Step |
Hyp |
Ref |
Expression |
1 |
|
caonncan.i |
⊢ ( 𝜑 → 𝐼 ∈ 𝑉 ) |
2 |
|
caonncan.a |
⊢ ( 𝜑 → 𝐴 : 𝐼 ⟶ 𝑆 ) |
3 |
|
caonncan.b |
⊢ ( 𝜑 → 𝐵 : 𝐼 ⟶ 𝑆 ) |
4 |
|
caonncan.z |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆 ) ) → ( 𝑥 𝑀 ( 𝑥 𝑀 𝑦 ) ) = 𝑦 ) |
5 |
2
|
ffvelrnda |
⊢ ( ( 𝜑 ∧ 𝑧 ∈ 𝐼 ) → ( 𝐴 ‘ 𝑧 ) ∈ 𝑆 ) |
6 |
3
|
ffvelrnda |
⊢ ( ( 𝜑 ∧ 𝑧 ∈ 𝐼 ) → ( 𝐵 ‘ 𝑧 ) ∈ 𝑆 ) |
7 |
4
|
ralrimivva |
⊢ ( 𝜑 → ∀ 𝑥 ∈ 𝑆 ∀ 𝑦 ∈ 𝑆 ( 𝑥 𝑀 ( 𝑥 𝑀 𝑦 ) ) = 𝑦 ) |
8 |
7
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑧 ∈ 𝐼 ) → ∀ 𝑥 ∈ 𝑆 ∀ 𝑦 ∈ 𝑆 ( 𝑥 𝑀 ( 𝑥 𝑀 𝑦 ) ) = 𝑦 ) |
9 |
|
id |
⊢ ( 𝑥 = ( 𝐴 ‘ 𝑧 ) → 𝑥 = ( 𝐴 ‘ 𝑧 ) ) |
10 |
|
oveq1 |
⊢ ( 𝑥 = ( 𝐴 ‘ 𝑧 ) → ( 𝑥 𝑀 𝑦 ) = ( ( 𝐴 ‘ 𝑧 ) 𝑀 𝑦 ) ) |
11 |
9 10
|
oveq12d |
⊢ ( 𝑥 = ( 𝐴 ‘ 𝑧 ) → ( 𝑥 𝑀 ( 𝑥 𝑀 𝑦 ) ) = ( ( 𝐴 ‘ 𝑧 ) 𝑀 ( ( 𝐴 ‘ 𝑧 ) 𝑀 𝑦 ) ) ) |
12 |
11
|
eqeq1d |
⊢ ( 𝑥 = ( 𝐴 ‘ 𝑧 ) → ( ( 𝑥 𝑀 ( 𝑥 𝑀 𝑦 ) ) = 𝑦 ↔ ( ( 𝐴 ‘ 𝑧 ) 𝑀 ( ( 𝐴 ‘ 𝑧 ) 𝑀 𝑦 ) ) = 𝑦 ) ) |
13 |
|
oveq2 |
⊢ ( 𝑦 = ( 𝐵 ‘ 𝑧 ) → ( ( 𝐴 ‘ 𝑧 ) 𝑀 𝑦 ) = ( ( 𝐴 ‘ 𝑧 ) 𝑀 ( 𝐵 ‘ 𝑧 ) ) ) |
14 |
13
|
oveq2d |
⊢ ( 𝑦 = ( 𝐵 ‘ 𝑧 ) → ( ( 𝐴 ‘ 𝑧 ) 𝑀 ( ( 𝐴 ‘ 𝑧 ) 𝑀 𝑦 ) ) = ( ( 𝐴 ‘ 𝑧 ) 𝑀 ( ( 𝐴 ‘ 𝑧 ) 𝑀 ( 𝐵 ‘ 𝑧 ) ) ) ) |
15 |
|
id |
