Step |
Hyp |
Ref |
Expression |
1 |
|
cantnfvalf.f |
⊢ 𝐹 = seqω ( ( 𝑘 ∈ 𝐴 , 𝑧 ∈ 𝐵 ↦ ( 𝐶 +o 𝐷 ) ) , ∅ ) |
2 |
1
|
fnseqom |
⊢ 𝐹 Fn ω |
3 |
|
nn0suc |
⊢ ( 𝑥 ∈ ω → ( 𝑥 = ∅ ∨ ∃ 𝑦 ∈ ω 𝑥 = suc 𝑦 ) ) |
4 |
|
fveq2 |
⊢ ( 𝑥 = ∅ → ( 𝐹 ‘ 𝑥 ) = ( 𝐹 ‘ ∅ ) ) |
5 |
|
0ex |
⊢ ∅ ∈ V |
6 |
1
|
seqom0g |
⊢ ( ∅ ∈ V → ( 𝐹 ‘ ∅ ) = ∅ ) |
7 |
5 6
|
ax-mp |
⊢ ( 𝐹 ‘ ∅ ) = ∅ |
8 |
4 7
|
eqtrdi |
⊢ ( 𝑥 = ∅ → ( 𝐹 ‘ 𝑥 ) = ∅ ) |
9 |
|
0elon |
⊢ ∅ ∈ On |
10 |
8 9
|
eqeltrdi |
⊢ ( 𝑥 = ∅ → ( 𝐹 ‘ 𝑥 ) ∈ On ) |
11 |
1
|
seqomsuc |
⊢ ( 𝑦 ∈ ω → ( 𝐹 ‘ suc 𝑦 ) = ( 𝑦 ( 𝑘 ∈ 𝐴 , 𝑧 ∈ 𝐵 ↦ ( 𝐶 +o 𝐷 ) ) ( 𝐹 ‘ 𝑦 ) ) ) |
12 |
|
df-ov |
⊢ ( 𝑦 ( 𝑘 ∈ 𝐴 , 𝑧 ∈ 𝐵 ↦ ( 𝐶 +o 𝐷 ) ) ( 𝐹 ‘ 𝑦 ) ) = ( ( 𝑘 ∈ 𝐴 , 𝑧 ∈ 𝐵 ↦ ( 𝐶 +o 𝐷 ) ) ‘ 〈 𝑦 , ( 𝐹 ‘ 𝑦 ) 〉 ) |
13 |
11 12
|
eqtrdi |
⊢ ( 𝑦 ∈ ω → ( 𝐹 ‘ suc 𝑦 ) = ( ( 𝑘 ∈ 𝐴 , 𝑧 ∈ 𝐵 ↦ ( 𝐶 +o 𝐷 ) ) ‘ 〈 𝑦 , ( 𝐹 ‘ 𝑦 ) 〉 ) ) |
14 |
|
df-ov |
⊢ ( 𝐶 +o 𝐷 ) = ( +o ‘ 〈 𝐶 , 𝐷 〉 ) |
15 |
|
fnoa |
⊢ +o Fn ( On × On ) |
16 |
|
oacl |
⊢ ( ( 𝑥 ∈ On ∧ 𝑦 ∈ On ) → ( 𝑥 +o 𝑦 ) ∈ On ) |
17 |
16
|
rgen2 |
⊢ ∀ 𝑥 ∈ On ∀ 𝑦 ∈ On ( 𝑥 +o 𝑦 ) ∈ On |
18 |
|
ffnov |
⊢ ( +o : ( On × On ) ⟶ On ↔ ( +o Fn ( On × On ) ∧ ∀ 𝑥 ∈ On ∀ 𝑦 ∈ On ( 𝑥 +o 𝑦 ) ∈ On ) ) |
19 |
15 17 18
|
mpbir2an |
⊢ +o : ( On × On ) ⟶ On |
20 |
19 9
|
f0cli |
⊢ ( +o ‘ 〈 𝐶 , 𝐷 〉 ) ∈ On |
21 |
14 20
|
eqeltri |
⊢ ( 𝐶 +o 𝐷 ) ∈ On |
22 |
21
|
rgen2w |
⊢ ∀ 𝑘 ∈ 𝐴 ∀ 𝑧 ∈ 𝐵 ( 𝐶 +o 𝐷 ) ∈ On |
23 |
|
eqid |
⊢ ( 𝑘 ∈ 𝐴 , 𝑧 ∈ 𝐵 ↦ ( 𝐶 +o 𝐷 ) ) = ( 𝑘 ∈ 𝐴 , 𝑧 ∈ 𝐵 ↦ ( 𝐶 +o 𝐷 ) ) |
24 |
23
|
fmpo |
⊢ ( ∀ 𝑘 ∈ 𝐴 ∀ 𝑧 ∈ 𝐵 ( 𝐶 +o 𝐷 ) ∈ On ↔ ( 𝑘 ∈ 𝐴 , 𝑧 ∈ 𝐵 ↦ ( 𝐶 +o 𝐷 ) ) : ( 𝐴 × 𝐵 ) ⟶ On ) |
25 |
22 24
|
mpbi |
⊢ ( 𝑘 ∈ 𝐴 , 𝑧 ∈ 𝐵 ↦ ( 𝐶 +o 𝐷 ) ) : ( 𝐴 × 𝐵 ) ⟶ On |
26 |
25 9
|
f0cli |
⊢ ( ( 𝑘 ∈ 𝐴 , 𝑧 ∈ 𝐵 ↦ ( 𝐶 +o 𝐷 ) ) ‘ 〈 𝑦 , ( 𝐹 ‘ 𝑦 ) 〉 ) ∈ On |
27 |
13 26
|
eqeltrdi |
⊢ ( 𝑦 ∈ ω → ( 𝐹 ‘ suc 𝑦 ) ∈ On ) |
28 |
|
fveq2 |
⊢ ( 𝑥 = suc 𝑦 → ( 𝐹 ‘ 𝑥 ) = ( 𝐹 ‘ suc 𝑦 ) ) |
29 |
28
|
eleq1d |
⊢ ( 𝑥 = suc 𝑦 → ( ( 𝐹 ‘ 𝑥 ) ∈ On ↔ ( 𝐹 ‘ suc 𝑦 ) ∈ On ) ) |
30 |
27 29
|
syl5ibrcom |
⊢ ( 𝑦 ∈ ω → ( 𝑥 = suc 𝑦 → ( 𝐹 ‘ 𝑥 ) ∈ On ) ) |
31 |
30
|
rexlimiv |
⊢ ( ∃ 𝑦 ∈ ω 𝑥 = suc 𝑦 → ( 𝐹 ‘ 𝑥 ) ∈ On ) |
32 |
10 31
|
jaoi |
⊢ ( ( 𝑥 = ∅ ∨ ∃ 𝑦 ∈ ω 𝑥 = suc 𝑦 ) → ( 𝐹 ‘ 𝑥 ) ∈ On ) |
33 |
3 32
|
syl |
⊢ ( 𝑥 ∈ ω → ( 𝐹 ‘ 𝑥 ) ∈ On ) |
34 |
33
|
rgen |
⊢ ∀ 𝑥 ∈ ω ( 𝐹 ‘ 𝑥 ) ∈ On |
35 |
|
ffnfv |
⊢ ( 𝐹 : ω ⟶ On ↔ ( 𝐹 Fn ω ∧ ∀ 𝑥 ∈ ω ( 𝐹 ‘ 𝑥 ) ∈ On ) ) |
36 |
2 34 35
|
mpbir2an |
⊢ 𝐹 : ω ⟶ On |