑 ∧ ( 𝑣 ∈ ω ∧ suc 𝑣 ⊆ dom 𝐺 ) ) → ( 𝑣 ( 𝑘 ∈ dom 𝐺 , 𝑧 ∈ On ↦ ( ( ( 𝐴 ↑o ( 𝐺 ‘ 𝑘 ) ) ·o ( 𝐹 ‘ ( 𝐺 ‘ 𝑘 ) ) ) +o 𝑧 ) ) ( seqω ( ( 𝑘 ∈ dom 𝐺 , 𝑧 ∈ On ↦ ( ( ( 𝐴 ↑o ( 𝐺 ‘ 𝑘 ) ) ·o ( 𝐹 ‘ ( 𝐺 ‘ 𝑘 ) ) ) +o 𝑧 ) ) , ∅ ) ‘ 𝑣 ) ) = ( 𝑣 ( 𝑘 ∈ V , 𝑧 ∈ V ↦ ( ( ( 𝐴 ↑o ( 𝐺 ‘ 𝑘 ) ) ·o ( 𝐹 ‘ ( 𝐺 ‘ 𝑘 ) ) ) +o 𝑧 ) ) ( seqω ( ( 𝑘 ∈ dom 𝐺 , 𝑧 ∈ On ↦ ( ( ( 𝐴 ↑o ( 𝐺 ‘ 𝑘 ) ) ·o ( 𝐹 ‘ ( 𝐺 ‘ 𝑘 ) ) ) +o 𝑧 ) ) , ∅ ) ‘ 𝑣 ) ) ) |
70 |
53 69
|
eqtrd |
⊢ ( ( 𝜑 ∧ ( 𝑣 ∈ ω ∧ suc 𝑣 ⊆ dom 𝐺 ) ) → ( seqω ( ( 𝑘 ∈ dom 𝐺 , 𝑧 ∈ On ↦ ( ( ( 𝐴 ↑o ( 𝐺 ‘ 𝑘 ) ) ·o ( 𝐹 ‘ ( 𝐺 ‘ 𝑘 ) ) ) +o 𝑧 ) ) , ∅ ) ‘ suc 𝑣 ) = ( 𝑣 ( 𝑘 ∈ V , 𝑧 ∈ V ↦ ( ( ( 𝐴 ↑o ( 𝐺 ‘ 𝑘 ) ) ·o ( 𝐹 ‘ ( 𝐺 ‘ 𝑘 ) ) ) +o 𝑧 ) ) ( seqω ( ( 𝑘 ∈ dom 𝐺 , 𝑧 ∈ On ↦ ( ( ( 𝐴 ↑o ( 𝐺 ‘ 𝑘 ) ) ·o ( 𝐹 ‘ ( 𝐺 ‘ 𝑘 ) ) ) +o 𝑧 ) ) , ∅ ) ‘ 𝑣 ) ) ) |
71 |
51 70
|
eqeq12d |
⊢ ( ( 𝜑 ∧ ( 𝑣 ∈ ω ∧ suc 𝑣 ⊆ dom 𝐺 ) ) → ( ( 𝐻 ‘ suc 𝑣 ) = ( seqω ( ( 𝑘 ∈ dom 𝐺 , 𝑧 ∈ On ↦ ( ( ( 𝐴 ↑o ( 𝐺 ‘ 𝑘 ) ) ·o ( 𝐹 ‘ ( 𝐺 ‘ 𝑘 ) ) ) +o 𝑧 ) ) , ∅ ) ‘ suc 𝑣 ) ↔ ( 𝑣 ( 𝑘 ∈ V , 𝑧 ∈ V ↦ ( ( ( 𝐴 ↑o ( 𝐺 ‘ 𝑘 ) ) ·o ( 𝐹 ‘ ( 𝐺 ‘ 𝑘 ) ) ) +o 𝑧 ) ) ( 𝐻 ‘ 𝑣 ) ) = ( 𝑣 ( 𝑘 ∈ V , 𝑧 ∈ V ↦ ( ( ( 𝐴 ↑o ( 𝐺 ‘ 𝑘 ) ) ·o ( 𝐹 ‘ ( 𝐺 ‘ 𝑘 ) ) ) +o 𝑧 ) ) ( seqω ( ( 𝑘 ∈ dom 𝐺 , 𝑧 ∈ On ↦ ( ( ( 𝐴 ↑o ( 𝐺 ‘ 𝑘 ) ) ·o ( 𝐹 ‘ ( 𝐺 ‘ 𝑘 ) ) ) +o 𝑧 ) ) , ∅ ) ‘ 𝑣 ) ) ) ) |
72 |
49 71
|
syl5ibr |
