| Step | Hyp | Ref | Expression | 
						
							| 1 |  | caofref.1 | ⊢ ( 𝜑  →  𝐴  ∈  𝑉 ) | 
						
							| 2 |  | caofref.2 | ⊢ ( 𝜑  →  𝐹 : 𝐴 ⟶ 𝑆 ) | 
						
							| 3 |  | caofref.3 | ⊢ ( ( 𝜑  ∧  𝑥  ∈  𝑆 )  →  𝑥 𝑅 𝑥 ) | 
						
							| 4 |  | id | ⊢ ( 𝑥  =  ( 𝐹 ‘ 𝑤 )  →  𝑥  =  ( 𝐹 ‘ 𝑤 ) ) | 
						
							| 5 | 4 4 | breq12d | ⊢ ( 𝑥  =  ( 𝐹 ‘ 𝑤 )  →  ( 𝑥 𝑅 𝑥  ↔  ( 𝐹 ‘ 𝑤 ) 𝑅 ( 𝐹 ‘ 𝑤 ) ) ) | 
						
							| 6 | 3 | ralrimiva | ⊢ ( 𝜑  →  ∀ 𝑥  ∈  𝑆 𝑥 𝑅 𝑥 ) | 
						
							| 7 | 6 | adantr | ⊢ ( ( 𝜑  ∧  𝑤  ∈  𝐴 )  →  ∀ 𝑥  ∈  𝑆 𝑥 𝑅 𝑥 ) | 
						
							| 8 | 2 | ffvelcdmda | ⊢ ( ( 𝜑  ∧  𝑤  ∈  𝐴 )  →  ( 𝐹 ‘ 𝑤 )  ∈  𝑆 ) | 
						
							| 9 | 5 7 8 | rspcdva | ⊢ ( ( 𝜑  ∧  𝑤  ∈  𝐴 )  →  ( 𝐹 ‘ 𝑤 ) 𝑅 ( 𝐹 ‘ 𝑤 ) ) | 
						
							| 10 | 9 | ralrimiva | ⊢ ( 𝜑  →  ∀ 𝑤  ∈  𝐴 ( 𝐹 ‘ 𝑤 ) 𝑅 ( 𝐹 ‘ 𝑤 ) ) | 
						
							| 11 | 2 | ffnd | ⊢ ( 𝜑  →  𝐹  Fn  𝐴 ) | 
						
							| 12 |  | inidm | ⊢ ( 𝐴  ∩  𝐴 )  =  𝐴 | 
						
							| 13 |  | eqidd | ⊢ ( ( 𝜑  ∧  𝑤  ∈  𝐴 )  →  ( 𝐹 ‘ 𝑤 )  =  ( 𝐹 ‘ 𝑤 ) ) | 
						
							| 14 | 11 11 1 1 12 13 13 | ofrfval | ⊢ ( 𝜑  →  ( 𝐹  ∘r  𝑅 𝐹  ↔  ∀ 𝑤  ∈  𝐴 ( 𝐹 ‘ 𝑤 ) 𝑅 ( 𝐹 ‘ 𝑤 ) ) ) | 
						
							| 15 | 10 14 | mpbird | ⊢ ( 𝜑  →  𝐹  ∘r  𝑅 𝐹 ) |