Metamath Proof Explorer


Theorem caovcand

Description: Convert an operation cancellation law to class notation. (Contributed by Mario Carneiro, 30-Dec-2014)

Ref Expression
Hypotheses caovcang.1 ( ( 𝜑 ∧ ( 𝑥𝑇𝑦𝑆𝑧𝑆 ) ) → ( ( 𝑥 𝐹 𝑦 ) = ( 𝑥 𝐹 𝑧 ) ↔ 𝑦 = 𝑧 ) )
caovcand.2 ( 𝜑𝐴𝑇 )
caovcand.3 ( 𝜑𝐵𝑆 )
caovcand.4 ( 𝜑𝐶𝑆 )
Assertion caovcand ( 𝜑 → ( ( 𝐴 𝐹 𝐵 ) = ( 𝐴 𝐹 𝐶 ) ↔ 𝐵 = 𝐶 ) )

Proof

Step Hyp Ref Expression
1 caovcang.1 ( ( 𝜑 ∧ ( 𝑥𝑇𝑦𝑆𝑧𝑆 ) ) → ( ( 𝑥 𝐹 𝑦 ) = ( 𝑥 𝐹 𝑧 ) ↔ 𝑦 = 𝑧 ) )
2 caovcand.2 ( 𝜑𝐴𝑇 )
3 caovcand.3 ( 𝜑𝐵𝑆 )
4 caovcand.4 ( 𝜑𝐶𝑆 )
5 id ( 𝜑𝜑 )
6 1 caovcang ( ( 𝜑 ∧ ( 𝐴𝑇𝐵𝑆𝐶𝑆 ) ) → ( ( 𝐴 𝐹 𝐵 ) = ( 𝐴 𝐹 𝐶 ) ↔ 𝐵 = 𝐶 ) )
7 5 2 3 4 6 syl13anc ( 𝜑 → ( ( 𝐴 𝐹 𝐵 ) = ( 𝐴 𝐹 𝐶 ) ↔ 𝐵 = 𝐶 ) )