| Step | Hyp | Ref | Expression | 
						
							| 1 |  | caofref.1 | ⊢ ( 𝜑  →  𝐴  ∈  𝑉 ) | 
						
							| 2 |  | caofref.2 | ⊢ ( 𝜑  →  𝐹 : 𝐴 ⟶ 𝑆 ) | 
						
							| 3 |  | caofid0.3 | ⊢ ( 𝜑  →  𝐵  ∈  𝑊 ) | 
						
							| 4 |  | caofid0r.5 | ⊢ ( ( 𝜑  ∧  𝑥  ∈  𝑆 )  →  ( 𝑥 𝑅 𝐵 )  =  𝑥 ) | 
						
							| 5 | 2 | ffnd | ⊢ ( 𝜑  →  𝐹  Fn  𝐴 ) | 
						
							| 6 |  | fnconstg | ⊢ ( 𝐵  ∈  𝑊  →  ( 𝐴  ×  { 𝐵 } )  Fn  𝐴 ) | 
						
							| 7 | 3 6 | syl | ⊢ ( 𝜑  →  ( 𝐴  ×  { 𝐵 } )  Fn  𝐴 ) | 
						
							| 8 |  | eqidd | ⊢ ( ( 𝜑  ∧  𝑤  ∈  𝐴 )  →  ( 𝐹 ‘ 𝑤 )  =  ( 𝐹 ‘ 𝑤 ) ) | 
						
							| 9 |  | fvconst2g | ⊢ ( ( 𝐵  ∈  𝑊  ∧  𝑤  ∈  𝐴 )  →  ( ( 𝐴  ×  { 𝐵 } ) ‘ 𝑤 )  =  𝐵 ) | 
						
							| 10 | 3 9 | sylan | ⊢ ( ( 𝜑  ∧  𝑤  ∈  𝐴 )  →  ( ( 𝐴  ×  { 𝐵 } ) ‘ 𝑤 )  =  𝐵 ) | 
						
							| 11 | 4 | ralrimiva | ⊢ ( 𝜑  →  ∀ 𝑥  ∈  𝑆 ( 𝑥 𝑅 𝐵 )  =  𝑥 ) | 
						
							| 12 | 2 | ffvelcdmda | ⊢ ( ( 𝜑  ∧  𝑤  ∈  𝐴 )  →  ( 𝐹 ‘ 𝑤 )  ∈  𝑆 ) | 
						
							| 13 |  | oveq1 | ⊢ ( 𝑥  =  ( 𝐹 ‘ 𝑤 )  →  ( 𝑥 𝑅 𝐵 )  =  ( ( 𝐹 ‘ 𝑤 ) 𝑅 𝐵 ) ) | 
						
							| 14 |  | id | ⊢ ( 𝑥  =  ( 𝐹 ‘ 𝑤 )  →  𝑥  =  ( 𝐹 ‘ 𝑤 ) ) | 
						
							| 15 | 13 14 | eqeq12d | ⊢ ( 𝑥  =  ( 𝐹 ‘ 𝑤 )  →  ( ( 𝑥 𝑅 𝐵 )  =  𝑥  ↔  ( ( 𝐹 ‘ 𝑤 ) 𝑅 𝐵 )  =  ( 𝐹 ‘ 𝑤 ) ) ) | 
						
							| 16 | 15 | rspccva | ⊢ ( ( ∀ 𝑥  ∈  𝑆 ( 𝑥 𝑅 𝐵 )  =  𝑥  ∧  ( 𝐹 ‘ 𝑤 )  ∈  𝑆 )  →  ( ( 𝐹 ‘ 𝑤 ) 𝑅 𝐵 )  =  ( 𝐹 ‘ 𝑤 ) ) | 
						
							| 17 | 11 12 16 | syl2an2r | ⊢ ( ( 𝜑  ∧  𝑤  ∈  𝐴 )  →  ( ( 𝐹 ‘ 𝑤 ) 𝑅 𝐵 )  =  ( 𝐹 ‘ 𝑤 ) ) | 
						
							| 18 | 1 5 7 5 8 10 17 | offveq | ⊢ ( 𝜑  →  ( 𝐹  ∘f  𝑅 ( 𝐴  ×  { 𝐵 } ) )  =  𝐹 ) |