| Step | Hyp | Ref | Expression | 
						
							| 1 |  | cantnfs.s | ⊢ 𝑆  =  dom  ( 𝐴  CNF  𝐵 ) | 
						
							| 2 |  | cantnfs.a | ⊢ ( 𝜑  →  𝐴  ∈  On ) | 
						
							| 3 |  | cantnfs.b | ⊢ ( 𝜑  →  𝐵  ∈  On ) | 
						
							| 4 |  | cantnfcl.g | ⊢ 𝐺  =  OrdIso (  E  ,  ( 𝐹  supp  ∅ ) ) | 
						
							| 5 |  | cantnfcl.f | ⊢ ( 𝜑  →  𝐹  ∈  𝑆 ) | 
						
							| 6 |  | cantnfval.h | ⊢ 𝐻  =  seqω ( ( 𝑘  ∈  V ,  𝑧  ∈  V  ↦  ( ( ( 𝐴  ↑o  ( 𝐺 ‘ 𝑘 ) )  ·o  ( 𝐹 ‘ ( 𝐺 ‘ 𝑘 ) ) )  +o  𝑧 ) ) ,  ∅ ) | 
						
							| 7 | 1 2 3 4 5 6 | cantnfval | ⊢ ( 𝜑  →  ( ( 𝐴  CNF  𝐵 ) ‘ 𝐹 )  =  ( 𝐻 ‘ dom  𝐺 ) ) | 
						
							| 8 |  | ssid | ⊢ dom  𝐺  ⊆  dom  𝐺 | 
						
							| 9 | 1 2 3 4 5 | cantnfcl | ⊢ ( 𝜑  →  (  E   We  ( 𝐹  supp  ∅ )  ∧  dom  𝐺  ∈  ω ) ) | 
						
							| 10 | 9 | simprd | ⊢ ( 𝜑  →  dom  𝐺  ∈  ω ) | 
						
							| 11 |  | sseq1 | ⊢ ( 𝑢  =  ∅  →  ( 𝑢  ⊆  dom  𝐺  ↔  ∅  ⊆  dom  𝐺 ) ) | 
						
							| 12 |  | fveq2 | ⊢ ( 𝑢  =  ∅  →  ( 𝐻 ‘ 𝑢 )  =  ( 𝐻 ‘ ∅ ) ) | 
						
							| 13 |  | 0ex | ⊢ ∅  ∈  V | 
						
							| 14 | 6 | seqom0g | ⊢ ( ∅  ∈  V  →  ( 𝐻 ‘ ∅ )  =  ∅ ) | 
						
							| 15 | 13 14 | ax-mp | ⊢ ( 𝐻 ‘ ∅ )  =  ∅ | 
						
							| 16 | 12 15 | eqtrdi | ⊢ ( 𝑢  =  ∅  →  ( 𝐻 ‘ 𝑢 )  =  ∅ ) | 
						
							| 17 |  | fveq2 | ⊢ ( 𝑢  =  ∅  →  ( seqω ( ( 𝑘  ∈  dom  𝐺 ,  𝑧  ∈  On  ↦  ( ( ( 𝐴  ↑o  ( 𝐺 ‘ 𝑘 ) )  ·o  ( 𝐹 ‘ ( 𝐺 ‘ 𝑘 ) ) )  +o  𝑧 ) ) ,  ∅ ) ‘ 𝑢 )  =  ( seqω ( ( 𝑘  ∈  dom  𝐺 ,  𝑧  ∈  On  ↦  ( ( ( 𝐴  ↑o  ( 𝐺 ‘ 𝑘 ) )  ·o  ( 𝐹 ‘ ( 𝐺 ‘ 𝑘 ) ) )  +o  𝑧 ) ) ,  ∅ ) ‘ ∅ ) ) | 
						
							| 18 |  | eqid | ⊢ seqω ( ( 𝑘  ∈  dom  𝐺 ,  𝑧  ∈  On  ↦  ( ( ( 𝐴  ↑o  ( 𝐺 ‘ 𝑘 ) )  ·o  ( 𝐹 ‘ ( 𝐺 ‘ 𝑘 ) ) )  +o  𝑧 ) ) ,  ∅ )  =  seqω ( ( 𝑘  ∈  dom  𝐺 ,  𝑧  ∈  On  ↦  ( ( ( 𝐴  ↑o  ( 𝐺 ‘ 𝑘 ) )  ·o  ( 𝐹 ‘ ( 𝐺 ‘ 𝑘 ) ) )  +o  𝑧 ) ) ,  ∅ ) | 
						
							| 19 | 18 | seqom0g | ⊢ ( ∅  ∈  V  →  ( seqω ( ( 𝑘  ∈  dom  𝐺 ,  𝑧  ∈  On  ↦  ( ( ( 𝐴  ↑o  ( 𝐺 ‘ 𝑘 ) )  ·o  ( 𝐹 ‘ ( 𝐺 ‘ 𝑘 ) ) )  +o  𝑧 ) ) ,  ∅ ) ‘ ∅ )  =  ∅ ) | 
						
							| 20 | 13 19 | ax-mp | ⊢ ( seqω ( ( 𝑘  ∈  dom  𝐺 ,  𝑧  ∈  On  ↦  ( ( ( 𝐴  ↑o  ( 𝐺 ‘ 𝑘 ) )  ·o  ( 𝐹 ‘ ( 𝐺 ‘ 𝑘 ) ) )  +o  𝑧 ) ) ,  ∅ ) ‘ ∅ )  =  ∅ | 
						
							| 21 | 17 20 | eqtrdi | ⊢ ( 𝑢  =  ∅  →  ( seqω ( ( 𝑘  ∈  dom  𝐺 ,  𝑧  ∈  On  ↦  ( ( ( 𝐴  ↑o  ( 𝐺 ‘ 𝑘 ) )  ·o  ( 𝐹 ‘ ( 𝐺 ‘ 𝑘 ) ) )  +o  𝑧 ) ) ,  ∅ ) ‘ 𝑢 )  =  ∅ ) | 
						
							| 22 | 16 21 | eqeq12d | ⊢ ( 𝑢  =  ∅  →  ( ( 𝐻 ‘ 𝑢 )  =  ( seqω ( ( 𝑘  ∈  dom  𝐺 ,  𝑧  ∈  On  ↦  ( ( ( 𝐴  ↑o  ( 𝐺 ‘ 𝑘 ) )  ·o  ( 𝐹 ‘ ( 𝐺 ‘ 𝑘 ) ) )  +o  𝑧 ) ) ,  ∅ ) ‘ 𝑢 )  ↔  ∅  =  ∅ ) ) | 
						
