| Step | Hyp | Ref | Expression | 
						
							| 1 |  | caofref.1 | ⊢ ( 𝜑  →  𝐴  ∈  𝑉 ) | 
						
							| 2 |  | caofref.2 | ⊢ ( 𝜑  →  𝐹 : 𝐴 ⟶ 𝑆 ) | 
						
							| 3 |  | caofcom.3 | ⊢ ( 𝜑  →  𝐺 : 𝐴 ⟶ 𝑆 ) | 
						
							| 4 |  | caofass.4 | ⊢ ( 𝜑  →  𝐻 : 𝐴 ⟶ 𝑆 ) | 
						
							| 5 |  | caoftrn.5 | ⊢ ( ( 𝜑  ∧  ( 𝑥  ∈  𝑆  ∧  𝑦  ∈  𝑆  ∧  𝑧  ∈  𝑆 ) )  →  ( ( 𝑥 𝑅 𝑦  ∧  𝑦 𝑇 𝑧 )  →  𝑥 𝑈 𝑧 ) ) | 
						
							| 6 | 5 | ralrimivvva | ⊢ ( 𝜑  →  ∀ 𝑥  ∈  𝑆 ∀ 𝑦  ∈  𝑆 ∀ 𝑧  ∈  𝑆 ( ( 𝑥 𝑅 𝑦  ∧  𝑦 𝑇 𝑧 )  →  𝑥 𝑈 𝑧 ) ) | 
						
							| 7 | 6 | adantr | ⊢ ( ( 𝜑  ∧  𝑤  ∈  𝐴 )  →  ∀ 𝑥  ∈  𝑆 ∀ 𝑦  ∈  𝑆 ∀ 𝑧  ∈  𝑆 ( ( 𝑥 𝑅 𝑦  ∧  𝑦 𝑇 𝑧 )  →  𝑥 𝑈 𝑧 ) ) | 
						
							| 8 | 2 | ffvelcdmda | ⊢ ( ( 𝜑  ∧  𝑤  ∈  𝐴 )  →  ( 𝐹 ‘ 𝑤 )  ∈  𝑆 ) | 
						
							| 9 | 3 | ffvelcdmda | ⊢ ( ( 𝜑  ∧  𝑤  ∈  𝐴 )  →  ( 𝐺 ‘ 𝑤 )  ∈  𝑆 ) | 
						
							| 10 | 4 | ffvelcdmda | ⊢ ( ( 𝜑  ∧  𝑤  ∈  𝐴 )  →  ( 𝐻 ‘ 𝑤 )  ∈  𝑆 ) | 
						
							| 11 |  | breq1 | ⊢ ( 𝑥  =  ( 𝐹 ‘ 𝑤 )  →  ( 𝑥 𝑅 𝑦  ↔  ( 𝐹 ‘ 𝑤 ) 𝑅 𝑦 ) ) | 
						
							| 12 | 11 | anbi1d | ⊢ ( 𝑥  =  ( 𝐹 ‘ 𝑤 )  →  ( ( 𝑥 𝑅 𝑦  ∧  𝑦 𝑇 𝑧 )  ↔  ( ( 𝐹 ‘ 𝑤 ) 𝑅 𝑦  ∧  𝑦 𝑇 𝑧 ) ) ) | 
						
							| 13 |  | breq1 | ⊢ ( 𝑥  =  ( 𝐹 ‘ 𝑤 )  →  ( 𝑥 𝑈 𝑧  ↔  ( 𝐹 ‘ 𝑤 ) 𝑈 𝑧 ) ) | 
						
							| 14 | 12 13 | imbi12d | ⊢ ( 𝑥  =  ( 𝐹 ‘ 𝑤 )  →  ( ( ( 𝑥 𝑅 𝑦  ∧  𝑦 𝑇 𝑧 )  →  𝑥 𝑈 𝑧 )  ↔  ( ( ( 𝐹 ‘ 𝑤 ) 𝑅 𝑦  ∧  𝑦 𝑇 𝑧 )  →  ( 𝐹 ‘ 𝑤 ) 𝑈 𝑧 ) ) ) | 
						
