Description: Convert an operation closure law to class notation. (Contributed by NM, 4-Aug-1995) (Revised by Mario Carneiro, 26-May-2014)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | caovcl.1 | ⊢ ( ( 𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆 ) → ( 𝑥 𝐹 𝑦 ) ∈ 𝑆 ) | |
| Assertion | caovcl | ⊢ ( ( 𝐴 ∈ 𝑆 ∧ 𝐵 ∈ 𝑆 ) → ( 𝐴 𝐹 𝐵 ) ∈ 𝑆 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | caovcl.1 | ⊢ ( ( 𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆 ) → ( 𝑥 𝐹 𝑦 ) ∈ 𝑆 ) | |
| 2 | tru | ⊢ ⊤ | |
| 3 | 1 | adantl | ⊢ ( ( ⊤ ∧ ( 𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆 ) ) → ( 𝑥 𝐹 𝑦 ) ∈ 𝑆 ) |
| 4 | 3 | caovclg | ⊢ ( ( ⊤ ∧ ( 𝐴 ∈ 𝑆 ∧ 𝐵 ∈ 𝑆 ) ) → ( 𝐴 𝐹 𝐵 ) ∈ 𝑆 ) |
| 5 | 2 4 | mpan | ⊢ ( ( 𝐴 ∈ 𝑆 ∧ 𝐵 ∈ 𝑆 ) → ( 𝐴 𝐹 𝐵 ) ∈ 𝑆 ) |