							| 23 | 11 22 | imbi12d | ⊢ ( 𝑢  =  ∅  →  ( ( 𝑢  ⊆  dom  𝐺  →  ( 𝐻 ‘ 𝑢 )  =  ( seqω ( ( 𝑘  ∈  dom  𝐺 ,  𝑧  ∈  On  ↦  ( ( ( 𝐴  ↑o  ( 𝐺 ‘ 𝑘 ) )  ·o  ( 𝐹 ‘ ( 𝐺 ‘ 𝑘 ) ) )  +o  𝑧 ) ) ,  ∅ ) ‘ 𝑢 ) )  ↔  ( ∅  ⊆  dom  𝐺  →  ∅  =  ∅ ) ) ) | 
						
							| 24 | 23 | imbi2d | ⊢ ( 𝑢  =  ∅  →  ( ( 𝜑  →  ( 𝑢  ⊆  dom  𝐺  →  ( 𝐻 ‘ 𝑢 )  =  ( seqω ( ( 𝑘  ∈  dom  𝐺 ,  𝑧  ∈  On  ↦  ( ( ( 𝐴  ↑o  ( 𝐺 ‘ 𝑘 ) )  ·o  ( 𝐹 ‘ ( 𝐺 ‘ 𝑘 ) ) )  +o  𝑧 ) ) ,  ∅ ) ‘ 𝑢 ) ) )  ↔  ( 𝜑  →  ( ∅  ⊆  dom  𝐺  →  ∅  =  ∅ ) ) ) ) | 
						
							| 25 |  | sseq1 | ⊢ ( 𝑢  =  𝑣  →  ( 𝑢  ⊆  dom  𝐺  ↔  𝑣  ⊆  dom  𝐺 ) ) | 
						
							| 26 |  | fveq2 | ⊢ ( 𝑢  =  𝑣  →  ( 𝐻 ‘ 𝑢 )  =  ( 𝐻 ‘ 𝑣 ) ) | 
						
							| 27 |  | fveq2 | ⊢ ( 𝑢  =  𝑣  →  ( seqω ( ( 𝑘  ∈  dom  𝐺 ,  𝑧  ∈  On  ↦  ( ( ( 𝐴  ↑o  ( 𝐺 ‘ 𝑘 ) )  ·o  ( 𝐹 ‘ ( 𝐺 ‘ 𝑘 ) ) )  +o  𝑧 ) ) ,  ∅ ) ‘ 𝑢 )  =  ( seqω ( ( 𝑘  ∈  dom  𝐺 ,  𝑧  ∈  On  ↦  ( ( ( 𝐴  ↑o  ( 𝐺 ‘ 𝑘 ) )  ·o  ( 𝐹 ‘ ( 𝐺 ‘ 𝑘 ) ) )  +o  𝑧 ) ) ,  ∅ ) ‘ 𝑣 ) ) | 
						
							| 28 | 26 27 | eqeq12d | ⊢ ( 𝑢  =  𝑣  →  ( ( 𝐻 ‘ 𝑢 )  =  ( seqω ( ( 𝑘  ∈  dom  𝐺 ,  𝑧  ∈  On  ↦  ( ( ( 𝐴  ↑o  ( 𝐺 ‘ 𝑘 ) )  ·o  ( 𝐹 ‘ ( 𝐺 ‘ 𝑘 ) ) )  +o  𝑧 ) ) ,  ∅ ) ‘ 𝑢 )  ↔  ( 𝐻 ‘ 𝑣 )  =  ( seqω ( ( 𝑘  ∈  dom  𝐺 ,  𝑧  ∈  On  ↦  ( ( ( 𝐴  ↑o  ( 𝐺 ‘ 𝑘 ) )  ·o  ( 𝐹 ‘ ( 𝐺 ‘ 𝑘 ) ) )  +o  𝑧 ) ) ,  ∅ ) ‘ 𝑣 ) ) ) | 
						
							| 29 | 25 28 | imbi12d | ⊢ ( 𝑢  =  𝑣  →  ( ( 𝑢  ⊆  dom  𝐺  →  ( 𝐻 ‘ 𝑢 )  =  ( seqω ( ( 𝑘  ∈  dom  𝐺 ,  𝑧  ∈  On  ↦  ( ( ( 𝐴  ↑o  ( 𝐺 ‘ 𝑘 ) )  ·o  ( 𝐹 ‘ ( 𝐺 ‘ 𝑘 ) ) )  +o  𝑧 ) ) ,  ∅ ) ‘ 𝑢 ) )  ↔  ( 𝑣  ⊆  dom  𝐺  →  ( 𝐻 ‘ 𝑣 )  =  ( seqω ( ( 𝑘  ∈  dom  𝐺 ,  𝑧  ∈  On  ↦  ( ( ( 𝐴  ↑o  ( 𝐺 ‘ 𝑘 ) )  ·o  ( 𝐹 ‘ ( 𝐺 ‘ 𝑘 ) ) )  +o  𝑧 ) ) ,  ∅ ) ‘ 𝑣 ) ) ) ) | 
						
							| 30 | 29 | imbi2d | ⊢ ( 𝑢  =  𝑣  →  ( ( 𝜑  →  ( 𝑢  ⊆  dom  𝐺  →  ( 𝐻 ‘ 𝑢 )  =  ( seqω ( ( 𝑘  ∈  dom  𝐺 ,  𝑧  ∈  On  ↦  ( ( ( 𝐴  ↑o  ( 𝐺 ‘ 𝑘 ) )  ·o  ( 𝐹 ‘ ( 𝐺 ‘ 𝑘 ) ) )  +o  𝑧 ) ) ,  ∅ ) ‘ 𝑢 ) ) )  ↔  ( 𝜑  →  ( 𝑣  ⊆  dom  𝐺  →  ( 𝐻 ‘ 𝑣 )  =  ( seqω ( ( 𝑘  ∈  dom  𝐺 ,  𝑧  ∈  On  ↦  ( ( ( 𝐴  ↑o  ( 𝐺 ‘ 𝑘 ) )  ·o  ( 𝐹 ‘ ( 𝐺 ‘ 𝑘 ) ) )  +o  𝑧 ) ) ,  ∅ ) ‘ 𝑣 ) ) ) ) ) | 
						
							| 31 |  | sseq1 | ⊢ ( 𝑢  =  suc  𝑣  →  ( 𝑢  ⊆  dom  𝐺  ↔  suc  𝑣  ⊆  dom  𝐺 ) ) | 
						
