Description: Convert an operation associative law to class notation. (Contributed by NM, 26-Aug-1995) (Revised by Mario Carneiro, 26-May-2014)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | caovass.1 | ⊢ 𝐴 ∈ V | |
| caovass.2 | ⊢ 𝐵 ∈ V | ||
| caovass.3 | ⊢ 𝐶 ∈ V | ||
| caovass.4 | ⊢ ( ( 𝑥 𝐹 𝑦 ) 𝐹 𝑧 ) = ( 𝑥 𝐹 ( 𝑦 𝐹 𝑧 ) ) | ||
| Assertion | caovass | ⊢ ( ( 𝐴 𝐹 𝐵 ) 𝐹 𝐶 ) = ( 𝐴 𝐹 ( 𝐵 𝐹 𝐶 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | caovass.1 | ⊢ 𝐴 ∈ V | |
| 2 | caovass.2 | ⊢ 𝐵 ∈ V | |
| 3 | caovass.3 | ⊢ 𝐶 ∈ V | |
| 4 | caovass.4 | ⊢ ( ( 𝑥 𝐹 𝑦 ) 𝐹 𝑧 ) = ( 𝑥 𝐹 ( 𝑦 𝐹 𝑧 ) ) | |
| 5 | tru | ⊢ ⊤ | |
| 6 | 4 | a1i | ⊢ ( ( ⊤ ∧ ( 𝑥 ∈ V ∧ 𝑦 ∈ V ∧ 𝑧 ∈ V ) ) → ( ( 𝑥 𝐹 𝑦 ) 𝐹 𝑧 ) = ( 𝑥 𝐹 ( 𝑦 𝐹 𝑧 ) ) ) |
| 7 | 6 | caovassg | ⊢ ( ( ⊤ ∧ ( 𝐴 ∈ V ∧ 𝐵 ∈ V ∧ 𝐶 ∈ V ) ) → ( ( 𝐴 𝐹 𝐵 ) 𝐹 𝐶 ) = ( 𝐴 𝐹 ( 𝐵 𝐹 𝐶 ) ) ) |
| 8 | 5 7 | mpan | ⊢ ( ( 𝐴 ∈ V ∧ 𝐵 ∈ V ∧ 𝐶 ∈ V ) → ( ( 𝐴 𝐹 𝐵 ) 𝐹 𝐶 ) = ( 𝐴 𝐹 ( 𝐵 𝐹 𝐶 ) ) ) |
| 9 | 1 2 3 8 | mp3an | ⊢ ( ( 𝐴 𝐹 𝐵 ) 𝐹 𝐶 ) = ( 𝐴 𝐹 ( 𝐵 𝐹 𝐶 ) ) |