| Step |
Hyp |
Ref |
Expression |
| 1 |
|
caovcang.1 |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝑇 ∧ 𝑦 ∈ 𝑆 ∧ 𝑧 ∈ 𝑆 ) ) → ( ( 𝑥 𝐹 𝑦 ) = ( 𝑥 𝐹 𝑧 ) ↔ 𝑦 = 𝑧 ) ) |
| 2 |
1
|
ralrimivvva |
⊢ ( 𝜑 → ∀ 𝑥 ∈ 𝑇 ∀ 𝑦 ∈ 𝑆 ∀ 𝑧 ∈ 𝑆 ( ( 𝑥 𝐹 𝑦 ) = ( 𝑥 𝐹 𝑧 ) ↔ 𝑦 = 𝑧 ) ) |
| 3 |
|
oveq1 |
⊢ ( 𝑥 = 𝐴 → ( 𝑥 𝐹 𝑦 ) = ( 𝐴 𝐹 𝑦 ) ) |
| 4 |
|
oveq1 |
⊢ ( 𝑥 = 𝐴 → ( 𝑥 𝐹 𝑧 ) = ( 𝐴 𝐹 𝑧 ) ) |
| 5 |
3 4
|
eqeq12d |
⊢ ( 𝑥 = 𝐴 → ( ( 𝑥 𝐹 𝑦 ) = ( 𝑥 𝐹 𝑧 ) ↔ ( 𝐴 𝐹 𝑦 ) = ( 𝐴 𝐹 𝑧 ) ) ) |
| 6 |
5
|
bibi1d |
⊢ ( 𝑥 = 𝐴 → ( ( ( 𝑥 𝐹 𝑦 ) = ( 𝑥 𝐹 𝑧 ) ↔ 𝑦 = 𝑧 ) ↔ ( ( 𝐴 𝐹 𝑦 ) = ( 𝐴 𝐹 𝑧 ) ↔ 𝑦 = 𝑧 ) ) ) |
| 7 |
|
oveq2 |
⊢ ( 𝑦 = 𝐵 → ( 𝐴 𝐹 𝑦 ) = ( 𝐴 𝐹 𝐵 ) ) |
| 8 |
7
|
eqeq1d |
⊢ ( 𝑦 = 𝐵 → ( ( 𝐴 𝐹 𝑦 ) = ( 𝐴 𝐹 𝑧 ) ↔ ( 𝐴 𝐹 𝐵 ) = ( 𝐴 𝐹 𝑧 ) ) ) |
| 9 |
|
eqeq1 |
⊢ ( 𝑦 = 𝐵 → ( 𝑦 = 𝑧 ↔ 𝐵 = 𝑧 ) ) |
| 10 |
8 9
|
bibi12d |
⊢ ( 𝑦 = 𝐵 → ( ( ( 𝐴 𝐹 𝑦 ) = ( 𝐴 𝐹 𝑧 ) ↔ 𝑦 = 𝑧 ) ↔ ( ( 𝐴 𝐹 𝐵 ) = ( 𝐴 𝐹 𝑧 ) ↔ 𝐵 = 𝑧 ) ) ) |
| 11 |
|
oveq2 |
⊢ ( 𝑧 = 𝐶 → ( 𝐴 𝐹 𝑧 ) = ( 𝐴 𝐹 𝐶 ) ) |
| 12 |
11
|
eqeq2d |
⊢ ( 𝑧 = 𝐶 → ( ( 𝐴 𝐹 𝐵 ) = ( 𝐴 𝐹 𝑧 ) ↔ ( 𝐴 𝐹 𝐵 ) = ( 𝐴 𝐹 𝐶 ) ) ) |
| 13 |
|
eqeq2 |
⊢ ( 𝑧 = 𝐶 → ( 𝐵 = 𝑧 ↔ 𝐵 = 𝐶 ) ) |
| 14 |
12 13
|
bibi12d |
⊢ ( 𝑧 = 𝐶 → ( ( ( 𝐴 𝐹 𝐵 ) = ( 𝐴 𝐹 𝑧 ) ↔ 𝐵 = 𝑧 ) ↔ ( ( 𝐴 𝐹 𝐵 ) = ( 𝐴 𝐹 𝐶 ) ↔ 𝐵 = 𝐶 ) ) ) |
| 15 |
6 10 14
|
rspc3v |
⊢ ( ( 𝐴 ∈ 𝑇 ∧ 𝐵 ∈ 𝑆 ∧ 𝐶 ∈ 𝑆 ) → ( ∀ 𝑥 ∈ 𝑇 ∀ 𝑦 ∈ 𝑆 ∀ 𝑧 ∈ 𝑆 ( ( 𝑥 𝐹 𝑦 ) = ( 𝑥 𝐹 𝑧 ) ↔ 𝑦 = 𝑧 ) → ( ( 𝐴 𝐹 𝐵 ) = ( 𝐴 𝐹 𝐶 ) ↔ 𝐵 = 𝐶 ) ) ) |
| 16 |
2 15
|
mpan9 |
⊢ ( ( 𝜑 ∧ ( 𝐴 ∈ 𝑇 ∧ 𝐵 ∈ 𝑆 ∧ 𝐶 ∈ 𝑆 ) ) → ( ( 𝐴 𝐹 𝐵 ) = ( 𝐴 𝐹 𝐶 ) ↔ 𝐵 = 𝐶 ) ) |