							| 15 |  | breq2 | ⊢ ( 𝑦  =  ( 𝐺 ‘ 𝑤 )  →  ( ( 𝐹 ‘ 𝑤 ) 𝑅 𝑦  ↔  ( 𝐹 ‘ 𝑤 ) 𝑅 ( 𝐺 ‘ 𝑤 ) ) ) | 
						
							| 16 |  | breq1 | ⊢ ( 𝑦  =  ( 𝐺 ‘ 𝑤 )  →  ( 𝑦 𝑇 𝑧  ↔  ( 𝐺 ‘ 𝑤 ) 𝑇 𝑧 ) ) | 
						
							| 17 | 15 16 | anbi12d | ⊢ ( 𝑦  =  ( 𝐺 ‘ 𝑤 )  →  ( ( ( 𝐹 ‘ 𝑤 ) 𝑅 𝑦  ∧  𝑦 𝑇 𝑧 )  ↔  ( ( 𝐹 ‘ 𝑤 ) 𝑅 ( 𝐺 ‘ 𝑤 )  ∧  ( 𝐺 ‘ 𝑤 ) 𝑇 𝑧 ) ) ) | 
						
							| 18 | 17 | imbi1d | ⊢ ( 𝑦  =  ( 𝐺 ‘ 𝑤 )  →  ( ( ( ( 𝐹 ‘ 𝑤 ) 𝑅 𝑦  ∧  𝑦 𝑇 𝑧 )  →  ( 𝐹 ‘ 𝑤 ) 𝑈 𝑧 )  ↔  ( ( ( 𝐹 ‘ 𝑤 ) 𝑅 ( 𝐺 ‘ 𝑤 )  ∧  ( 𝐺 ‘ 𝑤 ) 𝑇 𝑧 )  →  ( 𝐹 ‘ 𝑤 ) 𝑈 𝑧 ) ) ) | 
						
							| 19 |  | breq2 | ⊢ ( 𝑧  =  ( 𝐻 ‘ 𝑤 )  →  ( ( 𝐺 ‘ 𝑤 ) 𝑇 𝑧  ↔  ( 𝐺 ‘ 𝑤 ) 𝑇 ( 𝐻 ‘ 𝑤 ) ) ) | 
						
							| 20 | 19 | anbi2d | ⊢ ( 𝑧  =  ( 𝐻 ‘ 𝑤 )  →  ( ( ( 𝐹 ‘ 𝑤 ) 𝑅 ( 𝐺 ‘ 𝑤 )  ∧  ( 𝐺 ‘ 𝑤 ) 𝑇 𝑧 )  ↔  ( ( 𝐹 ‘ 𝑤 ) 𝑅 ( 𝐺 ‘ 𝑤 )  ∧  ( 𝐺 ‘ 𝑤 ) 𝑇 ( 𝐻 ‘ 𝑤 ) ) ) ) | 
						
							| 21 |  | breq2 | ⊢ ( 𝑧  =  ( 𝐻 ‘ 𝑤 )  →  ( ( 𝐹 ‘ 𝑤 ) 𝑈 𝑧  ↔  ( 𝐹 ‘ 𝑤 ) 𝑈 ( 𝐻 ‘ 𝑤 ) ) ) | 
						
							| 22 | 20 21 | imbi12d | ⊢ ( 𝑧  =  ( 𝐻 ‘ 𝑤 )  →  ( ( ( ( 𝐹 ‘ 𝑤 ) 𝑅 ( 𝐺 ‘ 𝑤 )  ∧  ( 𝐺 ‘ 𝑤 ) 𝑇 𝑧 )  →  ( 𝐹 ‘ 𝑤 ) 𝑈 𝑧 )  ↔  ( ( ( 𝐹 ‘ 𝑤 ) 𝑅 ( 𝐺 ‘ 𝑤 )  ∧  ( 𝐺 ‘ 𝑤 ) 𝑇 ( 𝐻 ‘ 𝑤 ) )  →  ( 𝐹 ‘ 𝑤 ) 𝑈 ( 𝐻 ‘ 𝑤 ) ) ) ) | 
						