							| 32 |  | fveq2 | ⊢ ( 𝑢  =  suc  𝑣  →  ( 𝐻 ‘ 𝑢 )  =  ( 𝐻 ‘ suc  𝑣 ) ) | 
						
							| 33 |  | fveq2 | ⊢ ( 𝑢  =  suc  𝑣  →  ( seqω ( ( 𝑘  ∈  dom  𝐺 ,  𝑧  ∈  On  ↦  ( ( ( 𝐴  ↑o  ( 𝐺 ‘ 𝑘 ) )  ·o  ( 𝐹 ‘ ( 𝐺 ‘ 𝑘 ) ) )  +o  𝑧 ) ) ,  ∅ ) ‘ 𝑢 )  =  ( seqω ( ( 𝑘  ∈  dom  𝐺 ,  𝑧  ∈  On  ↦  ( ( ( 𝐴  ↑o  ( 𝐺 ‘ 𝑘 ) )  ·o  ( 𝐹 ‘ ( 𝐺 ‘ 𝑘 ) ) )  +o  𝑧 ) ) ,  ∅ ) ‘ suc  𝑣 ) ) | 
						
							| 34 | 32 33 | eqeq12d | ⊢ ( 𝑢  =  suc  𝑣  →  ( ( 𝐻 ‘ 𝑢 )  =  ( seqω ( ( 𝑘  ∈  dom  𝐺 ,  𝑧  ∈  On  ↦  ( ( ( 𝐴  ↑o  ( 𝐺 ‘ 𝑘 ) )  ·o  ( 𝐹 ‘ ( 𝐺 ‘ 𝑘 ) ) )  +o  𝑧 ) ) ,  ∅ ) ‘ 𝑢 )  ↔  ( 𝐻 ‘ suc  𝑣 )  =  ( seqω ( ( 𝑘  ∈  dom  𝐺 ,  𝑧  ∈  On  ↦  ( ( ( 𝐴  ↑o  ( 𝐺 ‘ 𝑘 ) )  ·o  ( 𝐹 ‘ ( 𝐺 ‘ 𝑘 ) ) )  +o  𝑧 ) ) ,  ∅ ) ‘ suc  𝑣 ) ) ) | 
						
							| 35 | 31 34 | imbi12d | ⊢ ( 𝑢  =  suc  𝑣  →  ( ( 𝑢  ⊆  dom  𝐺  →  ( 𝐻 ‘ 𝑢 )  =  ( seqω ( ( 𝑘  ∈  dom  𝐺 ,  𝑧  ∈  On  ↦  ( ( ( 𝐴  ↑o  ( 𝐺 ‘ 𝑘 ) )  ·o  ( 𝐹 ‘ ( 𝐺 ‘ 𝑘 ) ) )  +o  𝑧 ) ) ,  ∅ ) ‘ 𝑢 ) )  ↔  ( suc  𝑣  ⊆  dom  𝐺  →  ( 𝐻 ‘ suc  𝑣 )  =  ( seqω ( ( 𝑘  ∈  dom  𝐺 ,  𝑧  ∈  On  ↦  ( ( ( 𝐴  ↑o  ( 𝐺 ‘ 𝑘 ) )  ·o  ( 𝐹 ‘ ( 𝐺 ‘ 𝑘 ) ) )  +o  𝑧 ) ) ,  ∅ ) ‘ suc  𝑣 ) ) ) ) | 
						
							| 36 | 35 | imbi2d | ⊢ ( 𝑢  =  suc  𝑣  →  ( ( 𝜑  →  ( 𝑢  ⊆  dom  𝐺  →  ( 𝐻 ‘ 𝑢 )  =  ( seqω ( ( 𝑘  ∈  dom  𝐺 ,  𝑧  ∈  On  ↦  ( ( ( 𝐴  ↑o  ( 𝐺 ‘ 𝑘 ) )  ·o  ( 𝐹 ‘ ( 𝐺 ‘ 𝑘 ) ) )  +o  𝑧 ) ) ,  ∅ ) ‘ 𝑢 ) ) )  ↔  ( 𝜑  →  ( suc  𝑣  ⊆  dom  𝐺  →  ( 𝐻 ‘ suc  𝑣 )  =  ( seqω ( ( 𝑘  ∈  dom  𝐺 ,  𝑧  ∈  On  ↦  ( ( ( 𝐴  ↑o  ( 𝐺 ‘ 𝑘 ) )  ·o  ( 𝐹 ‘ ( 𝐺 ‘ 𝑘 ) ) )  +o  𝑧 ) ) ,  ∅ ) ‘ suc  𝑣 ) ) ) ) ) | 
						
							| 37 |  | sseq1 | ⊢ ( 𝑢  =  dom  𝐺  →  ( 𝑢  ⊆  dom  𝐺  ↔  dom  𝐺  ⊆  dom  𝐺 ) ) | 
						
							| 38 |  | fveq2 | ⊢ ( 𝑢  =  dom  𝐺  →  ( 𝐻 ‘ 𝑢 )  =  ( 𝐻 ‘ dom  𝐺 ) ) | 
						
							| 39 |  | fveq2 | ⊢ ( 𝑢  =  dom  𝐺  →  ( seqω ( ( 𝑘  ∈  dom  𝐺 ,  𝑧  ∈  On  ↦  ( ( ( 𝐴  ↑o  ( 𝐺 ‘ 𝑘 ) )  ·o  ( 𝐹 ‘ ( 𝐺 ‘ 𝑘 ) ) )  +o  𝑧 ) ) ,  ∅ ) ‘ 𝑢 )  =  ( seqω ( ( 𝑘  ∈  dom  𝐺 ,  𝑧  ∈  On  ↦  ( ( ( 𝐴  ↑o  ( 𝐺 ‘ 𝑘 ) )  ·o  ( 𝐹 ‘ ( 𝐺 ‘ 𝑘 ) ) )  +o  𝑧 ) ) ,  ∅ ) ‘ dom  𝐺 ) ) | 
						
							| 40 | 38 39 | eqeq12d | ⊢ ( 𝑢  =  dom  𝐺  →  ( ( 𝐻 ‘ 𝑢 )  =  ( seqω ( ( 𝑘  ∈  dom  𝐺 ,  𝑧  ∈  On  ↦  ( ( ( 𝐴  ↑o  ( 𝐺 ‘ 𝑘 ) )  ·o  ( 𝐹 ‘ ( 𝐺 ‘ 𝑘 ) ) )  +o  𝑧 ) ) ,  ∅ ) ‘ 𝑢 )  ↔  ( 𝐻 ‘ dom  𝐺 )  =  ( seqω ( ( 𝑘  ∈  dom  𝐺 ,  𝑧  ∈  On  ↦  ( ( ( 𝐴  ↑o  ( 𝐺 ‘ 𝑘 ) )  ·o  ( 𝐹 ‘ ( 𝐺 ‘ 𝑘 ) ) )  +o  𝑧 ) ) ,  ∅ ) ‘ dom  𝐺 ) ) ) | 
						
