Description: Convert an operation associative law to class notation. (Contributed by Mario Carneiro, 30-Dec-2014)
Ref | Expression | ||
---|---|---|---|
Hypotheses | caovassg.1 | ⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆 ∧ 𝑧 ∈ 𝑆 ) ) → ( ( 𝑥 𝐹 𝑦 ) 𝐹 𝑧 ) = ( 𝑥 𝐹 ( 𝑦 𝐹 𝑧 ) ) ) | |
caovassd.2 | ⊢ ( 𝜑 → 𝐴 ∈ 𝑆 ) | ||
caovassd.3 | ⊢ ( 𝜑 → 𝐵 ∈ 𝑆 ) | ||
caovassd.4 | ⊢ ( 𝜑 → 𝐶 ∈ 𝑆 ) | ||
Assertion | caovassd | ⊢ ( 𝜑 → ( ( 𝐴 𝐹 𝐵 ) 𝐹 𝐶 ) = ( 𝐴 𝐹 ( 𝐵 𝐹 𝐶 ) ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | caovassg.1 | ⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆 ∧ 𝑧 ∈ 𝑆 ) ) → ( ( 𝑥 𝐹 𝑦 ) 𝐹 𝑧 ) = ( 𝑥 𝐹 ( 𝑦 𝐹 𝑧 ) ) ) | |
2 | caovassd.2 | ⊢ ( 𝜑 → 𝐴 ∈ 𝑆 ) | |
3 | caovassd.3 | ⊢ ( 𝜑 → 𝐵 ∈ 𝑆 ) | |
4 | caovassd.4 | ⊢ ( 𝜑 → 𝐶 ∈ 𝑆 ) | |
5 | id | ⊢ ( 𝜑 → 𝜑 ) | |
6 | 1 | caovassg | ⊢ ( ( 𝜑 ∧ ( 𝐴 ∈ 𝑆 ∧ 𝐵 ∈ 𝑆 ∧ 𝐶 ∈ 𝑆 ) ) → ( ( 𝐴 𝐹 𝐵 ) 𝐹 𝐶 ) = ( 𝐴 𝐹 ( 𝐵 𝐹 𝐶 ) ) ) |
7 | 5 2 3 4 6 | syl13anc | ⊢ ( 𝜑 → ( ( 𝐴 𝐹 𝐵 ) 𝐹 𝐶 ) = ( 𝐴 𝐹 ( 𝐵 𝐹 𝐶 ) ) ) |