⊢ ( ( 𝜑 ∧ ( 𝑣 ∈ ω ∧ suc 𝑣 ⊆ dom 𝐺 ) ) → ( ( 𝐻 ‘ 𝑣 ) = ( seqω ( ( 𝑘 ∈ dom 𝐺 , 𝑧 ∈ On ↦ ( ( ( 𝐴 ↑o ( 𝐺 ‘ 𝑘 ) ) ·o ( 𝐹 ‘ ( 𝐺 ‘ 𝑘 ) ) ) +o 𝑧 ) ) , ∅ ) ‘ 𝑣 ) → ( 𝐻 ‘ suc 𝑣 ) = ( seqω ( ( 𝑘 ∈ dom 𝐺 , 𝑧 ∈ On ↦ ( ( ( 𝐴 ↑o ( 𝐺 ‘ 𝑘 ) ) ·o ( 𝐹 ‘ ( 𝐺 ‘ 𝑘 ) ) ) +o 𝑧 ) ) , ∅ ) ‘ suc 𝑣 ) ) ) |
73 |
72
|
expr |
⊢ ( ( 𝜑 ∧ 𝑣 ∈ ω ) → ( suc 𝑣 ⊆ dom 𝐺 → ( ( 𝐻 ‘ 𝑣 ) = ( seqω ( ( 𝑘 ∈ dom 𝐺 , 𝑧 ∈ On ↦ ( ( ( 𝐴 ↑o ( 𝐺 ‘ 𝑘 ) ) ·o ( 𝐹 ‘ ( 𝐺 ‘ 𝑘 ) ) ) +o 𝑧 ) ) , ∅ ) ‘ 𝑣 ) → ( 𝐻 ‘ suc 𝑣 ) = ( seqω ( ( 𝑘 ∈ dom 𝐺 , 𝑧 ∈ On ↦ ( ( ( 𝐴 ↑o ( 𝐺 ‘ 𝑘 ) ) ·o ( 𝐹 ‘ ( 𝐺 ‘ 𝑘 ) ) ) +o 𝑧 ) ) , ∅ ) ‘ suc 𝑣 ) ) ) ) |
74 |
73
|
a2d |
⊢ ( ( 𝜑 ∧ 𝑣 ∈ ω ) → ( ( suc 𝑣 ⊆ dom 𝐺 → ( 𝐻 ‘ 𝑣 ) = ( seqω ( ( 𝑘 ∈ dom 𝐺 , 𝑧 ∈ On ↦ ( ( ( 𝐴 ↑o ( 𝐺 ‘ 𝑘 ) ) ·o ( 𝐹 ‘ ( 𝐺 ‘ 𝑘 ) ) ) +o 𝑧 ) ) , ∅ ) ‘ 𝑣 ) ) → ( suc 𝑣 ⊆ dom 𝐺 → ( 𝐻 ‘ suc 𝑣 ) = ( seqω ( ( 𝑘 ∈ dom 𝐺 , 𝑧 ∈ On ↦ ( ( ( 𝐴 ↑o ( 𝐺 ‘ 𝑘 ) ) ·o ( 𝐹 ‘ ( 𝐺 ‘ 𝑘 ) ) ) +o 𝑧 ) ) , ∅ ) ‘ suc 𝑣 ) ) ) ) |
75 |
48 74
|
syl5 |
⊢ ( ( 𝜑 ∧ 𝑣 ∈ ω ) → ( ( 𝑣 ⊆ dom 𝐺 → ( 𝐻 ‘ 𝑣 ) = ( seqω ( ( 𝑘 ∈ dom 𝐺 , 𝑧 ∈ On ↦ ( ( ( 𝐴 ↑o ( 𝐺 ‘ 𝑘 ) ) ·o ( 𝐹 ‘ ( 𝐺 ‘ 𝑘 ) ) ) +o 𝑧 ) ) , ∅ ) ‘ 𝑣 ) ) → ( suc 𝑣 ⊆ dom 𝐺 → ( 𝐻 ‘ suc 𝑣 ) = ( seqω ( ( 𝑘 ∈ dom 𝐺 , 𝑧 ∈ On ↦ ( ( ( 𝐴 ↑o ( 𝐺 ‘ 𝑘 ) ) ·o ( 𝐹 ‘ ( 𝐺 ‘ 𝑘 ) ) ) +o 𝑧 ) ) , ∅ ) ‘ suc 𝑣 ) ) ) ) |
76 |
75
|
expcom |