							| 41 | 37 40 | imbi12d | ⊢ ( 𝑢  =  dom  𝐺  →  ( ( 𝑢  ⊆  dom  𝐺  →  ( 𝐻 ‘ 𝑢 )  =  ( seqω ( ( 𝑘  ∈  dom  𝐺 ,  𝑧  ∈  On  ↦  ( ( ( 𝐴  ↑o  ( 𝐺 ‘ 𝑘 ) )  ·o  ( 𝐹 ‘ ( 𝐺 ‘ 𝑘 ) ) )  +o  𝑧 ) ) ,  ∅ ) ‘ 𝑢 ) )  ↔  ( dom  𝐺  ⊆  dom  𝐺  →  ( 𝐻 ‘ dom  𝐺 )  =  ( seqω ( ( 𝑘  ∈  dom  𝐺 ,  𝑧  ∈  On  ↦  ( ( ( 𝐴  ↑o  ( 𝐺 ‘ 𝑘 ) )  ·o  ( 𝐹 ‘ ( 𝐺 ‘ 𝑘 ) ) )  +o  𝑧 ) ) ,  ∅ ) ‘ dom  𝐺 ) ) ) ) | 
						
							| 42 | 41 | imbi2d | ⊢ ( 𝑢  =  dom  𝐺  →  ( ( 𝜑  →  ( 𝑢  ⊆  dom  𝐺  →  ( 𝐻 ‘ 𝑢 )  =  ( seqω ( ( 𝑘  ∈  dom  𝐺 ,  𝑧  ∈  On  ↦  ( ( ( 𝐴  ↑o  ( 𝐺 ‘ 𝑘 ) )  ·o  ( 𝐹 ‘ ( 𝐺 ‘ 𝑘 ) ) )  +o  𝑧 ) ) ,  ∅ ) ‘ 𝑢 ) ) )  ↔  ( 𝜑  →  ( dom  𝐺  ⊆  dom  𝐺  →  ( 𝐻 ‘ dom  𝐺 )  =  ( seqω ( ( 𝑘  ∈  dom  𝐺 ,  𝑧  ∈  On  ↦  ( ( ( 𝐴  ↑o  ( 𝐺 ‘ 𝑘 ) )  ·o  ( 𝐹 ‘ ( 𝐺 ‘ 𝑘 ) ) )  +o  𝑧 ) ) ,  ∅ ) ‘ dom  𝐺 ) ) ) ) ) | 
						
							| 43 |  | eqid | ⊢ ∅  =  ∅ | 
						
							| 44 | 43 | 2a1i | ⊢ ( 𝜑  →  ( ∅  ⊆  dom  𝐺  →  ∅  =  ∅ ) ) | 
						
							| 45 |  | sssucid | ⊢ 𝑣  ⊆  suc  𝑣 | 
						
							| 46 |  | sstr | ⊢ ( ( 𝑣  ⊆  suc  𝑣  ∧  suc  𝑣  ⊆  dom  𝐺 )  →  𝑣  ⊆  dom  𝐺 ) | 
						
							| 47 | 45 46 | mpan | ⊢ ( suc  𝑣  ⊆  dom  𝐺  →  𝑣  ⊆  dom  𝐺 ) | 
						
							| 48 | 47 | imim1i | ⊢ ( ( 𝑣  ⊆  dom  𝐺  →  ( 𝐻 ‘ 𝑣 )  =  ( seqω ( ( 𝑘  ∈  dom  𝐺 ,  𝑧  ∈  On  ↦  ( ( ( 𝐴  ↑o  ( 𝐺 ‘ 𝑘 ) )  ·o  ( 𝐹 ‘ ( 𝐺 ‘ 𝑘 ) ) )  +o  𝑧 ) ) ,  ∅ ) ‘ 𝑣 ) )  →  ( suc  𝑣  ⊆  dom  𝐺  →  ( 𝐻 ‘ 𝑣 )  =  ( seqω ( ( 𝑘  ∈  dom  𝐺 ,  𝑧  ∈  On  ↦  ( ( ( 𝐴  ↑o  ( 𝐺 ‘ 𝑘 ) )  ·o  ( 𝐹 ‘ ( 𝐺 ‘ 𝑘 ) ) )  +o  𝑧 ) ) ,  ∅ ) ‘ 𝑣 ) ) ) | 
						
							| 49 |  | oveq2 | ⊢ ( ( 𝐻 ‘ 𝑣 )  =  ( seqω ( ( 𝑘  ∈  dom  𝐺 ,  𝑧  ∈  On  ↦  ( ( ( 𝐴  ↑o  ( 𝐺 ‘ 𝑘 ) )  ·o  ( 𝐹 ‘ ( 𝐺 ‘ 𝑘 ) ) )  +o  𝑧 ) ) ,  ∅ ) ‘ 𝑣 )  →  ( 𝑣 ( 𝑘  ∈  V ,  𝑧  ∈  V  ↦  ( ( ( 𝐴  ↑o  ( 𝐺 ‘ 𝑘 ) )  ·o  ( 𝐹 ‘ ( 𝐺 ‘ 𝑘 ) ) )  +o  𝑧 ) ) ( 𝐻 ‘ 𝑣 ) )  =  ( 𝑣 ( 𝑘  ∈  V ,  𝑧  ∈  V  ↦  ( ( ( 𝐴  ↑o  ( 𝐺 ‘ 𝑘 ) )  ·o  ( 𝐹 ‘ ( 𝐺 ‘ 𝑘 ) ) )  +o  𝑧 ) ) ( seqω ( ( 𝑘  ∈  dom  𝐺 ,  𝑧  ∈  On  ↦  ( ( ( 𝐴  ↑o  ( 𝐺 ‘ 𝑘 ) )  ·o  ( 𝐹 ‘ ( 𝐺 ‘ 𝑘 ) ) )  +o  𝑧 ) ) ,  ∅ ) ‘ 𝑣 ) ) ) | 
						
							| 50 | 6 | seqomsuc | ⊢ ( 𝑣  ∈  ω  →  ( 𝐻 ‘ suc  𝑣 )  =  ( 𝑣 ( 𝑘  ∈  V ,  𝑧  ∈  V  ↦  ( ( ( 𝐴  ↑o  ( 𝐺 ‘ 𝑘 ) )  ·o  ( 𝐹 ‘ ( 𝐺 ‘ 𝑘 ) ) )  +o  𝑧 ) ) ( 𝐻 ‘ 𝑣 ) ) ) | 
						
							| 51 | 50 | ad2antrl | ⊢ ( ( 𝜑  ∧  ( 𝑣  ∈  ω  ∧  suc  𝑣  ⊆  dom  𝐺 ) )  →  ( 𝐻 ‘ suc  𝑣 )  =  ( 𝑣 ( 𝑘  ∈  V ,  𝑧  ∈  V  ↦  ( ( ( 𝐴  ↑o  ( 𝐺 ‘ 𝑘 ) )  ·o  ( 𝐹 ‘ ( 𝐺 ‘ 𝑘 ) ) )  +o  𝑧 ) ) ( 𝐻 ‘ 𝑣 ) ) ) | 
						
