| Step |
Hyp |
Ref |
Expression |
| 1 |
|
caofref.1 |
⊢ ( 𝜑 → 𝐴 ∈ 𝑉 ) |
| 2 |
|
caofref.2 |
⊢ ( 𝜑 → 𝐹 : 𝐴 ⟶ 𝑆 ) |
| 3 |
|
caofcom.3 |
⊢ ( 𝜑 → 𝐺 : 𝐴 ⟶ 𝑆 ) |
| 4 |
|
caofass.4 |
⊢ ( 𝜑 → 𝐻 : 𝐴 ⟶ 𝑆 ) |
| 5 |
|
caofass.5 |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆 ∧ 𝑧 ∈ 𝑆 ) ) → ( ( 𝑥 𝑅 𝑦 ) 𝑇 𝑧 ) = ( 𝑥 𝑂 ( 𝑦 𝑃 𝑧 ) ) ) |
| 6 |
5
|
ralrimivvva |
⊢ ( 𝜑 → ∀ 𝑥 ∈ 𝑆 ∀ 𝑦 ∈ 𝑆 ∀ 𝑧 ∈ 𝑆 ( ( 𝑥 𝑅 𝑦 ) 𝑇 𝑧 ) = ( 𝑥 𝑂 ( 𝑦 𝑃 𝑧 ) ) ) |
| 7 |
6
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑤 ∈ 𝐴 ) → ∀ 𝑥 ∈ 𝑆 ∀ 𝑦 ∈ 𝑆 ∀ 𝑧 ∈ 𝑆 ( ( 𝑥 𝑅 𝑦 ) 𝑇 𝑧 ) = ( 𝑥 𝑂 ( 𝑦 𝑃 𝑧 ) ) ) |
| 8 |
2
|
ffvelcdmda |
⊢ ( ( 𝜑 ∧ 𝑤 ∈ 𝐴 ) → ( 𝐹 ‘ 𝑤 ) ∈ 𝑆 ) |
| 9 |
3
|
ffvelcdmda |
⊢ ( ( 𝜑 ∧ 𝑤 ∈ 𝐴 ) → ( 𝐺 ‘ 𝑤 ) ∈ 𝑆 ) |
| 10 |
4
|
ffvelcdmda |
⊢ ( ( 𝜑 ∧ 𝑤 ∈ 𝐴 ) → ( 𝐻 ‘ 𝑤 ) ∈ 𝑆 ) |
| 11 |
|
oveq1 |
⊢ ( 𝑥 = ( 𝐹 ‘ 𝑤 ) → ( 𝑥 𝑅 𝑦 ) = ( ( 𝐹 ‘ 𝑤 ) 𝑅 𝑦 ) ) |
| 12 |
11
|
oveq1d |
⊢ ( 𝑥 = ( 𝐹 ‘ 𝑤 ) → ( ( 𝑥 𝑅 𝑦 ) 𝑇 𝑧 ) = ( ( ( 𝐹 ‘ 𝑤 ) 𝑅 𝑦 ) 𝑇 𝑧 ) ) |
| 13 |
|
oveq1 |
⊢ ( 𝑥 = ( 𝐹 ‘ 𝑤 ) → ( 𝑥 𝑂 ( 𝑦 𝑃 𝑧 ) ) = ( ( 𝐹 ‘ 𝑤 ) 𝑂 ( 𝑦 𝑃 𝑧 ) ) ) |
| 14 |
12 13
|
eqeq12d |
⊢ ( 𝑥 = ( 𝐹 ‘ 𝑤 ) → ( ( ( 𝑥 𝑅 𝑦 ) 𝑇 𝑧 ) = ( 𝑥 𝑂 ( 𝑦 𝑃 𝑧 ) ) ↔ ( ( ( 𝐹 ‘ 𝑤 ) 𝑅 𝑦 ) 𝑇 𝑧 ) = ( ( 𝐹 ‘ 𝑤 ) 𝑂 ( 𝑦 𝑃 𝑧 ) ) ) ) |
| 15 |
|
oveq2 |
⊢ ( 𝑦 = ( 𝐺 ‘ 𝑤 ) → ( ( 𝐹 ‘ 𝑤 ) 𝑅 𝑦 ) = ( ( 𝐹 ‘ 𝑤 ) 𝑅 ( 𝐺 ‘ 𝑤 ) ) ) |
| 16 |
15
|
oveq1d |