⊢ ( 𝑦 = ( 𝐵 ‘ 𝑧 ) → 𝑦 = ( 𝐵 ‘ 𝑧 ) ) |
16 |
14 15
|
eqeq12d |
⊢ ( 𝑦 = ( 𝐵 ‘ 𝑧 ) → ( ( ( 𝐴 ‘ 𝑧 ) 𝑀 ( ( 𝐴 ‘ 𝑧 ) 𝑀 𝑦 ) ) = 𝑦 ↔ ( ( 𝐴 ‘ 𝑧 ) 𝑀 ( ( 𝐴 ‘ 𝑧 ) 𝑀 ( 𝐵 ‘ 𝑧 ) ) ) = ( 𝐵 ‘ 𝑧 ) ) ) |
17 |
12 16
|
rspc2va |
⊢ ( ( ( ( 𝐴 ‘ 𝑧 ) ∈ 𝑆 ∧ ( 𝐵 ‘ 𝑧 ) ∈ 𝑆 ) ∧ ∀ 𝑥 ∈ 𝑆 ∀ 𝑦 ∈ 𝑆 ( 𝑥 𝑀 ( 𝑥 𝑀 𝑦 ) ) = 𝑦 ) → ( ( 𝐴 ‘ 𝑧 ) 𝑀 ( ( 𝐴 ‘ 𝑧 ) 𝑀 ( 𝐵 ‘ 𝑧 ) ) ) = ( 𝐵 ‘ 𝑧 ) ) |
18 |
5 6 8 17
|
syl21anc |
⊢ ( ( 𝜑 ∧ 𝑧 ∈ 𝐼 ) → ( ( 𝐴 ‘ 𝑧 ) 𝑀 ( ( 𝐴 ‘ 𝑧 ) 𝑀 ( 𝐵 ‘ 𝑧 ) ) ) = ( 𝐵 ‘ 𝑧 ) ) |
19 |
18
|
mpteq2dva |
⊢ ( 𝜑 → ( 𝑧 ∈ 𝐼 ↦ ( ( 𝐴 ‘ 𝑧 ) 𝑀 ( ( 𝐴 ‘ 𝑧 ) 𝑀 ( 𝐵 ‘ 𝑧 ) ) ) ) = ( 𝑧 ∈ 𝐼 ↦ ( 𝐵 ‘ 𝑧 ) ) ) |
20 |
|
fvexd |
⊢ ( ( 𝜑 ∧ 𝑧 ∈ 𝐼 ) → ( 𝐴 ‘ 𝑧 ) ∈ V ) |
21 |
|
ovexd |
⊢ ( ( 𝜑 ∧ 𝑧 ∈ 𝐼 ) → ( ( 𝐴 ‘ 𝑧 ) 𝑀 ( 𝐵 ‘ 𝑧 ) ) ∈ V ) |
22 |
2
|
feqmptd |
⊢ ( 𝜑 → 𝐴 = ( 𝑧 ∈ 𝐼 ↦ ( 𝐴 ‘ 𝑧 ) ) ) |
23 |
|
fvexd |
⊢ ( ( 𝜑 ∧ 𝑧 ∈ 𝐼 ) → ( 𝐵 ‘ 𝑧 ) ∈ V ) |
24 |
3
|
feqmptd |
⊢ ( 𝜑 → 𝐵 = ( 𝑧 ∈ 𝐼 ↦ ( 𝐵 ‘ 𝑧 ) ) ) |
25 |
1 20 23 22 24
|
offval2 |
⊢ ( 𝜑 → ( 𝐴 ∘f 𝑀 𝐵 ) = ( 𝑧 ∈ 𝐼 ↦ ( ( 𝐴 ‘ 𝑧 ) 𝑀 ( 𝐵 ‘ 𝑧 ) ) ) ) |
26 |
1 20 21 22 25
|
offval2 |
⊢ ( 𝜑 → ( 𝐴 ∘f 𝑀 ( 𝐴 ∘f 𝑀 𝐵 ) ) = ( 𝑧 ∈ 𝐼 ↦ ( ( 𝐴 ‘ 𝑧 ) 𝑀 ( ( 𝐴 ‘ 𝑧 ) 𝑀 ( 𝐵 ‘ 𝑧 ) ) ) ) ) |
27 |
19 26 24
|
3eqtr4d |
⊢ ( 𝜑 → ( 𝐴 ∘f 𝑀 ( 𝐴 ∘f 𝑀 𝐵 ) ) = 𝐵 ) |