							| 52 | 18 | seqomsuc | ⊢ ( 𝑣  ∈  ω  →  ( seqω ( ( 𝑘  ∈  dom  𝐺 ,  𝑧  ∈  On  ↦  ( ( ( 𝐴  ↑o  ( 𝐺 ‘ 𝑘 ) )  ·o  ( 𝐹 ‘ ( 𝐺 ‘ 𝑘 ) ) )  +o  𝑧 ) ) ,  ∅ ) ‘ suc  𝑣 )  =  ( 𝑣 ( 𝑘  ∈  dom  𝐺 ,  𝑧  ∈  On  ↦  ( ( ( 𝐴  ↑o  ( 𝐺 ‘ 𝑘 ) )  ·o  ( 𝐹 ‘ ( 𝐺 ‘ 𝑘 ) ) )  +o  𝑧 ) ) ( seqω ( ( 𝑘  ∈  dom  𝐺 ,  𝑧  ∈  On  ↦  ( ( ( 𝐴  ↑o  ( 𝐺 ‘ 𝑘 ) )  ·o  ( 𝐹 ‘ ( 𝐺 ‘ 𝑘 ) ) )  +o  𝑧 ) ) ,  ∅ ) ‘ 𝑣 ) ) ) | 
						
							| 53 | 52 | ad2antrl | ⊢ ( ( 𝜑  ∧  ( 𝑣  ∈  ω  ∧  suc  𝑣  ⊆  dom  𝐺 ) )  →  ( seqω ( ( 𝑘  ∈  dom  𝐺 ,  𝑧  ∈  On  ↦  ( ( ( 𝐴  ↑o  ( 𝐺 ‘ 𝑘 ) )  ·o  ( 𝐹 ‘ ( 𝐺 ‘ 𝑘 ) ) )  +o  𝑧 ) ) ,  ∅ ) ‘ suc  𝑣 )  =  ( 𝑣 ( 𝑘  ∈  dom  𝐺 ,  𝑧  ∈  On  ↦  ( ( ( 𝐴  ↑o  ( 𝐺 ‘ 𝑘 ) )  ·o  ( 𝐹 ‘ ( 𝐺 ‘ 𝑘 ) ) )  +o  𝑧 ) ) ( seqω ( ( 𝑘  ∈  dom  𝐺 ,  𝑧  ∈  On  ↦  ( ( ( 𝐴  ↑o  ( 𝐺 ‘ 𝑘 ) )  ·o  ( 𝐹 ‘ ( 𝐺 ‘ 𝑘 ) ) )  +o  𝑧 ) ) ,  ∅ ) ‘ 𝑣 ) ) ) | 
						
							| 54 |  | ssv | ⊢ dom  𝐺  ⊆  V | 
						
							| 55 |  | ssv | ⊢ On  ⊆  V | 
						
							| 56 |  | resmpo | ⊢ ( ( dom  𝐺  ⊆  V  ∧  On  ⊆  V )  →  ( ( 𝑘  ∈  V ,  𝑧  ∈  V  ↦  ( ( ( 𝐴  ↑o  ( 𝐺 ‘ 𝑘 ) )  ·o  ( 𝐹 ‘ ( 𝐺 ‘ 𝑘 ) ) )  +o  𝑧 ) )  ↾  ( dom  𝐺  ×  On ) )  =  ( 𝑘  ∈  dom  𝐺 ,  𝑧  ∈  On  ↦  ( ( ( 𝐴  ↑o  ( 𝐺 ‘ 𝑘 ) )  ·o  ( 𝐹 ‘ ( 𝐺 ‘ 𝑘 ) ) )  +o  𝑧 ) ) ) | 
						
							| 57 | 54 55 56 | mp2an | ⊢ ( ( 𝑘  ∈  V ,  𝑧  ∈  V  ↦  ( ( ( 𝐴  ↑o  ( 𝐺 ‘ 𝑘 ) )  ·o  ( 𝐹 ‘ ( 𝐺 ‘ 𝑘 ) ) )  +o  𝑧 ) )  ↾  ( dom  𝐺  ×  On ) )  =  ( 𝑘  ∈  dom  𝐺 ,  𝑧  ∈  On  ↦  ( ( ( 𝐴  ↑o  ( 𝐺 ‘ 𝑘 ) )  ·o  ( 𝐹 ‘ ( 𝐺 ‘ 𝑘 ) ) )  +o  𝑧 ) ) | 
						
							| 58 | 57 | oveqi | ⊢ ( 𝑣 ( ( 𝑘  ∈  V ,  𝑧  ∈  V  ↦  ( ( ( 𝐴  ↑o  ( 𝐺 ‘ 𝑘 ) )  ·o  ( 𝐹 ‘ ( 𝐺 ‘ 𝑘 ) ) )  +o  𝑧 ) )  ↾  ( dom  𝐺  ×  On ) ) ( seqω ( ( 𝑘  ∈  dom  𝐺 ,  𝑧  ∈  On  ↦  ( ( ( 𝐴  ↑o  ( 𝐺 ‘ 𝑘 ) )  ·o  ( 𝐹 ‘ ( 𝐺 ‘ 𝑘 ) ) )  +o  𝑧 ) ) ,  ∅ ) ‘ 𝑣 ) )  =  ( 𝑣 ( 𝑘  ∈  dom  𝐺 ,  𝑧  ∈  On  ↦  ( ( ( 𝐴  ↑o  ( 𝐺 ‘ 𝑘 ) )  ·o  ( 𝐹 ‘ ( 𝐺 ‘ 𝑘 ) ) )  +o  𝑧 ) ) ( seqω ( ( 𝑘  ∈  dom  𝐺 ,  𝑧  ∈  On  ↦  ( ( ( 𝐴  ↑o  ( 𝐺 ‘ 𝑘 ) )  ·o  ( 𝐹 ‘ ( 𝐺 ‘ 𝑘 ) ) )  +o  𝑧 ) ) ,  ∅ ) ‘ 𝑣 ) ) | 
						
							| 59 |  | simprr | ⊢ ( ( 𝜑  ∧  ( 𝑣  ∈  ω  ∧  suc  𝑣  ⊆  dom  𝐺 ) )  →  suc  𝑣  ⊆  dom  𝐺 ) | 
						
