Metamath Proof Explorer


Theorem caovclg

Description: Convert an operation closure law to class notation. (Contributed by Mario Carneiro, 26-May-2014)

Ref Expression
Hypothesis caovclg.1 ( ( 𝜑 ∧ ( 𝑥𝐶𝑦𝐷 ) ) → ( 𝑥 𝐹 𝑦 ) ∈ 𝐸 )
Assertion caovclg ( ( 𝜑 ∧ ( 𝐴𝐶𝐵𝐷 ) ) → ( 𝐴 𝐹 𝐵 ) ∈ 𝐸 )

Proof

Step Hyp Ref Expression
1 caovclg.1 ( ( 𝜑 ∧ ( 𝑥𝐶𝑦𝐷 ) ) → ( 𝑥 𝐹 𝑦 ) ∈ 𝐸 )
2 1 ralrimivva ( 𝜑 → ∀ 𝑥𝐶𝑦𝐷 ( 𝑥 𝐹 𝑦 ) ∈ 𝐸 )
3 oveq1 ( 𝑥 = 𝐴 → ( 𝑥 𝐹 𝑦 ) = ( 𝐴 𝐹 𝑦 ) )
4 3 eleq1d ( 𝑥 = 𝐴 → ( ( 𝑥 𝐹 𝑦 ) ∈ 𝐸 ↔ ( 𝐴 𝐹 𝑦 ) ∈ 𝐸 ) )
5 oveq2 ( 𝑦 = 𝐵 → ( 𝐴 𝐹 𝑦 ) = ( 𝐴 𝐹 𝐵 ) )
6 5 eleq1d ( 𝑦 = 𝐵 → ( ( 𝐴 𝐹 𝑦 ) ∈ 𝐸 ↔ ( 𝐴 𝐹 𝐵 ) ∈ 𝐸 ) )
7 4 6 rspc2v ( ( 𝐴𝐶𝐵𝐷 ) → ( ∀ 𝑥𝐶𝑦𝐷 ( 𝑥 𝐹 𝑦 ) ∈ 𝐸 → ( 𝐴 𝐹 𝐵 ) ∈ 𝐸 ) )
8 2 7 mpan9 ( ( 𝜑 ∧ ( 𝐴𝐶𝐵𝐷 ) ) → ( 𝐴 𝐹 𝐵 ) ∈ 𝐸 )