| Step | Hyp | Ref | Expression | 
						
							| 1 |  | caofref.1 | ⊢ ( 𝜑  →  𝐴  ∈  𝑉 ) | 
						
							| 2 |  | caofref.2 | ⊢ ( 𝜑  →  𝐹 : 𝐴 ⟶ 𝑆 ) | 
						
							| 3 |  | caofcom.3 | ⊢ ( 𝜑  →  𝐺 : 𝐴 ⟶ 𝑆 ) | 
						
							| 4 |  | caofrss.4 | ⊢ ( ( 𝜑  ∧  ( 𝑥  ∈  𝑆  ∧  𝑦  ∈  𝑆 ) )  →  ( 𝑥 𝑅 𝑦  →  𝑥 𝑇 𝑦 ) ) | 
						
							| 5 | 2 | ffvelcdmda | ⊢ ( ( 𝜑  ∧  𝑤  ∈  𝐴 )  →  ( 𝐹 ‘ 𝑤 )  ∈  𝑆 ) | 
						
							| 6 | 3 | ffvelcdmda | ⊢ ( ( 𝜑  ∧  𝑤  ∈  𝐴 )  →  ( 𝐺 ‘ 𝑤 )  ∈  𝑆 ) | 
						
							| 7 | 4 | ralrimivva | ⊢ ( 𝜑  →  ∀ 𝑥  ∈  𝑆 ∀ 𝑦  ∈  𝑆 ( 𝑥 𝑅 𝑦  →  𝑥 𝑇 𝑦 ) ) | 
						
							| 8 | 7 | adantr | ⊢ ( ( 𝜑  ∧  𝑤  ∈  𝐴 )  →  ∀ 𝑥  ∈  𝑆 ∀ 𝑦  ∈  𝑆 ( 𝑥 𝑅 𝑦  →  𝑥 𝑇 𝑦 ) ) | 
						
							| 9 |  | breq1 | ⊢ ( 𝑥  =  ( 𝐹 ‘ 𝑤 )  →  ( 𝑥 𝑅 𝑦  ↔  ( 𝐹 ‘ 𝑤 ) 𝑅 𝑦 ) ) | 
						
							| 10 |  | breq1 | ⊢ ( 𝑥  =  ( 𝐹 ‘ 𝑤 )  →  ( 𝑥 𝑇 𝑦  ↔  ( 𝐹 ‘ 𝑤 ) 𝑇 𝑦 ) ) | 
						
							| 11 | 9 10 | imbi12d | ⊢ ( 𝑥  =  ( 𝐹 ‘ 𝑤 )  →  ( ( 𝑥 𝑅 𝑦  →  𝑥 𝑇 𝑦 )  ↔  ( ( 𝐹 ‘ 𝑤 ) 𝑅 𝑦  →  ( 𝐹 ‘ 𝑤 ) 𝑇 𝑦 ) ) ) | 
						
							| 12 |  | breq2 | ⊢ ( 𝑦  =  ( 𝐺 ‘ 𝑤 )  →  ( ( 𝐹 ‘ 𝑤 ) 𝑅 𝑦  ↔  ( 𝐹 ‘ 𝑤 ) 𝑅 ( 𝐺 ‘ 𝑤 ) ) ) | 
						
							| 13 |  | breq2 | ⊢ ( 𝑦  =  ( 𝐺 ‘ 𝑤 )  →  ( ( 𝐹 ‘ 𝑤 ) 𝑇 𝑦  ↔  ( 𝐹 ‘ 𝑤 ) 𝑇 ( 𝐺 ‘ 𝑤 ) ) ) | 
						
							| 14 | 12 13 | imbi12d | ⊢ ( 𝑦  =  ( 𝐺 ‘ 𝑤 )  →  ( ( ( 𝐹 ‘ 𝑤 ) 𝑅 𝑦  →  ( 𝐹 ‘ 𝑤 ) 𝑇 𝑦 )  ↔  ( ( 𝐹 ‘ 𝑤 ) 𝑅 ( 𝐺 ‘ 𝑤 )  →  ( 𝐹 ‘ 𝑤 ) 𝑇 ( 𝐺 ‘ 𝑤 ) ) ) ) | 
						
							| 15 | 11 14 | rspc2va | ⊢ ( ( ( ( 𝐹 ‘ 𝑤 )  ∈  𝑆  ∧  ( 𝐺 ‘ 𝑤 )  ∈  𝑆 )  ∧  ∀ 𝑥  ∈  𝑆 ∀ 𝑦  ∈  𝑆 ( 𝑥 𝑅 𝑦  →  𝑥 𝑇 𝑦 ) )  →  ( ( 𝐹 ‘ 𝑤 ) 𝑅 ( 𝐺 ‘ 𝑤 )  →  ( 𝐹 ‘ 𝑤 ) 𝑇 ( 𝐺 ‘ 𝑤 ) ) ) | 
						
							| 16 | 5 6 8 15 | syl21anc | ⊢ ( ( 𝜑  ∧  𝑤  ∈  𝐴 )  →  ( ( 𝐹 ‘ 𝑤 ) 𝑅 ( 𝐺 ‘ 𝑤 )  →  ( 𝐹 ‘ 𝑤 ) 𝑇 ( 𝐺 ‘ 𝑤 ) ) ) | 
						
							| 17 | 16 | ralimdva | ⊢ ( 𝜑  →  ( ∀ 𝑤  ∈  𝐴 ( 𝐹 ‘ 𝑤 ) 𝑅 ( 𝐺 ‘ 𝑤 )  →  ∀ 𝑤  ∈  𝐴 ( 𝐹 ‘ 𝑤 ) 𝑇 ( 𝐺 ‘ 𝑤 ) ) ) | 
						
							| 18 | 2 | ffnd | ⊢ ( 𝜑  →  𝐹  Fn  𝐴 ) | 
						
							| 19 | 3 | ffnd | ⊢ ( 𝜑  →  𝐺  Fn  𝐴 ) | 
						
							| 20 |  | inidm | ⊢ ( 𝐴  ∩  𝐴 )  =  𝐴 | 
						
							| 21 |  | eqidd | ⊢ ( ( 𝜑  ∧  𝑤  ∈  𝐴 )  →  ( 𝐹 ‘ 𝑤 )  =  ( 𝐹 ‘ 𝑤 ) ) | 
						
							| 22 |  | eqidd | ⊢ ( ( 𝜑  ∧  𝑤  ∈  𝐴 )  →  ( 𝐺 ‘ 𝑤 )  =  ( 𝐺 ‘ 𝑤 ) ) | 
						
							| 23 | 18 19 1 1 20 21 22 | ofrfval | ⊢ ( 𝜑  →  ( 𝐹  ∘r  𝑅 𝐺  ↔  ∀ 𝑤  ∈  𝐴 ( 𝐹 ‘ 𝑤 ) 𝑅 ( 𝐺 ‘ 𝑤 ) ) ) | 
						
							| 24 | 18 19 1 1 20 21 22 | ofrfval | ⊢ ( 𝜑  →  ( 𝐹  ∘r  𝑇 𝐺  ↔  ∀ 𝑤  ∈  𝐴 ( 𝐹 ‘ 𝑤 ) 𝑇 ( 𝐺 ‘ 𝑤 ) ) ) | 
						
							| 25 | 17 23 24 | 3imtr4d | ⊢ ( 𝜑  →  ( 𝐹  ∘r  𝑅 𝐺  →  𝐹  ∘r  𝑇 𝐺 ) ) |