							| 60 |  | vex | ⊢ 𝑣  ∈  V | 
						
							| 61 | 60 | sucid | ⊢ 𝑣  ∈  suc  𝑣 | 
						
							| 62 | 61 | a1i | ⊢ ( ( 𝜑  ∧  ( 𝑣  ∈  ω  ∧  suc  𝑣  ⊆  dom  𝐺 ) )  →  𝑣  ∈  suc  𝑣 ) | 
						
							| 63 | 59 62 | sseldd | ⊢ ( ( 𝜑  ∧  ( 𝑣  ∈  ω  ∧  suc  𝑣  ⊆  dom  𝐺 ) )  →  𝑣  ∈  dom  𝐺 ) | 
						
							| 64 | 18 | cantnfvalf | ⊢ seqω ( ( 𝑘  ∈  dom  𝐺 ,  𝑧  ∈  On  ↦  ( ( ( 𝐴  ↑o  ( 𝐺 ‘ 𝑘 ) )  ·o  ( 𝐹 ‘ ( 𝐺 ‘ 𝑘 ) ) )  +o  𝑧 ) ) ,  ∅ ) : ω ⟶ On | 
						
							| 65 | 64 | ffvelcdmi | ⊢ ( 𝑣  ∈  ω  →  ( seqω ( ( 𝑘  ∈  dom  𝐺 ,  𝑧  ∈  On  ↦  ( ( ( 𝐴  ↑o  ( 𝐺 ‘ 𝑘 ) )  ·o  ( 𝐹 ‘ ( 𝐺 ‘ 𝑘 ) ) )  +o  𝑧 ) ) ,  ∅ ) ‘ 𝑣 )  ∈  On ) | 
						
							| 66 | 65 | ad2antrl | ⊢ ( ( 𝜑  ∧  ( 𝑣  ∈  ω  ∧  suc  𝑣  ⊆  dom  𝐺 ) )  →  ( seqω ( ( 𝑘  ∈  dom  𝐺 ,  𝑧  ∈  On  ↦  ( ( ( 𝐴  ↑o  ( 𝐺 ‘ 𝑘 ) )  ·o  ( 𝐹 ‘ ( 𝐺 ‘ 𝑘 ) ) )  +o  𝑧 ) ) ,  ∅ ) ‘ 𝑣 )  ∈  On ) | 
						
							| 67 |  | ovres | ⊢ ( ( 𝑣  ∈  dom  𝐺  ∧  ( seqω ( ( 𝑘  ∈  dom  𝐺 ,  𝑧  ∈  On  ↦  ( ( ( 𝐴  ↑o  ( 𝐺 ‘ 𝑘 ) )  ·o  ( 𝐹 ‘ ( 𝐺 ‘ 𝑘 ) ) )  +o  𝑧 ) ) ,  ∅ ) ‘ 𝑣 )  ∈  On )  →  ( 𝑣 ( ( 𝑘  ∈  V ,  𝑧  ∈  V  ↦  ( ( ( 𝐴  ↑o  ( 𝐺 ‘ 𝑘 ) )  ·o  ( 𝐹 ‘ ( 𝐺 ‘ 𝑘 ) ) )  +o  𝑧 ) )  ↾  ( dom  𝐺  ×  On ) ) ( seqω ( ( 𝑘  ∈  dom  𝐺 ,  𝑧  ∈  On  ↦  ( ( ( 𝐴  ↑o  ( 𝐺 ‘ 𝑘 ) )  ·o  ( 𝐹 ‘ ( 𝐺 ‘ 𝑘 ) ) )  +o  𝑧 ) ) ,  ∅ ) ‘ 𝑣 ) )  =  ( 𝑣 ( 𝑘  ∈  V ,  𝑧  ∈  V  ↦  ( ( ( 𝐴  ↑o  ( 𝐺 ‘ 𝑘 ) )  ·o  ( 𝐹 ‘ ( 𝐺 ‘ 𝑘 ) ) )  +o  𝑧 ) ) ( seqω ( ( 𝑘  ∈  dom  𝐺 ,  𝑧  ∈  On  ↦  ( ( ( 𝐴  ↑o  ( 𝐺 ‘ 𝑘 ) )  ·o  ( 𝐹 ‘ ( 𝐺 ‘ 𝑘 ) ) )  +o  𝑧 ) ) ,  ∅ ) ‘ 𝑣 ) ) ) | 
						
							| 68 | 63 66 67 | syl2anc | ⊢ ( ( 𝜑  ∧  ( 𝑣  ∈  ω  ∧  suc  𝑣  ⊆  dom  𝐺 ) )  →  ( 𝑣 ( ( 𝑘  ∈  V ,  𝑧  ∈  V  ↦  ( ( ( 𝐴  ↑o  ( 𝐺 ‘ 𝑘 ) )  ·o  ( 𝐹 ‘ ( 𝐺 ‘ 𝑘 ) ) )  +o  𝑧 ) )  ↾  ( dom  𝐺  ×  On ) ) ( seqω ( ( 𝑘  ∈  dom  𝐺 ,  𝑧  ∈  On  ↦  ( ( ( 𝐴  ↑o  ( 𝐺 ‘ 𝑘 ) )  ·o  ( 𝐹 ‘ ( 𝐺 ‘ 𝑘 ) ) )  +o  𝑧 ) ) ,  ∅ ) ‘ 𝑣 ) )  =  ( 𝑣 ( 𝑘  ∈  V ,  𝑧  ∈  V  ↦  ( ( ( 𝐴  ↑o  ( 𝐺 ‘ 𝑘 ) )  ·o  ( 𝐹 ‘ ( 𝐺 ‘ 𝑘 ) ) )  +o  𝑧 ) ) ( seqω ( ( 𝑘  ∈  dom  𝐺 ,  𝑧  ∈  On  ↦  ( ( ( 𝐴  ↑o  ( 𝐺 ‘ 𝑘 ) )  ·o  ( 𝐹 ‘ ( 𝐺 ‘ 𝑘 ) ) )  +o  𝑧 ) ) ,  ∅ ) ‘ 𝑣 ) ) ) | 
						
							| 69 | 58 68 | eqtr3id | ⊢ ( ( 𝜑  ∧  ( 𝑣  ∈  ω  ∧  suc  𝑣  ⊆  dom  𝐺 ) )  →  ( 𝑣 ( 𝑘  ∈  dom  𝐺 ,  𝑧  ∈  On  ↦  ( ( ( 𝐴  ↑o  ( 𝐺 ‘ 𝑘 ) )  ·o  ( 𝐹 ‘ ( 𝐺 ‘ 𝑘 ) ) )  +o  𝑧 ) ) ( seqω ( ( 𝑘  ∈  dom  𝐺 ,  𝑧  ∈  On  ↦  ( ( ( 𝐴  ↑o  ( 𝐺 ‘ 𝑘 ) )  ·o  ( 𝐹 ‘ ( 𝐺 ‘ 𝑘 ) ) )  +o  𝑧 ) ) ,  ∅ ) ‘ 𝑣 ) )  =  ( 𝑣 ( 𝑘  ∈  V ,  𝑧  ∈  V  ↦  ( ( ( 𝐴  ↑o  ( 𝐺 ‘ 𝑘 ) )  ·o  ( 𝐹 ‘ ( 𝐺 ‘ 𝑘 ) ) )  +o  𝑧 ) ) ( seqω ( ( 𝑘  ∈  dom  𝐺 ,  𝑧  ∈  On  ↦  ( ( ( 𝐴  ↑o  ( 𝐺 ‘ 𝑘 ) )  ·o  ( 𝐹 ‘ ( 𝐺 ‘ 𝑘 ) ) )  +o  𝑧 ) ) ,  ∅ ) ‘ 𝑣 ) ) ) | 
						