⊢ ( 𝑦 = ( 𝐺 ‘ 𝑤 ) → ( ( ( 𝐹 ‘ 𝑤 ) 𝑅 𝑦 ) 𝑇 𝑧 ) = ( ( ( 𝐹 ‘ 𝑤 ) 𝑅 ( 𝐺 ‘ 𝑤 ) ) 𝑇 𝑧 ) ) |
| 17 |
|
oveq1 |
⊢ ( 𝑦 = ( 𝐺 ‘ 𝑤 ) → ( 𝑦 𝑃 𝑧 ) = ( ( 𝐺 ‘ 𝑤 ) 𝑃 𝑧 ) ) |
| 18 |
17
|
oveq2d |
⊢ ( 𝑦 = ( 𝐺 ‘ 𝑤 ) → ( ( 𝐹 ‘ 𝑤 ) 𝑂 ( 𝑦 𝑃 𝑧 ) ) = ( ( 𝐹 ‘ 𝑤 ) 𝑂 ( ( 𝐺 ‘ 𝑤 ) 𝑃 𝑧 ) ) ) |
| 19 |
16 18
|
eqeq12d |
⊢ ( 𝑦 = ( 𝐺 ‘ 𝑤 ) → ( ( ( ( 𝐹 ‘ 𝑤 ) 𝑅 𝑦 ) 𝑇 𝑧 ) = ( ( 𝐹 ‘ 𝑤 ) 𝑂 ( 𝑦 𝑃 𝑧 ) ) ↔ ( ( ( 𝐹 ‘ 𝑤 ) 𝑅 ( 𝐺 ‘ 𝑤 ) ) 𝑇 𝑧 ) = ( ( 𝐹 ‘ 𝑤 ) 𝑂 ( ( 𝐺 ‘ 𝑤 ) 𝑃 𝑧 ) ) ) ) |
| 20 |
|
oveq2 |
⊢ ( 𝑧 = ( 𝐻 ‘ 𝑤 ) → ( ( ( 𝐹 ‘ 𝑤 ) 𝑅 ( 𝐺 ‘ 𝑤 ) ) 𝑇 𝑧 ) = ( ( ( 𝐹 ‘ 𝑤 ) 𝑅 ( 𝐺 ‘ 𝑤 ) ) 𝑇 ( 𝐻 ‘ 𝑤 ) ) ) |
| 21 |
|
oveq2 |
⊢ ( 𝑧 = ( 𝐻 ‘ 𝑤 ) → ( ( 𝐺 ‘ 𝑤 ) 𝑃 𝑧 ) = ( ( 𝐺 ‘ 𝑤 ) 𝑃 ( 𝐻 ‘ 𝑤 ) ) ) |
| 22 |
21
|
oveq2d |
⊢ ( 𝑧 = ( 𝐻 ‘ 𝑤 ) → ( ( 𝐹 ‘ 𝑤 ) 𝑂 ( ( 𝐺 ‘ 𝑤 ) 𝑃 𝑧 ) ) = ( ( 𝐹 ‘ 𝑤 ) 𝑂 ( ( 𝐺 ‘ 𝑤 ) 𝑃 ( 𝐻 ‘ 𝑤 ) ) ) ) |
| 23 |
20 22
|
eqeq12d |
⊢ ( 𝑧 = ( 𝐻 ‘ 𝑤 ) → ( ( ( ( 𝐹 ‘ 𝑤 ) 𝑅 ( 𝐺 ‘ 𝑤 ) ) 𝑇 𝑧 ) = ( ( 𝐹 ‘ 𝑤 ) 𝑂 ( ( 𝐺 ‘ 𝑤 ) 𝑃 𝑧 ) ) ↔ ( ( ( 𝐹 ‘ 𝑤 ) 𝑅 ( 𝐺 ‘ 𝑤 ) ) 𝑇 ( 𝐻 ‘ 𝑤 ) ) = ( ( 𝐹 ‘ 𝑤 ) 𝑂 ( ( 𝐺 ‘ 𝑤 ) 𝑃 ( 𝐻 ‘ 𝑤 ) ) ) ) ) |
| 24 |
14 19 23
|
rspc3v |
⊢ ( ( ( 𝐹 ‘ 𝑤 ) ∈ 𝑆 ∧ ( 𝐺 ‘ 𝑤 ) ∈ 𝑆 ∧ ( 𝐻 ‘ 𝑤 ) ∈ 𝑆 ) → ( ∀ 𝑥 ∈ 𝑆 ∀ 𝑦 ∈ 𝑆 ∀ 𝑧 ∈ 𝑆 ( ( 𝑥 𝑅 𝑦 ) 𝑇 𝑧 ) = ( 𝑥 𝑂 ( 𝑦 𝑃 𝑧 ) ) → ( ( ( 𝐹 ‘ 𝑤 ) 𝑅 ( 𝐺 ‘ 𝑤 ) ) 𝑇 ( 𝐻 ‘ 𝑤 ) ) = ( ( 𝐹 ‘ 𝑤 ) 𝑂 ( ( 𝐺 ‘ 𝑤 ) 𝑃 ( 𝐻 ‘ 𝑤 ) ) ) ) ) |
| 25 |
8 9 10 24
|
syl3anc |