							| 23 | 14 18 22 | rspc3v | ⊢ ( ( ( 𝐹 ‘ 𝑤 )  ∈  𝑆  ∧  ( 𝐺 ‘ 𝑤 )  ∈  𝑆  ∧  ( 𝐻 ‘ 𝑤 )  ∈  𝑆 )  →  ( ∀ 𝑥  ∈  𝑆 ∀ 𝑦  ∈  𝑆 ∀ 𝑧  ∈  𝑆 ( ( 𝑥 𝑅 𝑦  ∧  𝑦 𝑇 𝑧 )  →  𝑥 𝑈 𝑧 )  →  ( ( ( 𝐹 ‘ 𝑤 ) 𝑅 ( 𝐺 ‘ 𝑤 )  ∧  ( 𝐺 ‘ 𝑤 ) 𝑇 ( 𝐻 ‘ 𝑤 ) )  →  ( 𝐹 ‘ 𝑤 ) 𝑈 ( 𝐻 ‘ 𝑤 ) ) ) ) | 
						
							| 24 | 8 9 10 23 | syl3anc | ⊢ ( ( 𝜑  ∧  𝑤  ∈  𝐴 )  →  ( ∀ 𝑥  ∈  𝑆 ∀ 𝑦  ∈  𝑆 ∀ 𝑧  ∈  𝑆 ( ( 𝑥 𝑅 𝑦  ∧  𝑦 𝑇 𝑧 )  →  𝑥 𝑈 𝑧 )  →  ( ( ( 𝐹 ‘ 𝑤 ) 𝑅 ( 𝐺 ‘ 𝑤 )  ∧  ( 𝐺 ‘ 𝑤 ) 𝑇 ( 𝐻 ‘ 𝑤 ) )  →  ( 𝐹 ‘ 𝑤 ) 𝑈 ( 𝐻 ‘ 𝑤 ) ) ) ) | 
						
							| 25 | 7 24 | mpd | ⊢ ( ( 𝜑  ∧  𝑤  ∈  𝐴 )  →  ( ( ( 𝐹 ‘ 𝑤 ) 𝑅 ( 𝐺 ‘ 𝑤 )  ∧  ( 𝐺 ‘ 𝑤 ) 𝑇 ( 𝐻 ‘ 𝑤 ) )  →  ( 𝐹 ‘ 𝑤 ) 𝑈 ( 𝐻 ‘ 𝑤 ) ) ) | 
						
							| 26 | 25 | ralimdva | ⊢ ( 𝜑  →  ( ∀ 𝑤  ∈  𝐴 ( ( 𝐹 ‘ 𝑤 ) 𝑅 ( 𝐺 ‘ 𝑤 )  ∧  ( 𝐺 ‘ 𝑤 ) 𝑇 ( 𝐻 ‘ 𝑤 ) )  →  ∀ 𝑤  ∈  𝐴 ( 𝐹 ‘ 𝑤 ) 𝑈 ( 𝐻 ‘ 𝑤 ) ) ) | 
						