							| 70 | 53 69 | eqtrd | ⊢ ( ( 𝜑  ∧  ( 𝑣  ∈  ω  ∧  suc  𝑣  ⊆  dom  𝐺 ) )  →  ( seqω ( ( 𝑘  ∈  dom  𝐺 ,  𝑧  ∈  On  ↦  ( ( ( 𝐴  ↑o  ( 𝐺 ‘ 𝑘 ) )  ·o  ( 𝐹 ‘ ( 𝐺 ‘ 𝑘 ) ) )  +o  𝑧 ) ) ,  ∅ ) ‘ suc  𝑣 )  =  ( 𝑣 ( 𝑘  ∈  V ,  𝑧  ∈  V  ↦  ( ( ( 𝐴  ↑o  ( 𝐺 ‘ 𝑘 ) )  ·o  ( 𝐹 ‘ ( 𝐺 ‘ 𝑘 ) ) )  +o  𝑧 ) ) ( seqω ( ( 𝑘  ∈  dom  𝐺 ,  𝑧  ∈  On  ↦  ( ( ( 𝐴  ↑o  ( 𝐺 ‘ 𝑘 ) )  ·o  ( 𝐹 ‘ ( 𝐺 ‘ 𝑘 ) ) )  +o  𝑧 ) ) ,  ∅ ) ‘ 𝑣 ) ) ) | 
						
							| 71 | 51 70 | eqeq12d | ⊢ ( ( 𝜑  ∧  ( 𝑣  ∈  ω  ∧  suc  𝑣  ⊆  dom  𝐺 ) )  →  ( ( 𝐻 ‘ suc  𝑣 )  =  ( seqω ( ( 𝑘  ∈  dom  𝐺 ,  𝑧  ∈  On  ↦  ( ( ( 𝐴  ↑o  ( 𝐺 ‘ 𝑘 ) )  ·o  ( 𝐹 ‘ ( 𝐺 ‘ 𝑘 ) ) )  +o  𝑧 ) ) ,  ∅ ) ‘ suc  𝑣 )  ↔  ( 𝑣 ( 𝑘  ∈  V ,  𝑧  ∈  V  ↦  ( ( ( 𝐴  ↑o  ( 𝐺 ‘ 𝑘 ) )  ·o  ( 𝐹 ‘ ( 𝐺 ‘ 𝑘 ) ) )  +o  𝑧 ) ) ( 𝐻 ‘ 𝑣 ) )  =  ( 𝑣 ( 𝑘  ∈  V ,  𝑧  ∈  V  ↦  ( ( ( 𝐴  ↑o  ( 𝐺 ‘ 𝑘 ) )  ·o  ( 𝐹 ‘ ( 𝐺 ‘ 𝑘 ) ) )  +o  𝑧 ) ) ( seqω ( ( 𝑘  ∈  dom  𝐺 ,  𝑧  ∈  On  ↦  ( ( ( 𝐴  ↑o  ( 𝐺 ‘ 𝑘 ) )  ·o  ( 𝐹 ‘ ( 𝐺 ‘ 𝑘 ) ) )  +o  𝑧 ) ) ,  ∅ ) ‘ 𝑣 ) ) ) ) | 
						
							| 72 | 49 71 | imbitrrid | ⊢ ( ( 𝜑  ∧  ( 𝑣  ∈  ω  ∧  suc  𝑣  ⊆  dom  𝐺 ) )  →  ( ( 𝐻 ‘ 𝑣 )  =  ( seqω ( ( 𝑘  ∈  dom  𝐺 ,  𝑧  ∈  On  ↦  ( ( ( 𝐴  ↑o  ( 𝐺 ‘ 𝑘 ) )  ·o  ( 𝐹 ‘ ( 𝐺 ‘ 𝑘 ) ) )  +o  𝑧 ) ) ,  ∅ ) ‘ 𝑣 )  →  ( 𝐻 ‘ suc  𝑣 )  =  ( seqω ( ( 𝑘  ∈  dom  𝐺 ,  𝑧  ∈  On  ↦  ( ( ( 𝐴  ↑o  ( 𝐺 ‘ 𝑘 ) )  ·o  ( 𝐹 ‘ ( 𝐺 ‘ 𝑘 ) ) )  +o  𝑧 ) ) ,  ∅ ) ‘ suc  𝑣 ) ) ) | 
						
							| 73 | 72 | expr | ⊢ ( ( 𝜑  ∧  𝑣  ∈  ω )  →  ( suc  𝑣  ⊆  dom  𝐺  →  ( ( 𝐻 ‘ 𝑣 )  =  ( seqω ( ( 𝑘  ∈  dom  𝐺 ,  𝑧  ∈  On  ↦  ( ( ( 𝐴  ↑o  ( 𝐺 ‘ 𝑘 ) )  ·o  ( 𝐹 ‘ ( 𝐺 ‘ 𝑘 ) ) )  +o  𝑧 ) ) ,  ∅ ) ‘ 𝑣 )  →  ( 𝐻 ‘ suc  𝑣 )  =  ( seqω ( ( 𝑘  ∈  dom  𝐺 ,  𝑧  ∈  On  ↦  ( ( ( 𝐴  ↑o  ( 𝐺 ‘ 𝑘 ) )  ·o  ( 𝐹 ‘ ( 𝐺 ‘ 𝑘 ) ) )  +o  𝑧 ) ) ,  ∅ ) ‘ suc  𝑣 ) ) ) ) | 
						