⊢ ( ( 𝜑 ∧ 𝑤 ∈ 𝐴 ) → ( ∀ 𝑥 ∈ 𝑆 ∀ 𝑦 ∈ 𝑆 ∀ 𝑧 ∈ 𝑆 ( ( 𝑥 𝑅 𝑦 ) 𝑇 𝑧 ) = ( 𝑥 𝑂 ( 𝑦 𝑃 𝑧 ) ) → ( ( ( 𝐹 ‘ 𝑤 ) 𝑅 ( 𝐺 ‘ 𝑤 ) ) 𝑇 ( 𝐻 ‘ 𝑤 ) ) = ( ( 𝐹 ‘ 𝑤 ) 𝑂 ( ( 𝐺 ‘ 𝑤 ) 𝑃 ( 𝐻 ‘ 𝑤 ) ) ) ) ) |
| 26 |
7 25
|
mpd |
⊢ ( ( 𝜑 ∧ 𝑤 ∈ 𝐴 ) → ( ( ( 𝐹 ‘ 𝑤 ) 𝑅 ( 𝐺 ‘ 𝑤 ) ) 𝑇 ( 𝐻 ‘ 𝑤 ) ) = ( ( 𝐹 ‘ 𝑤 ) 𝑂 ( ( 𝐺 ‘ 𝑤 ) 𝑃 ( 𝐻 ‘ 𝑤 ) ) ) ) |
| 27 |
26
|
mpteq2dva |
⊢ ( 𝜑 → ( 𝑤 ∈ 𝐴 ↦ ( ( ( 𝐹 ‘ 𝑤 ) 𝑅 ( 𝐺 ‘ 𝑤 ) ) 𝑇 ( 𝐻 ‘ 𝑤 ) ) ) = ( 𝑤 ∈ 𝐴 ↦ ( ( 𝐹 ‘ 𝑤 ) 𝑂 ( ( 𝐺 ‘ 𝑤 ) 𝑃 ( 𝐻 ‘ 𝑤 ) ) ) ) ) |
| 28 |
|
ovexd |
⊢ ( ( 𝜑 ∧ 𝑤 ∈ 𝐴 ) → ( ( 𝐹 ‘ 𝑤 ) 𝑅 ( 𝐺 ‘ 𝑤 ) ) ∈ V ) |
| 29 |
2
|
feqmptd |
⊢ ( 𝜑 → 𝐹 = ( 𝑤 ∈ 𝐴 ↦ ( 𝐹 ‘ 𝑤 ) ) ) |
| 30 |
3
|
feqmptd |
⊢ ( 𝜑 → 𝐺 = ( 𝑤 ∈ 𝐴 ↦ ( 𝐺 ‘ 𝑤 ) ) ) |
| 31 |
1 8 9 29 30
|
offval2 |
⊢ ( 𝜑 → ( 𝐹 ∘f 𝑅 𝐺 ) = ( 𝑤 ∈ 𝐴 ↦ ( ( 𝐹 ‘ 𝑤 ) 𝑅 ( 𝐺 ‘ 𝑤 ) ) ) ) |
| 32 |
4
|
feqmptd |
⊢ ( 𝜑 → 𝐻 = ( 𝑤 ∈ 𝐴 ↦ ( 𝐻 ‘ 𝑤 ) ) ) |
| 33 |
1 28 10 31 32
|
offval2 |
⊢ ( 𝜑 → ( ( 𝐹 ∘f 𝑅 𝐺 ) ∘f 𝑇 𝐻 ) = ( 𝑤 ∈ 𝐴 ↦ ( ( ( 𝐹 ‘ 𝑤 ) 𝑅 ( 𝐺 ‘ 𝑤 ) ) 𝑇 ( 𝐻 ‘ 𝑤 ) ) ) ) |
| 34 |
|
ovexd |
⊢ ( ( 𝜑 ∧ 𝑤 ∈ 𝐴 ) → ( ( 𝐺 ‘ 𝑤 ) 𝑃 ( 𝐻 ‘ 𝑤 ) ) ∈ V ) |
| 35 |
1 9 10 30 32
|
offval2 |
⊢ ( 𝜑 → ( 𝐺 ∘f 𝑃 𝐻 ) = ( 𝑤 ∈ 𝐴 ↦ ( ( 𝐺 ‘ 𝑤 ) 𝑃 ( 𝐻 ‘ 𝑤 ) ) ) ) |
| 36 |
1 8 34 29 35
|
offval2 |
⊢ ( 𝜑 → ( 𝐹 ∘f 𝑂 ( 𝐺 ∘f 𝑃 𝐻 ) ) = ( 𝑤 ∈ 𝐴 ↦ ( ( 𝐹 ‘ 𝑤 ) 𝑂 ( ( 𝐺 ‘ 𝑤 ) 𝑃 ( 𝐻 ‘ 𝑤 ) ) ) ) ) |
| 37 |
27 33 36
|
3eqtr4d |
⊢ ( 𝜑 → ( ( 𝐹 ∘f 𝑅 𝐺 ) ∘f 𝑇 𝐻 ) = ( 𝐹 ∘f 𝑂 ( 𝐺 ∘f 𝑃 𝐻 ) ) ) |