Step |
Hyp |
Ref |
Expression |
1 |
|
caofref.1 |
⊢ ( 𝜑 → 𝐴 ∈ 𝑉 ) |
2 |
|
caofref.2 |
⊢ ( 𝜑 → 𝐹 : 𝐴 ⟶ 𝑆 ) |
3 |
|
caofinv.3 |
⊢ ( 𝜑 → 𝐵 ∈ 𝑊 ) |
4 |
|
caofinv.4 |
⊢ ( 𝜑 → 𝑁 : 𝑆 ⟶ 𝑆 ) |
5 |
|
caofinv.5 |
⊢ ( 𝜑 → 𝐺 = ( 𝑣 ∈ 𝐴 ↦ ( 𝑁 ‘ ( 𝐹 ‘ 𝑣 ) ) ) ) |
6 |
|
caofinvl.6 |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑆 ) → ( ( 𝑁 ‘ 𝑥 ) 𝑅 𝑥 ) = 𝐵 ) |
7 |
4
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑣 ∈ 𝐴 ) → 𝑁 : 𝑆 ⟶ 𝑆 ) |
8 |
2
|
ffvelrnda |
⊢ ( ( 𝜑 ∧ 𝑣 ∈ 𝐴 ) → ( 𝐹 ‘ 𝑣 ) ∈ 𝑆 ) |
9 |
7 8
|
ffvelrnd |
⊢ ( ( 𝜑 ∧ 𝑣 ∈ 𝐴 ) → ( 𝑁 ‘ ( 𝐹 ‘ 𝑣 ) ) ∈ 𝑆 ) |
10 |
5 9
|
fmpt3d |
⊢ ( 𝜑 → 𝐺 : 𝐴 ⟶ 𝑆 ) |
11 |
10
|
ffvelrnda |
⊢ ( ( 𝜑 ∧ 𝑤 ∈ 𝐴 ) → ( 𝐺 ‘ 𝑤 ) ∈ 𝑆 ) |
12 |
2
|
ffvelrnda |
⊢ ( ( 𝜑 ∧ 𝑤 ∈ 𝐴 ) → ( 𝐹 ‘ 𝑤 ) ∈ 𝑆 ) |
13 |
|
fvex |
⊢ ( 𝑁 ‘ ( 𝐹 ‘ 𝑣 ) ) ∈ V |
14 |
|
eqid |
⊢ ( 𝑣 ∈ 𝐴 ↦ ( 𝑁 ‘ ( 𝐹 ‘ 𝑣 ) ) ) = ( 𝑣 ∈ 𝐴 ↦ ( 𝑁 ‘ ( 𝐹 ‘ 𝑣 ) ) ) |
15 |
13 14
|
fnmpti |
⊢ ( 𝑣 ∈ 𝐴 ↦ ( 𝑁 ‘ ( 𝐹 ‘ 𝑣 ) ) ) Fn 𝐴 |
16 |
5
|
fneq1d |
⊢ ( 𝜑 → ( 𝐺 Fn 𝐴 ↔ ( 𝑣 ∈ 𝐴 ↦ ( 𝑁 ‘ ( 𝐹 ‘ 𝑣 ) ) ) Fn 𝐴 ) ) |
17 |
15 16
|
mpbiri |
⊢ ( 𝜑 → 𝐺 Fn 𝐴 ) |
18 |
|
dffn5 |
⊢ ( 𝐺 Fn 𝐴 ↔ 𝐺 = ( 𝑤 ∈ 𝐴 ↦ ( 𝐺 ‘ 𝑤 ) ) ) |
19 |
17 18
|
sylib |
⊢ ( 𝜑 → 𝐺 = ( 𝑤 ∈ 𝐴 ↦ ( 𝐺 ‘ 𝑤 ) ) ) |
20 |
2
|
feqmptd |
⊢ ( 𝜑 → 𝐹 = ( 𝑤 ∈ 𝐴 ↦ ( 𝐹 ‘ 𝑤 ) ) ) |
21 |
1 11 12 19 20
|
offval2 |
⊢ ( 𝜑 → ( 𝐺 ∘f 𝑅 𝐹 ) = ( 𝑤 ∈ 𝐴 ↦ ( ( 𝐺 ‘ 𝑤 ) 𝑅 ( 𝐹 ‘ 𝑤 ) ) ) ) |
22 |
5
|
fveq1d |
⊢ ( 𝜑 → ( 𝐺 ‘ 𝑤 ) = ( ( 𝑣 ∈ 𝐴 ↦ ( 𝑁 ‘ ( 𝐹 ‘ 𝑣 ) ) ) ‘ 𝑤 ) ) |