							| 74 | 73 | a2d | ⊢ ( ( 𝜑  ∧  𝑣  ∈  ω )  →  ( ( suc  𝑣  ⊆  dom  𝐺  →  ( 𝐻 ‘ 𝑣 )  =  ( seqω ( ( 𝑘  ∈  dom  𝐺 ,  𝑧  ∈  On  ↦  ( ( ( 𝐴  ↑o  ( 𝐺 ‘ 𝑘 ) )  ·o  ( 𝐹 ‘ ( 𝐺 ‘ 𝑘 ) ) )  +o  𝑧 ) ) ,  ∅ ) ‘ 𝑣 ) )  →  ( suc  𝑣  ⊆  dom  𝐺  →  ( 𝐻 ‘ suc  𝑣 )  =  ( seqω ( ( 𝑘  ∈  dom  𝐺 ,  𝑧  ∈  On  ↦  ( ( ( 𝐴  ↑o  ( 𝐺 ‘ 𝑘 ) )  ·o  ( 𝐹 ‘ ( 𝐺 ‘ 𝑘 ) ) )  +o  𝑧 ) ) ,  ∅ ) ‘ suc  𝑣 ) ) ) ) | 
						
							| 75 | 48 74 | syl5 | ⊢ ( ( 𝜑  ∧  𝑣  ∈  ω )  →  ( ( 𝑣  ⊆  dom  𝐺  →  ( 𝐻 ‘ 𝑣 )  =  ( seqω ( ( 𝑘  ∈  dom  𝐺 ,  𝑧  ∈  On  ↦  ( ( ( 𝐴  ↑o  ( 𝐺 ‘ 𝑘 ) )  ·o  ( 𝐹 ‘ ( 𝐺 ‘ 𝑘 ) ) )  +o  𝑧 ) ) ,  ∅ ) ‘ 𝑣 ) )  →  ( suc  𝑣  ⊆  dom  𝐺  →  ( 𝐻 ‘ suc  𝑣 )  =  ( seqω ( ( 𝑘  ∈  dom  𝐺 ,  𝑧  ∈  On  ↦  ( ( ( 𝐴  ↑o  ( 𝐺 ‘ 𝑘 ) )  ·o  ( 𝐹 ‘ ( 𝐺 ‘ 𝑘 ) ) )  +o  𝑧 ) ) ,  ∅ ) ‘ suc  𝑣 ) ) ) ) | 
						
							| 76 | 75 | expcom | ⊢ ( 𝑣  ∈  ω  →  ( 𝜑  →  ( ( 𝑣  ⊆  dom  𝐺  →  ( 𝐻 ‘ 𝑣 )  =  ( seqω ( ( 𝑘  ∈  dom  𝐺 ,  𝑧  ∈  On  ↦  ( ( ( 𝐴  ↑o  ( 𝐺 ‘ 𝑘 ) )  ·o  ( 𝐹 ‘ ( 𝐺 ‘ 𝑘 ) ) )  +o  𝑧 ) ) ,  ∅ ) ‘ 𝑣 ) )  →  ( suc  𝑣  ⊆  dom  𝐺  →  ( 𝐻 ‘ suc  𝑣 )  =  ( seqω ( ( 𝑘  ∈  dom  𝐺 ,  𝑧  ∈  On  ↦  ( ( ( 𝐴  ↑o  ( 𝐺 ‘ 𝑘 ) )  ·o  ( 𝐹 ‘ ( 𝐺 ‘ 𝑘 ) ) )  +o  𝑧 ) ) ,  ∅ ) ‘ suc  𝑣 ) ) ) ) ) | 
						
							| 77 | 76 | a2d | ⊢ ( 𝑣  ∈  ω  →  ( ( 𝜑  →  ( 𝑣  ⊆  dom  𝐺  →  ( 𝐻 ‘ 𝑣 )  =  ( seqω ( ( 𝑘  ∈  dom  𝐺 ,  𝑧  ∈  On  ↦  ( ( ( 𝐴  ↑o  ( 𝐺 ‘ 𝑘 ) )  ·o  ( 𝐹 ‘ ( 𝐺 ‘ 𝑘 ) ) )  +o  𝑧 ) ) ,  ∅ ) ‘ 𝑣 ) ) )  →  ( 𝜑  →  ( suc  𝑣  ⊆  dom  𝐺  →  ( 𝐻 ‘ suc  𝑣 )  =  ( seqω ( ( 𝑘  ∈  dom  𝐺 ,  𝑧  ∈  On  ↦  ( ( ( 𝐴  ↑o  ( 𝐺 ‘ 𝑘 ) )  ·o  ( 𝐹 ‘ ( 𝐺 ‘ 𝑘 ) ) )  +o  𝑧 ) ) ,  ∅ ) ‘ suc  𝑣 ) ) ) ) ) | 
						
							| 78 | 24 30 36 42 44 77 | finds | ⊢ ( dom  𝐺  ∈  ω  →  ( 𝜑  →  ( dom  𝐺  ⊆  dom  𝐺  →  ( 𝐻 ‘ dom  𝐺 )  =  ( seqω ( ( 𝑘  ∈  dom  𝐺 ,  𝑧  ∈  On  ↦  ( ( ( 𝐴  ↑o  ( 𝐺 ‘ 𝑘 ) )  ·o  ( 𝐹 ‘ ( 𝐺 ‘ 𝑘 ) ) )  +o  𝑧 ) ) ,  ∅ ) ‘ dom  𝐺 ) ) ) ) | 
						
							| 79 | 10 78 | mpcom | ⊢ ( 𝜑  →  ( dom  𝐺  ⊆  dom  𝐺  →  ( 𝐻 ‘ dom  𝐺 )  =  ( seqω ( ( 𝑘  ∈  dom  𝐺 ,  𝑧  ∈  On  ↦  ( ( ( 𝐴  ↑o  ( 𝐺 ‘ 𝑘 ) )  ·o  ( 𝐹 ‘ ( 𝐺 ‘ 𝑘 ) ) )  +o  𝑧 ) ) ,  ∅ ) ‘ dom  𝐺 ) ) ) | 
						
							| 80 | 8 79 | mpi | ⊢ ( 𝜑  →  ( 𝐻 ‘ dom  𝐺 )  =  ( seqω ( ( 𝑘  ∈  dom  𝐺 ,  𝑧  ∈  On  ↦  ( ( ( 𝐴  ↑o  ( 𝐺 ‘ 𝑘 ) )  ·o  ( 𝐹 ‘ ( 𝐺 ‘ 𝑘 ) ) )  +o  𝑧 ) ) ,  ∅ ) ‘ dom  𝐺 ) ) | 
						
							| 81 | 7 80 | eqtrd | ⊢ ( 𝜑  →  ( ( 𝐴  CNF  𝐵 ) ‘ 𝐹 )  =  ( seqω ( ( 𝑘  ∈  dom  𝐺 ,  𝑧  ∈  On  ↦  ( ( ( 𝐴  ↑o  ( 𝐺 ‘ 𝑘 ) )  ·o  ( 𝐹 ‘ ( 𝐺 ‘ 𝑘 ) ) )  +o  𝑧 ) ) ,  ∅ ) ‘ dom  𝐺 ) ) |