Step |
Hyp |
Ref |
Expression |
1 |
|
caovcang.1 |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝑇 ∧ 𝑦 ∈ 𝑆 ∧ 𝑧 ∈ 𝑆 ) ) → ( ( 𝑥 𝐹 𝑦 ) = ( 𝑥 𝐹 𝑧 ) ↔ 𝑦 = 𝑧 ) ) |
2 |
|
caovcand.2 |
⊢ ( 𝜑 → 𝐴 ∈ 𝑇 ) |
3 |
|
caovcand.3 |
⊢ ( 𝜑 → 𝐵 ∈ 𝑆 ) |
4 |
|
caovcand.4 |
⊢ ( 𝜑 → 𝐶 ∈ 𝑆 ) |
5 |
|
caovcanrd.5 |
⊢ ( 𝜑 → 𝐴 ∈ 𝑆 ) |
6 |
|
caovcanrd.6 |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆 ) ) → ( 𝑥 𝐹 𝑦 ) = ( 𝑦 𝐹 𝑥 ) ) |
7 |
6 5 3
|
caovcomd |
⊢ ( 𝜑 → ( 𝐴 𝐹 𝐵 ) = ( 𝐵 𝐹 𝐴 ) ) |
8 |
6 5 4
|
caovcomd |
⊢ ( 𝜑 → ( 𝐴 𝐹 𝐶 ) = ( 𝐶 𝐹 𝐴 ) ) |
9 |
7 8
|
eqeq12d |
⊢ ( 𝜑 → ( ( 𝐴 𝐹 𝐵 ) = ( 𝐴 𝐹 𝐶 ) ↔ ( 𝐵 𝐹 𝐴 ) = ( 𝐶 𝐹 𝐴 ) ) ) |
10 |
1 2 3 4
|
caovcand |
⊢ ( 𝜑 → ( ( 𝐴 𝐹 𝐵 ) = ( 𝐴 𝐹 𝐶 ) ↔ 𝐵 = 𝐶 ) ) |
11 |
9 10
|
bitr3d |
⊢ ( 𝜑 → ( ( 𝐵 𝐹 𝐴 ) = ( 𝐶 𝐹 𝐴 ) ↔ 𝐵 = 𝐶 ) ) |