Metamath Proof Explorer
		
		
		
		Description:  Convert an operation commutative law to class notation.  (Contributed by NM, 26-Aug-1995)  (Revised by Mario Carneiro, 1-Jun-2013)
		
			
				
					|  |  | Ref | Expression | 
					
						|  | Hypotheses | caovcom.1 | ⊢ 𝐴  ∈  V | 
					
						|  |  | caovcom.2 | ⊢ 𝐵  ∈  V | 
					
						|  |  | caovcom.3 | ⊢ ( 𝑥 𝐹 𝑦 )  =  ( 𝑦 𝐹 𝑥 ) | 
				
					|  | Assertion | caovcom | ⊢  ( 𝐴 𝐹 𝐵 )  =  ( 𝐵 𝐹 𝐴 ) | 
			
		
		
			
				Proof
				
					
						| Step | Hyp | Ref | Expression | 
						
							| 1 |  | caovcom.1 | ⊢ 𝐴  ∈  V | 
						
							| 2 |  | caovcom.2 | ⊢ 𝐵  ∈  V | 
						
							| 3 |  | caovcom.3 | ⊢ ( 𝑥 𝐹 𝑦 )  =  ( 𝑦 𝐹 𝑥 ) | 
						
							| 4 | 1 2 | pm3.2i | ⊢ ( 𝐴  ∈  V  ∧  𝐵  ∈  V ) | 
						
							| 5 | 3 | a1i | ⊢ ( ( 𝐴  ∈  V  ∧  ( 𝑥  ∈  V  ∧  𝑦  ∈  V ) )  →  ( 𝑥 𝐹 𝑦 )  =  ( 𝑦 𝐹 𝑥 ) ) | 
						
							| 6 | 5 | caovcomg | ⊢ ( ( 𝐴  ∈  V  ∧  ( 𝐴  ∈  V  ∧  𝐵  ∈  V ) )  →  ( 𝐴 𝐹 𝐵 )  =  ( 𝐵 𝐹 𝐴 ) ) | 
						
							| 7 | 1 4 6 | mp2an | ⊢ ( 𝐴 𝐹 𝐵 )  =  ( 𝐵 𝐹 𝐴 ) |