Metamath Proof Explorer


Theorem caovassd

Description: Convert an operation associative law to class notation. (Contributed by Mario Carneiro, 30-Dec-2014)

Ref Expression
Hypotheses caovassg.1 ( ( 𝜑 ∧ ( 𝑥𝑆𝑦𝑆𝑧𝑆 ) ) → ( ( 𝑥 𝐹 𝑦 ) 𝐹 𝑧 ) = ( 𝑥 𝐹 ( 𝑦 𝐹 𝑧 ) ) )
caovassd.2 ( 𝜑𝐴𝑆 )
caovassd.3 ( 𝜑𝐵𝑆 )
caovassd.4 ( 𝜑𝐶𝑆 )
Assertion caovassd ( 𝜑 → ( ( 𝐴 𝐹 𝐵 ) 𝐹 𝐶 ) = ( 𝐴 𝐹 ( 𝐵 𝐹 𝐶 ) ) )

Proof

Step Hyp Ref Expression
1 caovassg.1 ( ( 𝜑 ∧ ( 𝑥𝑆𝑦𝑆𝑧𝑆 ) ) → ( ( 𝑥 𝐹 𝑦 ) 𝐹 𝑧 ) = ( 𝑥 𝐹 ( 𝑦 𝐹 𝑧 ) ) )
2 caovassd.2 ( 𝜑𝐴𝑆 )
3 caovassd.3 ( 𝜑𝐵𝑆 )
4 caovassd.4 ( 𝜑𝐶𝑆 )
5 id ( 𝜑𝜑 )
6 1 caovassg ( ( 𝜑 ∧ ( 𝐴𝑆𝐵𝑆𝐶𝑆 ) ) → ( ( 𝐴 𝐹 𝐵 ) 𝐹 𝐶 ) = ( 𝐴 𝐹 ( 𝐵 𝐹 𝐶 ) ) )
7 5 2 3 4 6 syl13anc ( 𝜑 → ( ( 𝐴 𝐹 𝐵 ) 𝐹 𝐶 ) = ( 𝐴 𝐹 ( 𝐵 𝐹 𝐶 ) ) )