							| 27 | 2 | ffnd | ⊢ ( 𝜑  →  𝐹  Fn  𝐴 ) | 
						
							| 28 | 3 | ffnd | ⊢ ( 𝜑  →  𝐺  Fn  𝐴 ) | 
						
							| 29 |  | inidm | ⊢ ( 𝐴  ∩  𝐴 )  =  𝐴 | 
						
							| 30 |  | eqidd | ⊢ ( ( 𝜑  ∧  𝑤  ∈  𝐴 )  →  ( 𝐹 ‘ 𝑤 )  =  ( 𝐹 ‘ 𝑤 ) ) | 
						
							| 31 |  | eqidd | ⊢ ( ( 𝜑  ∧  𝑤  ∈  𝐴 )  →  ( 𝐺 ‘ 𝑤 )  =  ( 𝐺 ‘ 𝑤 ) ) | 
						
							| 32 | 27 28 1 1 29 30 31 | ofrfval | ⊢ ( 𝜑  →  ( 𝐹  ∘r  𝑅 𝐺  ↔  ∀ 𝑤  ∈  𝐴 ( 𝐹 ‘ 𝑤 ) 𝑅 ( 𝐺 ‘ 𝑤 ) ) ) | 
						
							| 33 | 4 | ffnd | ⊢ ( 𝜑  →  𝐻  Fn  𝐴 ) | 
						
							| 34 |  | eqidd | ⊢ ( ( 𝜑  ∧  𝑤  ∈  𝐴 )  →  ( 𝐻 ‘ 𝑤 )  =  ( 𝐻 ‘ 𝑤 ) ) | 
						
							| 35 | 28 33 1 1 29 31 34 | ofrfval | ⊢ ( 𝜑  →  ( 𝐺  ∘r  𝑇 𝐻  ↔  ∀ 𝑤  ∈  𝐴 ( 𝐺 ‘ 𝑤 ) 𝑇 ( 𝐻 ‘ 𝑤 ) ) ) | 
						
							| 36 | 32 35 | anbi12d | ⊢ ( 𝜑  →  ( ( 𝐹  ∘r  𝑅 𝐺  ∧  𝐺  ∘r  𝑇 𝐻 )  ↔  ( ∀ 𝑤  ∈  𝐴 ( 𝐹 ‘ 𝑤 ) 𝑅 ( 𝐺 ‘ 𝑤 )  ∧  ∀ 𝑤  ∈  𝐴 ( 𝐺 ‘ 𝑤 ) 𝑇 ( 𝐻 ‘ 𝑤 ) ) ) ) | 
						
							| 37 |  | r19.26 | ⊢ ( ∀ 𝑤  ∈  𝐴 ( ( 𝐹 ‘ 𝑤 ) 𝑅 ( 𝐺 ‘ 𝑤 )  ∧  ( 𝐺 ‘ 𝑤 ) 𝑇 ( 𝐻 ‘ 𝑤 ) )  ↔  ( ∀ 𝑤  ∈  𝐴 ( 𝐹 ‘ 𝑤 ) 𝑅 ( 𝐺 ‘ 𝑤 )  ∧  ∀ 𝑤  ∈  𝐴 ( 𝐺 ‘ 𝑤 ) 𝑇 ( 𝐻 ‘ 𝑤 ) ) ) | 
						
							| 38 | 36 37 | bitr4di | ⊢ ( 𝜑  →  ( ( 𝐹  ∘r  𝑅 𝐺  ∧  𝐺  ∘r  𝑇 𝐻 )  ↔  ∀ 𝑤  ∈  𝐴 ( ( 𝐹 ‘ 𝑤 ) 𝑅 ( 𝐺 ‘ 𝑤 )  ∧  ( 𝐺 ‘ 𝑤 ) 𝑇 ( 𝐻 ‘ 𝑤 ) ) ) ) | 
						
							| 39 | 27 33 1 1 29 30 34 | ofrfval | ⊢ ( 𝜑  →  ( 𝐹  ∘r  𝑈 𝐻  ↔  ∀ 𝑤  ∈  𝐴 ( 𝐹 ‘ 𝑤 ) 𝑈 ( 𝐻 ‘ 𝑤 ) ) ) | 
						
							| 40 | 26 38 39 | 3imtr4d | ⊢ ( 𝜑  →  ( ( 𝐹  ∘r  𝑅 𝐺  ∧  𝐺  ∘r  𝑇 𝐻 )  →  𝐹  ∘r  𝑈 𝐻 ) ) |