Metamath Proof Explorer


Theorem caovcl

Description: Convert an operation closure law to class notation. (Contributed by NM, 4-Aug-1995) (Revised by Mario Carneiro, 26-May-2014)

Ref Expression
Hypothesis caovcl.1 ( ( 𝑥𝑆𝑦𝑆 ) → ( 𝑥 𝐹 𝑦 ) ∈ 𝑆 )
Assertion caovcl ( ( 𝐴𝑆𝐵𝑆 ) → ( 𝐴 𝐹 𝐵 ) ∈ 𝑆 )

Proof

Step Hyp Ref Expression
1 caovcl.1 ( ( 𝑥𝑆𝑦𝑆 ) → ( 𝑥 𝐹 𝑦 ) ∈ 𝑆 )
2 tru
3 1 adantl ( ( ⊤ ∧ ( 𝑥𝑆𝑦𝑆 ) ) → ( 𝑥 𝐹 𝑦 ) ∈ 𝑆 )
4 3 caovclg ( ( ⊤ ∧ ( 𝐴𝑆𝐵𝑆 ) ) → ( 𝐴 𝐹 𝐵 ) ∈ 𝑆 )
5 2 4 mpan ( ( 𝐴𝑆𝐵𝑆 ) → ( 𝐴 𝐹 𝐵 ) ∈ 𝑆 )