⊢ ( 𝑣 ∈ ω → ( 𝜑 → ( ( 𝑣 ⊆ dom 𝐺 → ( 𝐻 ‘ 𝑣 ) = ( seqω ( ( 𝑘 ∈ dom 𝐺 , 𝑧 ∈ On ↦ ( ( ( 𝐴 ↑o ( 𝐺 ‘ 𝑘 ) ) ·o ( 𝐹 ‘ ( 𝐺 ‘ 𝑘 ) ) ) +o 𝑧 ) ) , ∅ ) ‘ 𝑣 ) ) → ( suc 𝑣 ⊆ dom 𝐺 → ( 𝐻 ‘ suc 𝑣 ) = ( seqω ( ( 𝑘 ∈ dom 𝐺 , 𝑧 ∈ On ↦ ( ( ( 𝐴 ↑o ( 𝐺 ‘ 𝑘 ) ) ·o ( 𝐹 ‘ ( 𝐺 ‘ 𝑘 ) ) ) +o 𝑧 ) ) , ∅ ) ‘ suc 𝑣 ) ) ) ) ) |
77 |
76
|
a2d |
⊢ ( 𝑣 ∈ ω → ( ( 𝜑 → ( 𝑣 ⊆ dom 𝐺 → ( 𝐻 ‘ 𝑣 ) = ( seqω ( ( 𝑘 ∈ dom 𝐺 , 𝑧 ∈ On ↦ ( ( ( 𝐴 ↑o ( 𝐺 ‘ 𝑘 ) ) ·o ( 𝐹 ‘ ( 𝐺 ‘ 𝑘 ) ) ) +o 𝑧 ) ) , ∅ ) ‘ 𝑣 ) ) ) → ( 𝜑 → ( suc 𝑣 ⊆ dom 𝐺 → ( 𝐻 ‘ suc 𝑣 ) = ( seqω ( ( 𝑘 ∈ dom 𝐺 , 𝑧 ∈ On ↦ ( ( ( 𝐴 ↑o ( 𝐺 ‘ 𝑘 ) ) ·o ( 𝐹 ‘ ( 𝐺 ‘ 𝑘 ) ) ) +o 𝑧 ) ) , ∅ ) ‘ suc 𝑣 ) ) ) ) ) |
78 |
24 30 36 42 44 77
|
finds |
⊢ ( dom 𝐺 ∈ ω → ( 𝜑 → ( dom 𝐺 ⊆ dom 𝐺 → ( 𝐻 ‘ dom 𝐺 ) = ( seqω ( ( 𝑘 ∈ dom 𝐺 , 𝑧 ∈ On ↦ ( ( ( 𝐴 ↑o ( 𝐺 ‘ 𝑘 ) ) ·o ( 𝐹 ‘ ( 𝐺 ‘ 𝑘 ) ) ) +o 𝑧 ) ) , ∅ ) ‘ dom 𝐺 ) ) ) ) |
79 |
10 78
|
mpcom |
⊢ ( 𝜑 → ( dom 𝐺 ⊆ dom 𝐺 → ( 𝐻 ‘ dom 𝐺 ) = ( seqω ( ( 𝑘 ∈ dom 𝐺 , 𝑧 ∈ On ↦ ( ( ( 𝐴 ↑o ( 𝐺 ‘ 𝑘 ) ) ·o ( 𝐹 ‘ ( 𝐺 ‘ 𝑘 ) ) ) +o 𝑧 ) ) , ∅ ) ‘ dom 𝐺 ) ) ) |
80 |
8 79
|
mpi |
⊢ ( 𝜑 → ( 𝐻 ‘ dom 𝐺 ) = ( seqω ( ( 𝑘 ∈ dom 𝐺 , 𝑧 ∈ On ↦ ( ( ( 𝐴 ↑o ( 𝐺 ‘ 𝑘 ) ) ·o ( 𝐹 ‘ ( 𝐺 ‘ 𝑘 ) ) ) +o 𝑧 ) ) , ∅ ) ‘ dom 𝐺 ) ) |
81 |
7 80
|
eqtrd |
⊢ ( 𝜑 → ( ( 𝐴 CNF 𝐵 ) ‘ 𝐹 ) = ( seqω ( ( 𝑘 ∈ dom 𝐺 , 𝑧 ∈ On ↦ ( ( ( 𝐴 ↑o ( 𝐺 ‘ 𝑘 ) ) ·o ( 𝐹 ‘ ( 𝐺 ‘ 𝑘 ) ) ) +o 𝑧 ) ) , ∅ ) ‘ dom 𝐺 ) ) |