23 |
|
2fveq3 |
⊢ ( 𝑣 = 𝑤 → ( 𝑁 ‘ ( 𝐹 ‘ 𝑣 ) ) = ( 𝑁 ‘ ( 𝐹 ‘ 𝑤 ) ) ) |
24 |
|
fvex |
⊢ ( 𝑁 ‘ ( 𝐹 ‘ 𝑤 ) ) ∈ V |
25 |
23 14 24
|
fvmpt |
⊢ ( 𝑤 ∈ 𝐴 → ( ( 𝑣 ∈ 𝐴 ↦ ( 𝑁 ‘ ( 𝐹 ‘ 𝑣 ) ) ) ‘ 𝑤 ) = ( 𝑁 ‘ ( 𝐹 ‘ 𝑤 ) ) ) |
26 |
22 25
|
sylan9eq |
⊢ ( ( 𝜑 ∧ 𝑤 ∈ 𝐴 ) → ( 𝐺 ‘ 𝑤 ) = ( 𝑁 ‘ ( 𝐹 ‘ 𝑤 ) ) ) |
27 |
26
|
oveq1d |
⊢ ( ( 𝜑 ∧ 𝑤 ∈ 𝐴 ) → ( ( 𝐺 ‘ 𝑤 ) 𝑅 ( 𝐹 ‘ 𝑤 ) ) = ( ( 𝑁 ‘ ( 𝐹 ‘ 𝑤 ) ) 𝑅 ( 𝐹 ‘ 𝑤 ) ) ) |
28 |
|
fveq2 |
⊢ ( 𝑥 = ( 𝐹 ‘ 𝑤 ) → ( 𝑁 ‘ 𝑥 ) = ( 𝑁 ‘ ( 𝐹 ‘ 𝑤 ) ) ) |
29 |
|
id |
⊢ ( 𝑥 = ( 𝐹 ‘ 𝑤 ) → 𝑥 = ( 𝐹 ‘ 𝑤 ) ) |
30 |
28 29
|
oveq12d |
⊢ ( 𝑥 = ( 𝐹 ‘ 𝑤 ) → ( ( 𝑁 ‘ 𝑥 ) 𝑅 𝑥 ) = ( ( 𝑁 ‘ ( 𝐹 ‘ 𝑤 ) ) 𝑅 ( 𝐹 ‘ 𝑤 ) ) ) |
31 |
30
|
eqeq1d |
⊢ ( 𝑥 = ( 𝐹 ‘ 𝑤 ) → ( ( ( 𝑁 ‘ 𝑥 ) 𝑅 𝑥 ) = 𝐵 ↔ ( ( 𝑁 ‘ ( 𝐹 ‘ 𝑤 ) ) 𝑅 ( 𝐹 ‘ 𝑤 ) ) = 𝐵 ) ) |
32 |
6
|
ralrimiva |
⊢ ( 𝜑 → ∀ 𝑥 ∈ 𝑆 ( ( 𝑁 ‘ 𝑥 ) 𝑅 𝑥 ) = 𝐵 ) |
33 |
32
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑤 ∈ 𝐴 ) → ∀ 𝑥 ∈ 𝑆 ( ( 𝑁 ‘ 𝑥 ) 𝑅 𝑥 ) = 𝐵 ) |
34 |
31 33 12
|
rspcdva |
⊢ ( ( 𝜑 ∧ 𝑤 ∈ 𝐴 ) → ( ( 𝑁 ‘ ( 𝐹 ‘ 𝑤 ) ) 𝑅 ( 𝐹 ‘ 𝑤 ) ) = 𝐵 ) |
35 |
27 34
|
eqtrd |
⊢ ( ( 𝜑 ∧ 𝑤 ∈ 𝐴 ) → ( ( 𝐺 ‘ 𝑤 ) 𝑅 ( 𝐹 ‘ 𝑤 ) ) = 𝐵 ) |
36 |
35
|
mpteq2dva |
⊢ ( 𝜑 → ( 𝑤 ∈ 𝐴 ↦ ( ( 𝐺 ‘ 𝑤 ) 𝑅 ( 𝐹 ‘ 𝑤 ) ) ) = ( 𝑤 ∈ 𝐴 ↦ 𝐵 ) ) |
37 |
21 36
|
eqtrd |
⊢ ( 𝜑 → ( 𝐺 ∘f 𝑅 𝐹 ) = ( 𝑤 ∈ 𝐴 ↦ 𝐵 ) ) |
38 |
|
fconstmpt |
⊢ ( 𝐴 × { 𝐵 } ) = ( 𝑤 ∈ 𝐴 ↦ 𝐵 ) |
39 |
37 38
|
eqtr4di |
⊢ ( 𝜑 → ( 𝐺 ∘f 𝑅 𝐹 ) = ( 𝐴 × { 𝐵 } ) ) |